/usr/src/castle-game-engine-5.0.0/3d/castleboxes.pas is in castle-game-engine-src 5.0.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Axis-aligned 3D boxes (TBox3D). }
unit CastleBoxes;
interface
uses CastleVectors, SysUtils, CastleUtils, CastleGenericLists, CastleTriangles;
type
EBox3DEmpty = class(Exception);
TGetIndexFromIndexNumFunc = function (indexNum: integer): integer of object;
{ State of collision between a plane and some other object.
pcNone occurs only when the "other object" is empty
(TBox3D.IsEmpty, in case of box).
Other values mean that the other object is not empty.
pcOutside means that the whole object is on the side of the plane pointed
by plane direction (normal) vector. More formally, every point P
inserted into the plane equation will yield (P*PlaneNormal + PlaneD) > 0.
pcInside is the reverse of pcOutside:
the other object is on the side of plane
pointed by inverted plane normal. Every point inserted into plane
equation will yield < 0.
pcIntersecting is, well, the remaining case. It means that there's
for sure some point P of other object that, when inserted into
plane equation, will yield = 0. }
TPlaneCollision = (pcIntersecting, pcOutside, pcInside, pcNone);
{ Axis-aligned box. Rectangular prism with all sides parallel to basic planes
X = 0, Y = 0 and Z = 0. This is sometimes called AABB, "axis-aligned bounding
box". Many geometric operations are fast and easy on this type.
The actual box dimensions are stored inside the @link(Data) field, as two 3D points.
First point has always all the smaller coords, second point has all
the larger coords. I.e. always
@preformatted(
Data[0, 0] <= Data[1, 0] and
Data[0, 1] <= Data[1, 1] and
Data[0, 2] <= Data[1, 2]
)
The only exception is the special value EmptyBox3D.
Note that the box may still have all sizes equal 0. Consider a 3D model with
only a single 3D point --- it's not empty, but all the sizes must be 0.
This is an old-style object (withut any virtual
methods). This way there's no need for using constructors / destructors
to manage this, you can simply declare TBox3D type and copy / pass around
this box to other procedures. }
TBox3D = object
Data: array [0..1 ] of TVector3Single;
{ Check is box empty.
You can think of this function as "compare Box with EmptyBox3D".
But actually it works a little faster, by utilizing the assumption
that EmptyBox3D is the only allowed value that breaks
@code(Data[0, 0] <= Data[1, 0]) rule. }
function IsEmpty: boolean;
{ Check is box empty or has all the sizes equal 0. }
function IsEmptyOrZero: boolean;
procedure CheckNonEmpty;
{ These functions calculate the middle point, average size, max size
and particular sizes of given bounding box.
@raises(EBox3DEmpty If the Box is empty.)
@groupBegin }
function Middle: TVector3Single;
function AverageSize: Single; overload;
function MaxSize: Single; overload;
function MinSize: Single;
function SizeX: Single;
function SizeY: Single;
function SizeZ: Single;
{ @groupEnd }
{ Average size of TBox3D, or EmptyBoxSize if box is empty.
@param(AllowZero Decides what to do when box is not empty but the result
would be zero, which means that the box is infinitely thin in all axes.
If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
function AverageSize(const AllowZero: boolean;
const EmptyBoxSize: Single): Single; overload;
{ Largest size of TBox3D, or EmptyBoxSize if box is empty.
@param(AllowZero Decides what to do when box is not empty but the result
would be zero, which means that the box is infinitely thin in all axes.
If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
function MaxSize(const AllowZero: boolean;
const EmptyBoxSize: Single): Single; overload;
{ Area of the six TBox3D sides, EmptyBoxArea if box is empty.
@param(AllowZero Decides what to do when box is not empty but the result
would be zero, which means that the box is infinitely thin in all axes.
If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
function Area(const AllowZero: boolean;
const EmptyBoxArea: Single): Single;
{ This decreases Data[0, 0], Data[0, 1], Data[0, 2] by AExpand
and increases Data[1, 0], Data[1, 1], Data[1, 2] by AExpand.
So you get Box with all sizes increased by 2 * AExpand.
Box must not be empty.
Note that AExpand may be negative, but then you must be sure
that it doesn't make Box empty. }
procedure ExpandMe(const AExpand: Single); overload;
{ This decreases Data[0] by AExpand, and increases Data[1] by AExpand.
So you get Box with all sizes increased by 2 * AExpand.
Box must not be empty.
Note that AExpand may be negative, but then you must be sure
that it doesn't make Box empty. }
procedure ExpandMe(const AExpand: TVector3Single); overload;
function Expand(const AExpand: Single): TBox3D; overload;
function Expand(const AExpand: TVector3Single): TBox3D; overload;
{ Check is the point inside the box.
Always false if Box is empty (obviously, no point is inside an empty box).
@groupBegin }
function PointInside(const Point: TVector3Single): boolean; overload;
function PointInside(const Point: TVector3Double): boolean; overload;
{ @groupEnd }
{ Is the 2D point inside the 2D projection of the box.
2D projection (of point and box) is obtained by rejecting
the IgnoreIndex coordinate (must be 0, 1 or 2). }
function PointInside2D(const Point: TVector3Single; const IgnoreIndex: Integer): boolean;
{ Sum two TBox3D values. This calculates the smallest box that encloses
both Box1 and Box2. You can also use + operator. }
procedure Add(const box2: TBox3D); overload;
{ Make box larger, if necessary, to contain given Point. }
procedure Add(const Point: TVector3Single); overload;
{ Three box sizes. }
function Sizes: TVector3Single;
{ Calculate eight corners of the box. Place them in AllPoints^[0..7]. }
procedure GetAllPoints(allpoints: PVector3Single);
{ Transform the Box by given matrix.
Since this is still an axis-aligned box, rotating etc. of the box
usually makes larger box.
Note that this is very optimized for Matrix with no projection
(where last row of the last matrix = [0, 0, 0, 1]). It still works
for all matrices (eventually fallbacks to simple "transform 8 corners and get
box enclosing them" method).
@raises(ETransformedResultInvalid When the Matrix will
transform some point to a direction (vector with 4th component
equal zero). In this case we just cannot interpret the result as a 3D point,
so we also cannot interpret the final result as a box.) }
function Transform(const Matrix: TMatrix4Single): TBox3D;
{ Move Box. Does nothing if Box is empty. }
function Translate(const Translation: TVector3Single): TBox3D;
{ Move Box, by -Translation. Does nothing if Box is empty. }
function AntiTranslate(const Translation: TVector3Single): TBox3D;
function ToNiceStr: string;
function ToRawStr: string;
procedure Clamp(var point: TVector3Single); overload;
procedure Clamp(var point: TVector3Double); overload;
{ TryBoxRayClosestIntersection calculates intersection between the
ray (returns closest intersection to RayOrigin) and the box.
The box is treated just like a set of 6 rectangles in 3D.
This means that the intersection will always be placed on one of the
box sides, even if RayOrigin starts inside the box.
See TryBoxRayEntrance for the other version.
Returns also IntersectionDistance, which is the distance to the Intersection
relative to RayDirection (i.e. Intersection is always = RayOrigin +
IntersectionDistance * RayDirection).
@groupBegin }
function TryRayClosestIntersection(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryRayClosestIntersection(
out Intersection: TVector3Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryRayClosestIntersection(
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
{ @groupEnd }
{ Intersection between the ray (returns closest intersection to RayOrigin)
and the box, treating the box as a filled volume.
If RayOrigin is inside the box, TryBoxRayEntrance simply returns
RayOrigin. If RayOrigin is outside of the box, the answer is the same
as with TryBoxRayClosestIntersection.
@groupBegin }
function TryRayEntrance(
out Entrance: TVector3Single; out EntranceDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryRayEntrance(
out Entrance: TVector3Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
{ @groupEnd }
function SegmentCollision(
const Segment1, Segment2: TVector3Single): boolean;
{ Deprecated name for SegmentCollision. @deprecated @exclude }
function IsSegmentCollision(
const Segment1, Segment2: TVector3Single): boolean; deprecated;
{ Collision between axis-aligned box (TBox3D) and 3D plane.
