/usr/share/cain/state/ParameterEvaluation.py is in cain 1.9-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | """Implements functions for parameter evaluation."""
# If we are running the unit tests.
if __name__ == '__main__':
import sys
sys.path.insert(1, '..')
from fio.MathematicaWriter import mathematicaForm
import re
import string
import math
# Import the math functions for use in evaluating expressions.
from math import *
def getParameters(expression, identifiers):
parameters = []
while True:
matchObject = re.search('([a-zA-z]|_)[a-zA-Z0-9_]*', expression)
if not matchObject:
break
id = matchObject.group()
if id in identifiers:
parameters.append(id)
expression = expression[matchObject.end():]
return list(set(parameters))
def getIdentifiers(expression):
identifiers = []
while True:
matchObject = re.search('([a-zA-z]|_)[a-zA-Z0-9_]*', expression)
if not matchObject:
break
identifiers.append(matchObject.group())
expression = expression[matchObject.end():]
return identifiers
# CONTINUE REMOVE
def checkIdentifiers(identifiers):
"""Check the identifiers. If they are valid return None, otherwise return
an error message. The identifiers may not be objects defined in math:
['pow', 'cosh', 'ldexp', 'hypot', 'tan', 'asin', 'log', 'fabs', 'floor', 'sqrt', 'frexp', 'degrees', 'pi', 'log10', '__doc__', 'fmod', 'atan', '__file__', 'ceil', 'sinh', '__name__', 'cos', 'e', 'tanh', 'radians', 'sin', 'atan2', 'modf', 'exp', 'acos']
Parameters:
- identifiers is a list of the identifiers."""
# Check that each is a valid SBML identifier.
reserved = math.__dict__.keys()
for id in identifiers:
matchObject = re.match('([a-zA-z]|_)[a-zA-Z0-9_]*', id)
if not (matchObject and matchObject.group(0) == id):
return '"%s" is not a valid identifier.' % id
if id in reserved:
return '"%s" is a reserved word. You cannot use it as an identifier.' % id
# Indicate that there were no errors.
return None
class Mangler:
def __init__(self, prefix, identifiers):
self.prefix = prefix
self.identifiers = identifiers
def __call__(self, matchObject):
m = matchObject.group()
if m in self.identifiers:
return self.prefix + m
else:
return m
def mangle(expression, prefix, identifiers):
"""Mangle the identifiers in the expression. Return the mangled
expression."""
mangler = Mangler(prefix, identifiers)
return re.sub('([a-zA-z]|_)[a-zA-Z0-9_]*', mangler, expression)
class KineticLawDecorator:
"""Mangle each parameter identifier by adding a prefix. Change species
identifiers to array elements."""
def __init__(self, parameterPrefix, parameterIdentifiers, speciesArrayName,
speciesIdentifiers):
self.parameterPrefix = parameterPrefix
self.parameterIdentifiers = parameterIdentifiers
self.speciesArrayName = speciesArrayName
self.speciesIdentifiers = speciesIdentifiers
def __call__(self, expression):
return re.sub('([a-zA-z]|_)[a-zA-Z0-9_]*', self.decorateIdentifier,
expression)
def decorateIdentifier(self, matchObject):
m = matchObject.group()
# Special case: the e in 1e-5 is not a parameter.
n = matchObject.start()
if m == 'e' and n != 0 and matchObject.string[n-1] in\
['.'] + list(string.digits):
return m
if m in self.parameterIdentifiers:
return self.parameterPrefix + m
elif m in self.speciesIdentifiers:
return self.speciesArrayName + '[' +\
str(self.speciesIdentifiers.index(m)) + ']'
else:
return m
class KineticLawDecoratorMathematica:
"""Change species identifiers to function evaluations."""
def __init__(self, speciesIdentifiers):
self.speciesIdentifiers = speciesIdentifiers
def __call__(self, expression):
# Change species identifiers to function evaluations.
expression = re.sub('([a-zA-z]|_)[a-zA-Z0-9_]*',
self.decorateIdentifier, expression)
# Fix the floating-point numbers.
return re.sub(r'[0-9]+\.?[0-9]*(e|E)(\+|-)?[0-9]+',
self.decorateNumber, expression)
def decorateIdentifier(self, matchObject):
m = matchObject.group()
if m in self.speciesIdentifiers:
return m + '[t]'
else:
return m
def decorateNumber(self, matchObject):
return mathematicaForm(float(matchObject.group()))
class KineticLawDecoratorSbml:
"""Change parameter identifiers to parameter values.