Returns detailed result as TPlaneCollision. }
function PlaneCollision(const Plane: TVector4Single): TPlaneCollision;
{ Check is axis-aligned box (TBox3D) fully inside/outside the plane.
Inside/outside are defined as for TPlaneCollision:
Outside is where plane direction (normal) points.
Inside is where the @italic(inverted) plane direction (normal) points.
They work exactly like Box3DPlaneCollision, except they returns @true
when box is inside/outside (when Box3DPlaneCollision returned pcInside/pcOutside),
and @false otherwise.
For example Box3DPlaneCollisionInside doesn't differentiate between case
when box is empty, of partially intersects the plane, and is on the outside.
But it works (very slightly) faster.
@groupBegin }
function PlaneCollisionInside(const Plane: TVector4Single): boolean;
function PlaneCollisionOutside(const Plane: TVector4Single): boolean;
{ @groupEnd }
function IsTriangleCollision(
const Triangle: TTriangle3Single): boolean;
{ Smallest possible sphere completely enclosing given Box.
When Box is empty we return SphereRadiusSqr = 0 and undefined SphereCenter. }
procedure BoundingSphere(
var SphereCenter: TVector3Single; var SphereRadiusSqr: Single);
function Collision(const Box2: TBox3D): boolean;
{ Radius of the minimal sphere that contains this box.
Sphere center is assumed to be in (0, 0, 0).
0 if box is empty. }
function Radius: Single;
{ Radius of the minimal circle that contains the 2D projection of this box.
2D box projection is obtained by rejecting the IgnoreIndex coordinate
(must be 0, 1 or 2).
Circle center is assumed to be in (0, 0).
0 if box is empty. }
function Radius2D(const IgnoreIndex: Integer): Single;
{ Check for collision between box and sphere, fast @italic(but not
entirely correct).
This considers a Box enlarged by SphereRadius in each direction.
Then checks whether SphereCenter is inside such enlarged Box.
So this check will incorrectly report collision while in fact
there's no collision in the case when the sphere center is near
the corner of the Box.
So this check is not 100% correct. But often this is good enough
--- in games, if you know that the SphereRadius is going to be
relatively small compared to the Box, this may be perfectly
acceptable. And it's fast. }
function SphereSimpleCollision(
const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
{ Check for box <-> sphere collision.
This is a little slower than SphereSimpleCollision, although still
damn fast, and it's a precise check. }
function SphereCollision(
const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
{ Calculate a plane in 3D space with direction = given Direction, moved
maximally in Direction and still intersecting the given Box.
For example, if Direction = -Z = (0, 0, -1), then this will return
the bottom plane of this box. For Direction = (1, 1, 1), this will return
a plane intersecting the Data[1] (maximum) point, with slope = (1, 1, 1).
The resulting plane always intersects at least one of the 8 corners of the box.
@raises(EBox3DEmpty If the Box is empty.) }
function MaximumPlane(const Direction: TVector3Single): TVector4Single;
{ Calculate a plane in 3D space with direction = given Direction, moved
such that it touches the Box but takes minimum volume of this box.
For example, if Direction = +Z = (0, 0, 1), then this will return
the bottom plane of this box. For Direction = (1, 1, 1), this will return
a plane intersecting the Data[0] (minimum) point, with slope = (1, 1, 1).
The resulting plane always intersects at least one of the 8 corners of the box.
@raises(EBox3DEmpty If the Box is empty.) }
function MinimumPlane(const Direction: TVector3Single): TVector4Single;
{ Calculate the distances between a given 3D point and a box.
MinDistance is the distance to the closest point of the box,
MaxDistance is the distance to the farthest point of the box.
Note that always MinDistance <= MaxDistance.
Note that both distances are always >= 0.
When the point is inside the box, it works correct too: minimum distance
is zero in this case.
@raises EBox3DEmpty When used with an empty box.
TODO: calculation of MinDistance is not perfect now. We assume that
the closest/farthest point of the box is one of the 8 box corners.
Which may not be true in case of the closest point, because it may
lie in the middle of some box face (imagine a sphere with increasing
radius reaching from a point to a box). So our minimum may be a *little*
too large. }
procedure PointDistances(const P: TVector3Single;
out MinDistance, MaxDistance: Single);
{ Calculate the distances along a direction to a box.
The idea is that you have a 3D plane orthogonal to direction Dir
and passing through Point. You can move this plane,
but you have to keep it's direction constant.
MinDistance is the minimal distance along the Dir that you can
move this plane, such that it touches the box.
MaxDistance is the maximum such distance.
Note that always MinDistance <= MaxDistance.
Note that one distance (MinDistance) or both distances may be negative.
As a practical example: imagine a DirectionalLight (light rays are
parallel) that has a location. Now MinDistance and MaxDistance give
ranges of depth where the Box is, as seen from the light source.
@raises EBox3DEmpty When used with an empty box. }
procedure DirectionDistances(
const Point, Dir: TVector3Single;
out MinDistance, MaxDistance: Single);
{ Shortest distance between the box and a point.
Always zero when the point is inside the box.
@raises EBox3DEmpty When used with an empty box. }
function PointDistance(const Point: TVector3Single): Single;
{ Maximum distance between the box and a point.
Returns EmptyBoxDistance when box is empty. }
function PointMaxDistance(const Point: TVector3Single;
const EmptyBoxDistance: Single): Single;
function Equal(const Box2: TBox3D): boolean;
function Equal(const Box2: TBox3D; const EqualityEpsilon: Single): boolean;
{ Diagonal of the box, zero if empty. }
function Diagonal: Single;
end;
TBox3DBool = array [boolean] of TVector3Single;
PBox3D = ^TBox3D;
const
{ Special TBox3D value meaning "bounding box is empty".
This is different than just bounding box with zero sizes,
as bounding box with zero sizes still has some position.
Empty bounding box doesn't contain any portion of 3D space. }
EmptyBox3D: TBox3D = (Data: ((0, 0, 0), (-1, -1, -1)));
type
TBox3DList = specialize TGenericStructList<TBox3D>;
{ Various comfortable functions to construct TBox3D value.
@groupBegin }
function Box3D(const p0, p1: TVector3Single): TBox3D;
function Box3DAroundPoint(const Pt: TVector3Single; Size: Single): TBox3D;
function Box3DAroundPoint(const Pt: TVector3Single; Size: TVector3Single): TBox3D;
{ @groupEnd }
{ Calculate bounding box of a set of 3D points.
This calculates the smallest possible box enclosing all given points.
For VertsCount = 0 this returns EmptyBox3D.
Overloaded version with Transform parameter transforms each point
by given matrix.
Overloaded version with GetVertex as a function uses GetVertex to query
for indexes from [0 .. VertsCount - 1] range.
As usual, VertsStride = 0 means VertsStride = SizeOf(TVector3Single).
@groupBegin }
function CalculateBoundingBox(
Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal): TBox3D; overload;
function CalculateBoundingBox(
Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal;
const Transform: TMatrix4Single): TBox3D; overload;
function CalculateBoundingBox(Verts: TVector3SingleList): TBox3D; overload;
function CalculateBoundingBox(Verts: TVector3SingleList;
const Transform: TMatrix4Single): TBox3D; overload;
function CalculateBoundingBox(
GetVertex: TGetVertexFromIndexFunc;
VertsCount: integer): TBox3D; overload;
{ @groupEnd }
{ Calculate bounding box of a set of indexed 3D points.
This is much like CalculateBoundingBox, except there are two functions:
For each number in [0 .. VertsIndicesCount - 1] range, GetVertIndex
returns an index. If this index is >= 0 then it's used to query
GetVertex function to get actual vertex position.
Indexes < 0 are ignored, this is sometimes comfortable. E.g. for VRML models,
you often have a list of indexes with -1 in between marking end of faces.
Returns smallest box enclosing all vertexes.
Overloaded version with Transform parameter transforms each point
by given matrix.
@groupBegin }
function CalculateBoundingBoxFromIndices(
GetVertIndex: TGetIndexFromIndexNumFunc;
VertsIndicesCount: integer;
GetVertex: TGetVertexFromIndexFunc): TBox3D; overload;
function CalculateBoundingBoxFromIndices(
GetVertIndex: TGetIndexFromIndexNumFunc;
VertsIndicesCount: integer;
GetVertex: TGetVertexFromIndexFunc;
const Transform: TMatrix4Single): TBox3D; overload;
{ @groupEnd }
function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;
var
{ Special equality epsilon used by IsCenteredBox3DPlaneCollision.
For implementation reasons, they always
use Double precision (even when called with arguments with Single precision),
and still have to use epsilon slightly larger than usual
CastleVectors.DoubleEqualityEpsilon. }
Box3DPlaneCollisionEqualityEpsilon: Double = 1e-5;
{ Tests for collision between box3d centered around (0, 0, 0)
and a plane.
Note that you can't express empty box3d here: all BoxHalfSize items
must be >= 0. The case when size = 0 is considered like infintely small
box in some dimension (e.g. if all three sizes are = 0 then the box
becomes a point).
@groupBegin }
function IsCenteredBox3DPlaneCollision(
const BoxHalfSize: TVector3Single;
const Plane: TVector4Single): boolean; overload;
function IsCenteredBox3DPlaneCollision(
const BoxHalfSize: TVector3Double;
const Plane: TVector4Double): boolean; overload;
{ @groupEnd }
{ Smallest possible box enclosing a sphere with Center, Radius. }
function BoundingBox3DFromSphere(const Center: TVector3Single;
const Radius: Single): TBox3D;
operator+ (const Box1, Box2: TBox3D): TBox3D;
operator+ (const B: TBox3D; const V: TVector3Single): TBox3D;
operator+ (const V: TVector3Single; const B: TBox3D): TBox3D;
implementation
{ TBox3D --------------------------------------------------------------------- }
function TBox3D.IsEmpty: boolean;
begin
Result := Data[0, 0] > Data[1, 0];
end;
function TBox3D.IsEmptyOrZero: boolean;
begin
Result := (Data[0, 0] > Data[1, 0]) or
( (Data[0, 0] = Data[1, 0]) and
(Data[0, 1] = Data[1, 1]) and
(Data[0, 2] = Data[1, 2])
);
end;
procedure TBox3D.CheckNonEmpty;
begin
if IsEmpty then
raise EBox3DEmpty.Create('Empty box 3d: no middle point, no sizes etc.');
end;
function TBox3D.Middle: TVector3Single;
begin
CheckNonEmpty;
{petla for i := 0 to 2 rozwinieta aby zyskac tycityci na czasie}
result[0] := (Data[0, 0]+Data[1, 0])/2;
result[1] := (Data[0, 1]+Data[1, 1])/2;
result[2] := (Data[0, 2]+Data[1, 2])/2;
end;
function TBox3D.AverageSize: Single;
begin
CheckNonEmpty;
{korzystamy z faktu ze TBox3D ma wierzcholki uporzadkowane
i w zwiazku z tym w roznicach ponizej nie musimy robic abs() }
result := ((Data[1, 0]-Data[0, 0]) +
(Data[1, 1]-Data[0, 1]) +
(Data[1, 2]-Data[0, 2]))/3;
end;
function TBox3D.AverageSize(const AllowZero: boolean;
const EmptyBoxSize: Single): Single;
begin
if IsEmpty then
Result := EmptyBoxSize else
begin
Result := ((Data[1, 0]-Data[0, 0]) +
(Data[1, 1]-Data[0, 1]) +
(Data[1, 2]-Data[0, 2]))/3;
if (not AllowZero) and (Result = 0) then
Result := EmptyBoxSize;
end;
end;
function TBox3D.MaxSize: Single;
begin
CheckNonEmpty;
Result := Max(
Data[1, 0] - Data[0, 0],
Data[1, 1] - Data[0, 1],
Data[1, 2] - Data[0, 2]);
end;
function TBox3D.MaxSize(const AllowZero: boolean;
const EmptyBoxSize: Single): Single;
begin
if IsEmpty then
Result := EmptyBoxSize else
begin
Result := Max(
Data[1, 0] - Data[0, 0],
Data[1, 1] - Data[0, 1],
Data[1, 2] - Data[0, 2]);
if (not AllowZero) and (Result = 0) then
Result := EmptyBoxSize;
end;
end;
function TBox3D.Area(const AllowZero: boolean;
const EmptyBoxArea: Single): Single;
var
A, B, C: Single;
begin
if IsEmpty then
Result := EmptyBoxArea else
begin
A := Data[1, 0] - Data[0, 0];
B := Data[1, 1] - Data[0, 1];
C := Data[1, 2] - Data[0, 2];
Result := 2*A*B + 2*B*C + 2*A*C;
if (not AllowZero) and (Result = 0) then
Result := EmptyBoxArea;
end;
end;
function TBox3D.MinSize: Single;
begin
CheckNonEmpty;
Result := Min(
Data[1, 0] - Data[0, 0],
Data[1, 1] - Data[0, 1],
Data[1, 2] - Data[0, 2]);
{ Another version is below (but this is slower without any benefit...)
var sizes: TVector3Single;
sizes := Box3DSizes(box);
result := sizes[MaxVectorCoord(sizes)];
}
end;
function TBox3D.SizeX: Single;
begin
CheckNonEmpty;
Result := Data[1, 0] - Data[0, 0];
end;
function TBox3D.SizeY: Single;
begin
CheckNonEmpty;
Result := Data[1, 1] - Data[0, 1];
end;
function TBox3D.SizeZ: Single;
begin
CheckNonEmpty;
Result := Data[1, 2] - Data[0, 2];
end;
procedure TBox3D.ExpandMe(const AExpand: Single);
begin
Data[0, 0] -= AExpand;
Data[0, 1] -= AExpand;
Data[0, 2] -= AExpand;
Data[1, 0] += AExpand;
Data[1, 1] += AExpand;
Data[1, 2] += AExpand;
end;
procedure TBox3D.ExpandMe(const AExpand: TVector3Single);
begin
Data[0, 0] -= AExpand[0];
Data[0, 1] -= AExpand[1];
Data[0, 2] -= AExpand[2];
Data[1, 0] += AExpand[0];
Data[1, 1] += AExpand[1];
Data[1, 2] += AExpand[2];
end;
function TBox3D.Expand(const AExpand: Single): TBox3D;
begin
Result.Data[0, 0] := Data[0, 0] - AExpand;
Result.Data[0, 1] := Data[0, 1] - AExpand;
Result.Data[0, 2] := Data[0, 2] - AExpand;
Result.Data[1, 0] := Data[1, 0] + AExpand;
Result.Data[1, 1] := Data[1, 1] + AExpand;
Result.Data[1, 2] := Data[1, 2] + AExpand;
end;