- parameters is the dictionary of parameters"""
def __init__(self, parameters):
self.parameters = parameters
def __call__(self, expression):
# Change species identifiers to function evaluations.
return re.sub('([a-zA-z]|_)[a-zA-Z0-9_]*', self.decorateIdentifier,
expression)
def decorateIdentifier(self, matchObject):
m = matchObject.group()
if m in self.parameters:
return self.parameters[m].expression
else:
return m
def evaluateValues(parameters):
"""Evaluate the expressions in the dictionary of parameters and
compartments. Return True if the evaluation is successful. Store
the parameter values in the 'value' member data field."""
# Check the identifiers.
for id in parameters:
matchObject = re.match('([a-zA-z]|_)[a-zA-Z0-9_]*', id)
if not (matchObject and matchObject.group() == id):
return id + ' is not a valid identifier.'
# Start with null values.
for id in parameters:
parameters[id].value = None
# The prefix for mangling parameters.
prefix = '__p_'
# Make a list of identifiers and mangled expressions.
remaining = [(id, mangle(parameters[id].expression, prefix,
parameters.keys())) for id in parameters]
passes = 0
while remaining:
passes += 1
if passes > len(parameters):
remainingIds = [x[0] for x in remaining]
return 'Could not evaluate the expressions for: ' +\
', '.join(remainingIds) + '.'
for id, expression in remaining:
# Try to evaluate the expression.
try:
value = eval(expression)
except:
continue
# Try to convert it to a floating point number.
try:
value = float(value)
except:
return 'Could not convert the expression for "%s" to a floating point number.' % id
# Record the value.
parameters[id].value = value
exec(prefix + id + ' = value')
remaining.remove((id, expression))
# Indicate that there were no errors.
return None
def evaluateParametersOld(__parameters):
"""Evaluate the expressions in the dictionary of parameters. Return True
if the evaluation is successful. Store the parameter values in the
'value' member data field."""
# I hide the variables in a class to avoid collision with the parameter
# identifiers.
class __Namespace:
pass
__names = __Namespace()
__names.parameters = __parameters
# Check the identifiers.
__names.error = checkIdentifiers(__names.parameters)
if __names.error:
return __names.error
# Start with null values.
for id in __names.parameters:
__names.parameters[id].value = None
# Evaluate the expressions.
__names.remaining = __names.parameters.keys()
__names.passes = 0
while __names.remaining:
__names.passes += 1
if __names.passes > len(__names.parameters):
return 'Could not evaluate the expressions for ' +\
', '.join(__names.remaining) + '.'
for id in __names.remaining:
# Try to evaluate the expression.
try:
__names.value = eval(__names.parameters[id].expression)
except:
continue
# Try to convert it to a floating point number.
try:
__names.value = float(__names.value)
except:
return 'Could not convert the expression for "%s" to a floating point number.' % id
# Record the value.
__names.parameters[id].value = __names.value
exec(id + ' = __names.value')
__names.remaining.remove(id)
# Indicate that there were no errors.
return None
def evaluateInitialAmounts(species, parameters):
"""Evaluate the propensity factors for the mass action kinetic laws.
The parameter values must be evaluated before using this in this function.
If the evaluation is successful return None. Otherwise return an error
message.
Parameters:
- species: A dictionary of species.
- parameters: The dictionary of parameters."""