function TBox3D.Expand(const AExpand: TVector3Single): TBox3D;
begin
Result.Data[0, 0] := Data[0, 0] - AExpand[0];
Result.Data[0, 1] := Data[0, 1] - AExpand[1];
Result.Data[0, 2] := Data[0, 2] - AExpand[2];
Result.Data[1, 0] := Data[1, 0] + AExpand[0];
Result.Data[1, 1] := Data[1, 1] + AExpand[1];
Result.Data[1, 2] := Data[1, 2] + AExpand[2];
end;
function TBox3D.PointInside(const Point: TVector3Single): boolean;
begin
if IsEmpty then Exit(false);
Result :=
(Data[0, 0] <= Point[0]) and (Point[0] <= Data[1, 0]) and
(Data[0, 1] <= Point[1]) and (Point[1] <= Data[1, 1]) and
(Data[0, 2] <= Point[2]) and (Point[2] <= Data[1, 2]);
end;
function TBox3D.PointInside(const Point: TVector3Double): boolean;
begin
if IsEmpty then Exit(false);
Result :=
(Data[0, 0] <= Point[0]) and (Point[0] <= Data[1, 0]) and
(Data[0, 1] <= Point[1]) and (Point[1] <= Data[1, 1]) and
(Data[0, 2] <= Point[2]) and (Point[2] <= Data[1, 2]);
end;
{ Separated from PointInside2D, to not slowdown it by implicit
try/finally section because we use string. }
procedure PointInside2D_InvalidIgnoreIndex;
begin
raise EInternalError.Create('Invalid IgnoreIndex for TBox3D.PointInside2D');
end;
function TBox3D.PointInside2D(const Point: TVector3Single;
const IgnoreIndex: Integer): boolean;
begin
if IsEmpty then Exit(false);
case IgnoreIndex of
0: Result :=
(Data[0, 1] <= Point[1]) and (Point[1] <= Data[1, 1]) and
(Data[0, 2] <= Point[2]) and (Point[2] <= Data[1, 2]);
1: Result :=
(Data[0, 2] <= Point[2]) and (Point[2] <= Data[1, 2]) and
(Data[0, 0] <= Point[0]) and (Point[0] <= Data[1, 0]);
2: Result :=
(Data[0, 0] <= Point[0]) and (Point[0] <= Data[1, 0]) and
(Data[0, 1] <= Point[1]) and (Point[1] <= Data[1, 1]);
else PointInside2D_InvalidIgnoreIndex;
end;
end;
procedure TBox3D.Add(const box2: TBox3D);
begin
if Box2.IsEmpty then
Exit else
if IsEmpty then
Data := Box2.Data else
begin
MinTo1st(Data[0, 0], box2.Data[0, 0]);
MaxTo1st(Data[1, 0], box2.Data[1, 0]);
MinTo1st(Data[0, 1], box2.Data[0, 1]);
MaxTo1st(Data[1, 1], box2.Data[1, 1]);
MinTo1st(Data[0, 2], box2.Data[0, 2]);
MaxTo1st(Data[1, 2], box2.Data[1, 2]);
end;
end;
procedure TBox3D.Add(const Point: TVector3Single);
begin
if IsEmpty then
begin
Data[0] := Point;
Data[1] := Point;
end else
begin
MinTo1st(Data[0, 0], Point[0]);
MaxTo1st(Data[1, 0], Point[0]);
MinTo1st(Data[0, 1], Point[1]);
MaxTo1st(Data[1, 1], Point[1]);
MinTo1st(Data[0, 2], Point[2]);
MaxTo1st(Data[1, 2], Point[2]);
end;
end;
function TBox3D.Sizes: TVector3Single;
begin
CheckNonEmpty;
Result[0] := Data[1, 0] - Data[0, 0];
Result[1] := Data[1, 1] - Data[0, 1];
Result[2] := Data[1, 2] - Data[0, 2];
end;
procedure TBox3D.GetAllPoints(allpoints: PVector3Single);
const
{zapisy dwojkowe liczb od 0 do 7 czyli wszystkie kombinacje 0 i 1-nek
na 3 pozycjach.}
kombinacje: array[0..7, 0..2]of 0..1 =
((0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1));
var i, j: integer;
begin
for i := 0 to 7 do
for j := 0 to 2 do
PArray_Vector3Single(allpoints)^[i][j] := Data[kombinacje[i, j], j];
end;
function TBox3D.Transform(
const Matrix: TMatrix4Single): TBox3D;
function Slower(const Matrix: TMatrix4Single): TBox3D;
var
BoxPoints: array [0..7] of TVector3Single;
i: integer;
begin
GetAllPoints(@boxpoints);
for i := 0 to 7 do boxpoints[i] := MatrixMultPoint(Matrix, boxpoints[i]);
{ Non-optimized version:
Result := CalculateBoundingBox(@boxpoints, 8, 0);
But it turns out that the code below, that does essentially the same
thing as CalculateBoundingBox implementation, works noticeably faster.
This is noticeable on "The Castle" with many creatures: then a considerable
time is spend inside TCreature.BoundingBox, that must calculate
transformed bounding boxes.
}
Result.Data[0] := BoxPoints[0];
Result.Data[1] := BoxPoints[0];
for I := 1 to High(BoxPoints) do
begin
if BoxPoints[I, 0] < Result.Data[0, 0] then Result.Data[0, 0] := BoxPoints[I, 0];
if BoxPoints[I, 1] < Result.Data[0, 1] then Result.Data[0, 1] := BoxPoints[I, 1];
if BoxPoints[I, 2] < Result.Data[0, 2] then Result.Data[0, 2] := BoxPoints[I, 2];
if BoxPoints[I, 0] > Result.Data[1, 0] then Result.Data[1, 0] := BoxPoints[I, 0];
if BoxPoints[I, 1] > Result.Data[1, 1] then Result.Data[1, 1] := BoxPoints[I, 1];
if BoxPoints[I, 2] > Result.Data[1, 2] then Result.Data[1, 2] := BoxPoints[I, 2];
end;
end;
function Faster(const Matrix: TMatrix4Single): TBox3D;
{ Reasoning why this works Ok: look at Slower approach, and imagine
how each of the 8 points is multiplied by the same matrix.
Each of the 8 points is
( Data[0][0] or Data[1][0],
Data[0][1] or Data[1][1],
Data[0][2] or Data[1][2],
1 )
To calculate X components of 8 resulting points, you multiply 8 original
points by the same Matrix row. Since we're only interested in the minimum
and maximum X component, we can actually just take
Result[0][0] := ( min( Matrix[0, 0] * Data[0][0], Matrix[0, 0] * Data[1][0] ),
min( Matrix[1, 0] * Data[0][1], Matrix[1, 0] * Data[1][1] ),
min( Matrix[2, 0] * Data[0][2], Matrix[2, 0] * Data[1][2] ),
Matrix[3, 0] )
Result[0][1] is the same, but with max instead of min.
This way we fully calculated X components.
Idea from http://www.soe.ucsc.edu/~pang/160/f98/Gems/Gems/TransBox.c,
see also http://www.gamedev.net/community/forums/topic.asp?topic_id=349370.
This is 2-3 times faster than Slower (compiled with -dRELEASE, like
0.44 to 0.13 =~ 3.3 times faster). See
testcastleboxes.pas for speed (and correctness) test. }
var
I, J: Integer;
A, B: Single;
begin
{ Initially, both Result corners are copies of Matrix[3][0..2]
(the "translate" numbers of Matrix) }
Move(Matrix[3], Result.Data[0], SizeOf(Result.Data[0]));
Move(Matrix[3], Result.Data[1], SizeOf(Result.Data[1]));
for I := 0 to 2 do
begin
{ Calculate Result[0][I], Result[1][I] }
for J := 0 to 2 do
begin
A := Matrix[J][I] * Data[0][J];
B := Matrix[J][I] * Data[1][J];
if A < B then
begin
Result.Data[0][I] += A;
Result.Data[1][I] += B;
end else
begin
Result.Data[0][I] += B;
Result.Data[1][I] += A;
end;
end;
end;
end;
begin
if IsEmpty then
Exit(EmptyBox3D);
if (Matrix[0][3] = 0) and
(Matrix[1][3] = 0) and
(Matrix[2][3] = 0) and
(Matrix[3][3] = 1) then
Result := Faster(Matrix) else
Result := Slower(Matrix);
end;
function TBox3D.Translate(
const Translation: TVector3Single): TBox3D;
begin
if not IsEmpty then
begin
Result.Data[0] := VectorAdd(Data[0], Translation);
Result.Data[1] := VectorAdd(Data[1], Translation);
end else
Result := EmptyBox3D;
end;
function TBox3D.AntiTranslate(
const Translation: TVector3Single): TBox3D;
begin
if not IsEmpty then
begin
Result.Data[0] := VectorSubtract(Data[0], Translation);
Result.Data[1] := VectorSubtract(Data[1], Translation);
end else
Result := EmptyBox3D;
end;
function TBox3D.ToNiceStr: string;
begin
if IsEmpty then
result := 'EMPTY' else
result := VectorToNiceStr(Data[0])+' - '+VectorToNiceStr(Data[1]);
end;
function TBox3D.ToRawStr: string;
begin
if IsEmpty then
result := 'EMPTY' else
result := VectorToRawStr(Data[0])+' - '+VectorToRawStr(Data[1]);
end;
{$define CLAMP_IMPLEMENTATION:=
var i: integer;
begin
for i := 0 to 2 do
begin
if point[i] < Data[0, i] then point[i] := Data[0, i] else
if point[i] > Data[1, i] then point[i] := Data[1, i];
end;
end;}
procedure TBox3D.Clamp(var point: TVector3Single); CLAMP_IMPLEMENTATION
procedure TBox3D.Clamp(var point: TVector3Double); CLAMP_IMPLEMENTATION
function TBox3D.TryRayClosestIntersection(
out Intersection: TVector3Single;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean;
var
IntrProposed: boolean absolute result;
procedure ProposeBoxIntr(const PlaneConstCoord: integer;
const PlaneConstValue: Single);
var
NowIntersection: TVector3Single;
NowIntersectionDistance: Single;
c1, c2: integer;
begin
if TrySimplePlaneRayIntersection(NowIntersection, NowIntersectionDistance,
PlaneConstCoord, PlaneConstValue, RayOrigin, RayDirection) then
begin
RestOf3dCoords(PlaneConstCoord, c1, c2);
if Between(NowIntersection[c1], Data[0, c1], Data[1, c1]) and
Between(NowIntersection[c2], Data[0, c2], Data[1, c2]) then
begin
if (not IntrProposed) or
(NowIntersectionDistance < IntersectionDistance) then
begin
IntrProposed := true;
Intersection := NowIntersection;
IntersectionDistance := NowIntersectionDistance;
end;
end;
end;
end;
var
I: integer;
begin
IntrProposed := false;
for I := 0 to 2 do
begin
{ wykorzystujemy ponizej fakt ze jezeli RayOrigin[i] < Data[0, i] to na pewno
promien ktory przecinalby scianke Data[1, i] pudelka przecinalby najpierw
tez inna scianke. Wiec jezeli RayOrigin[i] < Data[0, i] to nie musimy sprawdzac
przeciecia z plaszczyzna Data[1, i]. }
if RayOrigin[i] < Data[0, i] then
ProposeBoxIntr(i, Data[0, i]) else
if RayOrigin[i] > Data[1, i] then
ProposeBoxIntr(i, Data[1, i]) else
begin
ProposeBoxIntr(i, Data[0, i]);
ProposeBoxIntr(i, Data[1, i]);
end;
end;
end;
function TBox3D.TryRayClosestIntersection(
out Intersection: TVector3Single;
const RayOrigin, RayDirection: TVector3Single): boolean;
var
IntersectionDistance: Single;
begin
Result := TryRayClosestIntersection(
Intersection, IntersectionDistance, RayOrigin, RayDirection);
end;
function TBox3D.TryRayClosestIntersection(
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean;
var
Intersection: TVector3Single;
begin
Result := TryRayClosestIntersection(
Intersection, IntersectionDistance, RayOrigin, RayDirection);
end;
function TBox3D.TryRayEntrance(
out Entrance: TVector3Single; out EntranceDistance: Single;
const RayOrigin, RayDirection: TVector3Single): boolean;
begin
if PointInside(RayOrigin) then
begin
Entrance := RayOrigin;
EntranceDistance := 0;
result := true;
end else
result := TryRayClosestIntersection(Entrance, EntranceDistance, RayOrigin, RayDirection);
end;
function TBox3D.TryRayEntrance(
out Entrance: TVector3Single;
const RayOrigin, RayDirection: TVector3Single): boolean;
begin
if PointInside(RayOrigin) then
begin
Entrance := RayOrigin;
result := true;
end else
result := TryRayClosestIntersection(Entrance, RayOrigin, RayDirection);
end;
function TBox3D.IsSegmentCollision(
const Segment1, Segment2: TVector3Single): boolean;
begin
Result := SegmentCollision(Segment1, Segment2);
end;
function TBox3D.SegmentCollision(
const Segment1, Segment2: TVector3Single): boolean;
function IsCollisionWithBoxPlane(const PlaneConstCoord: integer;
const PlaneConstValue: Single): boolean;
var
NowIntersection: TVector3Single;
c1, c2: integer;
begin
if TrySimplePlaneSegmentIntersection(NowIntersection,
PlaneConstCoord, PlaneConstValue, Segment1, Segment2) then
begin
RestOf3dCoords(PlaneConstCoord, c1, c2);
Result :=
Between(NowIntersection[c1], Data[0, c1], Data[1, c1]) and
Between(NowIntersection[c2], Data[0, c2], Data[1, c2]);
end else
Result := false;
end;
var
I: integer;
begin
for I := 0 to 2 do
begin
{ wykorzystujemy ponizej fakt ze jezeli Segment1[i] < Data[0, i] to na pewno
promien ktory przecinalby scianke Data[1, i] pudelka przecinalby najpierw
tez inna scianke. Wiec jezeli Segment1[i] < Data[0, i] to nie musimy sprawdzac
przeciecia z plaszczyzna Data[1, i]. }
if Segment1[i] < Data[0, i] then
begin
if IsCollisionWithBoxPlane(i, Data[0, i]) then Exit(true);
end else
if Segment1[i] > Data[1, i] then
begin
if IsCollisionWithBoxPlane(i, Data[1, i]) then Exit(true);
end else
begin
if IsCollisionWithBoxPlane(i, Data[0, i]) then Exit(true);
if IsCollisionWithBoxPlane(i, Data[1, i]) then Exit(true);
end;
end;
Result := false;
end;
function TBox3D.PlaneCollision(
const Plane: TVector4Single): TPlaneCollision;
{ This generalizes the idea from IsCenteredBox3DPlaneCollision
in castleboxes_generic_float.inc.
It's also explained in
Akenine-Moller, Haines "Real-Time Rendering" (2nd ed), 13.9 (page 586)
}
var
I: Integer;
VMin, VMax: TVector3Single;
B: boolean;
BoxBool: TBox3DBool absolute Data;
begin
if IsEmpty then
Exit(pcNone);
for I := 0 to 2 do
begin
{ Normal code:
if Plane[I] >= 0 then
begin
VMin[I] := Data[0][I];
VMax[I] := Data[1][I];
end else
begin
VMin[I] := Data[1][I];
VMax[I] := Data[0][I];
end;
}
{ Code optimized to avoid "if", instead doing table lookup by BoxBool }
B := Plane[I] >= 0;
VMin[I] := BoxBool[not B][I];
VMax[I] := BoxBool[B][I];
end;
if Plane[0] * VMin[0] +
Plane[1] * VMin[1] +
Plane[2] * VMin[2] +
Plane[3] > 0 then
Exit(pcOutside);
if Plane[0] * VMax[0] +
Plane[1] * VMax[1] +
Plane[2] * VMax[2] +
Plane[3] < 0 then
Exit(pcInside);
Result := pcIntersecting;
end;
function TBox3D.PlaneCollisionInside(
const Plane: TVector4Single): boolean;
{ Based on Box3DPlaneCollision, except now we need only VMax point.
Actually, we don't even store VMax. Instead, we calculate to
PlaneResult the equation
Plane[0] * VMax[0] +
Plane[1] * VMax[1] +
Plane[2] * VMax[2] +
Plane[3]
}
var
BoxBool: TBox3DBool absolute Data;
begin
if IsEmpty then
Exit(false);
Result :=
BoxBool[Plane[0] >= 0][0] * Plane[0] +
BoxBool[Plane[1] >= 0][1] * Plane[1] +
BoxBool[Plane[2] >= 0][2] * Plane[2] +
Plane[3] < 0;
end;
function TBox3D.PlaneCollisionOutside(
const Plane: TVector4Single): boolean;
var
BoxBool: TBox3DBool absolute Data;
begin
if IsEmpty then
Exit(false);
Result :=
BoxBool[Plane[0] < 0][0] * Plane[0] +
BoxBool[Plane[1] < 0][1] * Plane[1] +
BoxBool[Plane[2] < 0][2] * Plane[2] +
Plane[3] > 0;
end;
function TBox3D.IsTriangleCollision(const Triangle: TTriangle3Single): boolean;
{ Implementation of this is based on
[http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html],
by Tomas Akenine-Möller, described
in his paper [http://jgt.akpeters.com/papers/AkenineMoller01/]
"Fast 3D Triangle-Box Overlap Testing", downloadable from
[http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/tribox.pdf].