# The prefix for mangling parameters.
prefix = '__p_'
# Evaluate the parameters.
for id in parameters:
assert parameters[id].value is not None
exec(prefix + id + " = parameters['" + id + "'].value")
parameterIdentifiers = parameters.keys()
# Evaluate the initial amounts for the species.
for id in species:
# Start with a null value.
species[id].initialAmountValue = None
try:
species[id].initialAmountValue =\
eval(mangle(species[id].initialAmount, prefix,
parameterIdentifiers))
except:
return 'Could not evaluate the initial amount for species '\
+ id + '.'
# This form of the conditional checks for nan and other wierdness.
if not species[id].initialAmountValue >= 0:
return 'Species ' + id + ' does not have a non-negative initial amount.'
# Indicate that there were no errors.
return None
def evaluatePropensityFactors(reactions, parameters):
"""Evaluate the propensity factors for the mass action kinetic laws.
The parameter values must be evaluated before using this in this function.
If the evaluation is successful return None. Otherwise return an error
message.
Parameters:
- reactions: A list of reactions.
- parameters: The dictionary of parameters."""
# The prefix for mangling parameters.
prefix = '__p_'
# Evaluate the parameters.
for id in parameters:
assert parameters[id].value is not None
exec(prefix + id + " = parameters['" + id + "'].value")
parameterIdentifiers = parameters.keys()
# Evaluate the propensity factors for the mass action kinetic laws.
for r in reactions:
# Start with a null value.
r.propensityFactor = None
if r.massAction:
try:
r.propensityFactor = eval(mangle(r.propensity, prefix,
parameterIdentifiers))
except:
return 'Could not evaluate the propensity factor for reaction '\
+ r.id + '.'
# This form of the conditional checks for nan and other wierdness.
if not r.propensityFactor >= 0:
return 'Reaction ' + r.id + ' has a negative propensity factor.'
# Indicate that there were no errors.
return None
def makeValuesDictionary(model):
values = {}
for k, v in model.parameters.iteritems():
values[k] = v
for k, v in model.compartments.iteritems():
values[k] = v
return values
def evaluateModel(model):
"""Evaluate the parameters, the species initial amounts, and the
reaction propensities for the mass action kinetic laws. Return
None if successful. Otherwise return an error message."""
values = makeValuesDictionary(model)
return evaluateValues(values) or\
evaluateInitialAmounts(model.species, values) or\
evaluatePropensityFactors(model.reactions, values)
def evaluateModelInhomogeneous(model):
"""Evaluate the parameters and the species initial amounts. Return
None if successful. Otherwise return an error message."""
values = makeValuesDictionary(model)
return evaluateValues(values) or\
evaluateInitialAmounts(model.species, model.parameters)
def main():
from Value import Value
# The unit tests are in Species.py, Reaction.py, and Model.py.
print mangle('a b c x y z', '__', ['a', 'b', 'c'])
print mangle('a b c aa x y z', '__', ['a', 'b', 'c'])
print mangle('(a+b-c)*aa**x(y)/z', '__', ['a', 'b', 'c'])
print '\nKineticLawDecorator: s1 and s2 are species.'
decorator = KineticLawDecorator('__p_', ['a', 'b', 'e'], 'x', ['s1', 's2'])
expression = '6.42e-5'
print expression
print decorator(expression)
print '\nKineticLawDecoratorMathematica: s1 and s2 are species.'
decorator = KineticLawDecoratorMathematica(['s1', 's2'])
expression = '0.5*s1'
print expression
print decorator(expression)
expression = '1e-10*s1*s2'
print expression
print decorator(expression)
expression = '1.23e-10'
print expression
print decorator(expression)
expression = '1.23e10'
print expression
print decorator(expression)
# CONTINUE: Make this work.
expression = 'sqrt(s1)'
print expression
print decorator(expression)
print '\nKineticLawDecoratorSbml: c1 and c2 are parameters.'
decorator = KineticLawDecoratorSbml({'c1': Value('', '1'),
'c2': Value('', '2')})
expression = 'c1*s1'
print expression
print decorator(expression)
expression = 'c1/c2*sqrt(c3)*s1'
print expression
print decorator(expression)
if __name__ == '__main__':
main()
|