Use separating axis theorem to test overlap between triangle and box
need to test for overlap in these directions:
1) the (x,y,z)-directions
2) normal of the triangle
3) crossproduct(edge from tri, (x,y,z)-direction)
this gives 3x3=9 more tests
}
{ The same comments about precision as for IsCenteredBox3DPlaneCollision apply also here. }
{$define EqualityEpsilon := Box3DPlaneCollisionEqualityEpsilon}
var
TriangleMoved: TTriangle3Double;
BoxHalfSize: TVector3Double;
{ ======================== X-tests ======================== }
function AXISTEST_X01(const a, b, fa, fb: Double): boolean;
var
p0, p2, rad, min, max: Double;
begin
p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
p2 := a * TriangleMoved[2][1] - b * TriangleMoved[2][2];
if p0<p2 then begin min := p0; max := p2; end else
begin min := p2; max := p0; end;
rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_X2(const a, b, fa, fb: Double): boolean;
var
p0, p1, rad, min, max: Double;
begin
p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
p1 := a * TriangleMoved[1][1] - b * TriangleMoved[1][2];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
{ ======================== Y-tests ======================== }
function AXISTEST_Y02(const a, b, fa, fb: Double): boolean;
var
p0, p2, rad, min, max: Double;
begin
p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
p2 := -a * TriangleMoved[2][0] + b * TriangleMoved[2][2];
if p0<p2 then begin min := p0; max := p2; end else
begin min := p2; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_Y1(const a, b, fa, fb: Double): boolean;
var
p0, p1, rad, min, max: Double;
begin
p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
p1 := -a * TriangleMoved[1][0] + b * TriangleMoved[1][2];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
{ ======================== Z-tests ======================== }
function AXISTEST_Z12(const a, b, fa, fb: Double): boolean;
var
p1, p2, rad, min, max: Double;
begin
p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
p2 := a * TriangleMoved[2][0] - b * TriangleMoved[2][1];
if p2<p1 then begin min := p2; max := p1; end else
begin min := p1; max := p2; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_Z0(const a, b, fa, fb: Double): boolean;
var
p0, p1, rad, min, max: Double;
begin
p0 := a * TriangleMoved[0][0] - b * TriangleMoved[0][1];
p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
var
BoxCenter: TVector3Double;
I: Integer;
TriangleEdges: array [0..2] of TVector3Double;
EdgeAbs: TVector3Double;
min, max: Double;
Plane: TVector4Double;
PlaneDir: TVector3Double absolute Plane;
begin
if IsEmpty then
Exit(false);
{ calculate BoxCenter and BoxHalfSize }
for I := 0 to 2 do
begin
BoxCenter[I] := (Data[0, I] + Data[1, I]) / 2;
BoxHalfSize[I] := (Data[1, I] - Data[0, I]) / 2;
end;
{ calculate TriangleMoved (Triangle shifted by -BoxCenter,
so that we can treat the BoxHalfSize as centered around origin) }
TriangleMoved[0] := VectorSubtract(Vector3Double(Triangle[0]), BoxCenter);
TriangleMoved[1] := VectorSubtract(Vector3Double(Triangle[1]), BoxCenter);
TriangleMoved[2] := VectorSubtract(Vector3Double(Triangle[2]), BoxCenter);
{ calculate TriangleMoved edges }
TriangleEdges[0] := VectorSubtract(TriangleMoved[1], TriangleMoved[0]);
TriangleEdges[1] := VectorSubtract(TriangleMoved[2], TriangleMoved[1]);
TriangleEdges[2] := VectorSubtract(TriangleMoved[0], TriangleMoved[2]);
{ tests 3) }
EdgeAbs[0] := Abs(TriangleEdges[0][0]);
EdgeAbs[1] := Abs(TriangleEdges[0][1]);
EdgeAbs[2] := Abs(TriangleEdges[0][2]);
if AXISTEST_X01(TriangleEdges[0][2], TriangleEdges[0][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y02(TriangleEdges[0][2], TriangleEdges[0][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z12(TriangleEdges[0][1], TriangleEdges[0][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
EdgeAbs[0] := Abs(TriangleEdges[1][0]);
EdgeAbs[1] := Abs(TriangleEdges[1][1]);
EdgeAbs[2] := Abs(TriangleEdges[1][2]);
if AXISTEST_X01(TriangleEdges[1][2], TriangleEdges[1][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y02(TriangleEdges[1][2], TriangleEdges[1][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z0 (TriangleEdges[1][1], TriangleEdges[1][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
EdgeAbs[0] := Abs(TriangleEdges[2][0]);
EdgeAbs[1] := Abs(TriangleEdges[2][1]);
EdgeAbs[2] := Abs(TriangleEdges[2][2]);
if AXISTEST_X2 (TriangleEdges[2][2], TriangleEdges[2][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y1 (TriangleEdges[2][2], TriangleEdges[2][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z12(TriangleEdges[2][1], TriangleEdges[2][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
{ tests 1)
first test overlap in the (x,y,z)-directions
find min, max of the triangle each direction, and test for overlap in
that direction -- this is equivalent to testing a minimal AABB around
the triangle against the AABB }
{ test in X-direction }
MinMax(TriangleMoved[0][0], TriangleMoved[1][0], TriangleMoved[2][0], min, max);
if (min > boxhalfsize[0] + EqualityEpsilon) or
(max < -boxhalfsize[0] - EqualityEpsilon) then Exit(false);
{ test in Y-direction }
MinMax(TriangleMoved[0][1], TriangleMoved[1][1], TriangleMoved[2][1], min, max);
if (min > boxhalfsize[1] + EqualityEpsilon) or
(max < -boxhalfsize[1] - EqualityEpsilon) then Exit(false);
{ test in Z-direction }
MinMax(TriangleMoved[0][2], TriangleMoved[1][2], TriangleMoved[2][2], min, max);
if (min > boxhalfsize[2] + EqualityEpsilon) or
(max < -boxhalfsize[2] - EqualityEpsilon) then Exit(false);
{ tests 2)
test if the box intersects the plane of the triangle
compute plane equation of triangle: normal*x+d=0 }
PlaneDir := VectorProduct(TriangleEdges[0], TriangleEdges[1]);
Plane[3] := -VectorDotProduct(PlaneDir, TriangleMoved[0]);
if not IsCenteredBox3DPlaneCollision(BoxHalfSize, Plane) then
Exit(false);
Result := true; { box and triangle overlaps }
end;
{$undef EqualityEpsilon}
procedure TBox3D.BoundingSphere(
var SphereCenter: TVector3Single; var SphereRadiusSqr: Single);
begin
if IsEmpty then
begin
SphereRadiusSqr := 0;
end else
begin
SphereCenter := Middle;
SphereRadiusSqr := PointsDistanceSqr(SphereCenter, Data[0]);
end;
end;
function TBox3D.Collision(const Box2: TBox3D): boolean;
begin
Result :=
(not IsEmpty) and
(not Box2.IsEmpty) and
(not ((Data[1, 0] < Box2.Data[0, 0]) or (Box2.Data[1, 0] < Data[0, 0]))) and
(not ((Data[1, 1] < Box2.Data[0, 1]) or (Box2.Data[1, 1] < Data[0, 1]))) and
(not ((Data[1, 2] < Box2.Data[0, 2]) or (Box2.Data[1, 2] < Data[0, 2])));
end;
function TBox3D.Radius: Single;
begin
if IsEmpty then
Result := 0 else
Result := Sqrt(Max(
Max(Max(VectorLenSqr(Vector3Single(Data[0, 0], Data[0, 1], Data[0, 2])),
VectorLenSqr(Vector3Single(Data[1, 0], Data[0, 1], Data[0, 2]))),
Max(VectorLenSqr(Vector3Single(Data[1, 0], Data[1, 1], Data[0, 2])),
VectorLenSqr(Vector3Single(Data[0, 0], Data[1, 1], Data[0, 2])))),
Max(Max(VectorLenSqr(Vector3Single(Data[0, 0], Data[0, 1], Data[1, 2])),
VectorLenSqr(Vector3Single(Data[1, 0], Data[0, 1], Data[1, 2]))),
Max(VectorLenSqr(Vector3Single(Data[1, 0], Data[1, 1], Data[1, 2])),
VectorLenSqr(Vector3Single(Data[0, 0], Data[1, 1], Data[1, 2]))))));
end;
{ Separated from Radius2D, to not slowdown it by implicit
try/finally section because we use string. }
procedure Radius2D_InvalidIgnoreIndex;
begin
raise EInternalError.Create('Invalid IgnoreIndex for TBox3D.Radius2D');
end;
function TBox3D.Radius2D(const IgnoreIndex: Integer): Single;
begin
if IsEmpty then
Result := 0 else
begin
case IgnoreIndex of
0: Result := Max(
Max(VectorLenSqr(Vector2Single(Data[0, 1], Data[0, 2])),
VectorLenSqr(Vector2Single(Data[1, 1], Data[0, 2]))),
Max(VectorLenSqr(Vector2Single(Data[1, 1], Data[1, 2])),
VectorLenSqr(Vector2Single(Data[0, 1], Data[1, 2]))));
1: Result := Max(
Max(VectorLenSqr(Vector2Single(Data[0, 2], Data[0, 0])),
VectorLenSqr(Vector2Single(Data[1, 2], Data[0, 0]))),
Max(VectorLenSqr(Vector2Single(Data[1, 2], Data[1, 0])),
VectorLenSqr(Vector2Single(Data[0, 2], Data[1, 0]))));
2: Result := Max(
Max(VectorLenSqr(Vector2Single(Data[0, 0], Data[0, 1])),
VectorLenSqr(Vector2Single(Data[1, 0], Data[0, 1]))),
Max(VectorLenSqr(Vector2Single(Data[1, 0], Data[1, 1])),
VectorLenSqr(Vector2Single(Data[0, 0], Data[1, 1]))));
else Radius2D_InvalidIgnoreIndex;
end;
Result := Sqrt(Result);
end;
end;
function TBox3D.SphereSimpleCollision(
const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
begin
Result := (not IsEmpty) and
(SphereCenter[0] >= Data[0][0] - SphereRadius) and
(SphereCenter[0] <= Data[1][0] + SphereRadius) and
(SphereCenter[1] >= Data[0][1] - SphereRadius) and
(SphereCenter[1] <= Data[1][1] + SphereRadius) and
(SphereCenter[2] >= Data[0][2] - SphereRadius) and
(SphereCenter[2] <= Data[1][2] + SphereRadius);
end;
function TBox3D.SphereCollision(
const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
{ This great and simple algorithm was invented by Arvo, I read about
it in "Real-Time Rendering" by Moller and Haines.
The idea is beatifully simple: we can easily find point on the Box
that is closest to SphereCenter: on each of X, Y, Z axis,
1. SphereCenter[I] is within Box, so distance on this axis is 0
2. SphereCenter[I] is not within Box, so the closest point is taken
from appropriate box corner
Then just compare distance between these points and radius.
Implementation below is low-optimized: we actually calculate
distance, d, as we go (we don't keep explicitly our "closest point",
although we think about calculating it). And loop over three planes
is unfolded to be sure. }
var
D: Single;
begin
if IsEmpty then Exit(false);
D := 0;
{ Uses:
4 up to 7 comparisons,
6 additions,
4 multiplications.
Ok, that's damn fast, but still a little slower than
TBox3D.SphereSimpleCollision (that has 1 up to 6 comparisons and additions). }
if SphereCenter[0] < Data[0][0] then D += Sqr(SphereCenter[0] - Data[0][0]) else
if SphereCenter[0] > Data[1][0] then D += Sqr(SphereCenter[0] - Data[1][0]);
if SphereCenter[1] < Data[0][1] then D += Sqr(SphereCenter[1] - Data[0][1]) else
if SphereCenter[1] > Data[1][1] then D += Sqr(SphereCenter[1] - Data[1][1]);
if SphereCenter[2] < Data[0][2] then D += Sqr(SphereCenter[2] - Data[0][2]) else
if SphereCenter[2] > Data[1][2] then D += Sqr(SphereCenter[2] - Data[1][2]);
Result := D <= Sqr(SphereRadius);
end;
function TBox3D.MaximumPlane(
const Direction: TVector3Single): TVector4Single;
var
BoxBool: TBox3DBool absolute Data;
ResultDir: TVector3Single absolute Result;
begin
CheckNonEmpty;
{ first 3 plane components are just copied from Direction }
ResultDir := Direction;
(*
{ calculate box corner that intersects resulting plane:
just choose appropriate coords using Direction. }
P[0] := BoxBool[Direction[0] >= 0][0];
P[1] := BoxBool[Direction[1] >= 0][1];
P[2] := BoxBool[Direction[2] >= 0][2];
{ calculate 4th plane component.
Plane must intersect P, so
P[0] * Result[0] + .... + Result[3] = 0
}
Result[3] := - (P[0] * Result[0] +
P[1] * Result[1] +
P[2] * Result[2]);
*)
{ optimized version, just do this in one go: }
Result[3] := - (BoxBool[Direction[0] >= 0][0] * Result[0] +
BoxBool[Direction[1] >= 0][1] * Result[1] +
BoxBool[Direction[2] >= 0][2] * Result[2]);
end;
function TBox3D.MinimumPlane(const Direction: TVector3Single): TVector4Single;
var
BoxBool: TBox3DBool absolute Data;
ResultDir: TVector3Single absolute Result;
begin
CheckNonEmpty;
{ first 3 plane components are just copied from Direction }
ResultDir := Direction;
{ optimized version, just do this in one go: }
Result[3] := - (BoxBool[Direction[0] < 0][0] * Result[0] +
BoxBool[Direction[1] < 0][1] * Result[1] +
BoxBool[Direction[2] < 0][2] * Result[2]);
end;
procedure TBox3D.PointDistances(const P: TVector3Single;
out MinDistance, MaxDistance: Single);
var
Dist0, Dist1: Single;
I: Integer;
begin
CheckNonEmpty;
MinDistance := 0;
MaxDistance := 0;
{ For each coordinate (0, 1, 2), find which side of the box is closest.
Effectively, we find the closest of the 8 box corners.
The opposite corner is the farthest.
We want to calculate distance to this point, so we do it by the way. }
for I := 0 to 2 do
begin
Dist0 := Sqr(P[I] - Data[0][I]);
Dist1 := Sqr(P[I] - Data[1][I]);
if Dist0 < Dist1 then
begin
MinDistance += Dist0;
MaxDistance += Dist1;
end else
begin
MinDistance += Dist1;
MaxDistance += Dist0;
end;
end;
if PointInside(P) then
MinDistance := 0;
{ Because of floating point inaccuracy, MinDistance may be larger
by epsilon than MaxDistance? Fix it to be sure. }
{ For now: just assert it: }
Assert(MinDistance <= MaxDistance);
end;
procedure TBox3D.DirectionDistances(
const Point, Dir: TVector3Single;
out MinDistance, MaxDistance: Single);
var
B: TBox3DBool absolute Data;
XMin, YMin, ZMin: boolean;
MinPoint, MaxPoint: TVector3Single;
Coord: Integer;
begin
CheckNonEmpty;
XMin := Dir[0] < 0;
YMin := Dir[1] < 0;
ZMin := Dir[2] < 0;
MinPoint := PointOnLineClosestToPoint(Point, Dir,
Vector3Single(B[XMin][0], B[YMin][1], B[ZMin][2]));
MaxPoint := PointOnLineClosestToPoint(Point, Dir,
Vector3Single(B[not XMin][0], B[not YMin][1], B[not ZMin][2]));
MinDistance := PointsDistance(Point, MinPoint);
MaxDistance := PointsDistance(Point, MaxPoint);
{ choose one of the 3 coordinates where Dir is largest, for best
numerical stability. We need to compare now and see which
distances should be negated. }
Coord := MaxAbsVectorCoord(Dir);
if Dir[Coord] > 0 then
begin
{ So the distances to points that are *larger* on Coord are positive.
Others should be negative. }
if MinPoint[Coord] < Point[Coord] then
MinDistance := -MinDistance;
if MaxPoint[Coord] < Point[Coord] then
MaxDistance := -MaxDistance;
end else
begin
if MinPoint[Coord] > Point[Coord] then
MinDistance := -MinDistance;
if MaxPoint[Coord] > Point[Coord] then
MaxDistance := -MaxDistance;
end;
{ Because of floating point inaccuracy, MinDistance may be larger
by epsilon than MaxDistance? Fix it to be sure. }
{ For now: just assert it: }
Assert(MinDistance <= MaxDistance);
end;
function TBox3D.PointDistance(const Point: TVector3Single): Single;
var
I: Integer;
begin
CheckNonEmpty;
{ There are 4 cases:
0. point is in no box range - calculate distance to closest corner
1. point is 1 box range - calculate distance to closest edge
2. point is 2 box ranges - calculate distance to closest side
3. point is 3 box ranges - so point is inside, distance = 0
First naive implementation was detecting these cases by calculating
InsideRangeCount, InsideRange and such.
But actually you can calculate all cases at once. }
Result := 0;
for I := 0 to 2 do
begin
if Point[I] < Data[0][I] then
Result += Sqr(Point[I] - Data[0][I]) else
if Point[I] > Data[1][I] then
Result += Sqr(Point[I] - Data[1][I]);
end;
Result := Sqrt(Result);
end;
function TBox3D.PointMaxDistance(const Point: TVector3Single;
const EmptyBoxDistance: Single): Single;
var
B: TBox3DBool absolute Data;
begin
if IsEmpty then
Result := EmptyBoxDistance else
Result := Sqrt(
Sqr(Point[0] - B[Point[0] < (Data[0][0] + Data[1][0]) / 2][0]) +
Sqr(Point[1] - B[Point[1] < (Data[0][1] + Data[1][1]) / 2][1]) +
Sqr(Point[2] - B[Point[2] < (Data[0][2] + Data[1][2]) / 2][2])
);
end;
function TBox3D.Equal(const Box2: TBox3D): boolean;
begin
if IsEmpty then
Result := Box2.IsEmpty else
Result := (not Box2.IsEmpty) and
VectorsEqual(Data[0], Box2.Data[0]) and
VectorsEqual(Data[1], Box2.Data[1]);
end;
function TBox3D.Equal(const Box2: TBox3D; const EqualityEpsilon: Single): boolean;
begin
if IsEmpty then
Result := Box2.IsEmpty else
Result := (not Box2.IsEmpty) and
VectorsEqual(Data[0], Box2.Data[0], EqualityEpsilon) and
VectorsEqual(Data[1], Box2.Data[1], EqualityEpsilon);
end;
function TBox3D.Diagonal: Single;
begin
if IsEmpty then
Result := 0 else
Result := Sqrt(Sqr(Data[1][0] - Data[0][0]) +
Sqr(Data[1][1] - Data[0][1]) +
Sqr(Data[1][2] - Data[0][2]));
end;
{ Routines ------------------------------------------------------------------- }
{$define TGenericFloat := Single}
{$define TVector3GenericFloat := TVector3Single}
{$define TVector4GenericFloat := TVector4Single}
{$I castleboxes_generic_float.inc}
{$define TGenericFloat := Double}
{$define TVector3GenericFloat := TVector3Double}
{$define TVector4GenericFloat := TVector4Double}
{$I castleboxes_generic_float.inc}
function Box3D(const p0, p1: TVector3Single): TBox3D;
begin
result.Data[0] := p0;
result.Data[1] := p1;
end;
function Box3DAroundPoint(const Pt: TVector3Single; Size: Single): TBox3D;
begin
Size /= 2;
Result.Data[0][0] := Pt[0] - Size;
Result.Data[0][1] := Pt[1] - Size;
Result.Data[0][2] := Pt[2] - Size;
Result.Data[1][0] := Pt[0] + Size;
Result.Data[1][1] := Pt[1] + Size;
Result.Data[1][2] := Pt[2] + Size;
end;
function Box3DAroundPoint(const Pt: TVector3Single; Size: TVector3Single): TBox3D;
begin
Size /= 2;
Result.Data[0][0] := Pt[0] - Size[0];
Result.Data[0][1] := Pt[1] - Size[1];
Result.Data[0][2] := Pt[2] - Size[2];
Result.Data[1][0] := Pt[0] + Size[0];
Result.Data[1][1] := Pt[1] + Size[1];
Result.Data[1][2] := Pt[2] + Size[2];
end;
function CalculateBoundingBox(
GetVertex: TGetVertexFromIndexFunc;
VertsCount: integer): TBox3D;
var
I: Integer;
V: TVector3Single;
begin
if VertsCount = 0 then
Result := EmptyBox3D else
begin
Result.Data[0] := GetVertex(0);
Result.Data[1] := Result.Data[0];
for I := 1 to VertsCount - 1 do
begin
V := GetVertex(I);
MinTo1st(Result.Data[0][0], V[0]);
MinTo1st(Result.Data[0][1], V[1]);
MinTo1st(Result.Data[0][2], V[2]);
MaxTo1st(Result.Data[1][0], V[0]);
MaxTo1st(Result.Data[1][1], V[1]);
MaxTo1st(Result.Data[1][2], V[2]);
end;
end;
end;
type
{ Internal helper for CalculateBoundingBox }
TBBox_Calculator = class
Verts: PVector3Single;
VertsStride: Cardinal; { tutaj VertsStride juz nie moze byc = 0 }
PMatrix: PMatrix4Single;
function GetVertexNotTransform(index: integer): TVector3Single;
function GetVertexTransform(index: integer): TVector3Single;
end;
function TBBox_Calculator.GetVertexNotTransform(index: integer): TVector3Single;
begin
result := PVector3Single(PointerAdd(Verts, VertsStride*Cardinal(index)))^;
end;
function TBBox_Calculator.GetVertexTransform(index: integer): TVector3Single;
begin
result := MatrixMultPoint(
PMatrix^, PVector3Single(PointerAdd(Verts, VertsStride*Cardinal(index)))^ );
end;
function CalculateBoundingBox(
Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal): TBox3D;
var
Calculator: TBBox_Calculator;
begin
if VertsStride = 0 then VertsStride := SizeOf(TVector3Single);
Calculator := TBBox_Calculator.Create;
try
Calculator.VertsStride := VertsStride;
Calculator.Verts := Verts;
result := CalculateBoundingBox(
{$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetVertexNotTransform, VertsCount);
finally Calculator.Free end;
end;
function CalculateBoundingBox(
Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal;
const Transform: TMatrix4Single): TBox3D;
var
Calculator: TBBox_Calculator;
begin
if VertsStride = 0 then VertsStride := SizeOf(TVector3Single);
Calculator := TBBox_Calculator.Create;
try
Calculator.VertsStride := VertsStride;
Calculator.Verts := Verts;
Calculator.PMatrix := @Transform;
result := CalculateBoundingBox(
{$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetVertexTransform, VertsCount);
finally Calculator.Free end;
end;
function CalculateBoundingBox(Verts: TVector3SingleList): TBox3D;
begin
Result := CalculateBoundingBox(PVector3Single(Verts.List), Verts.Count, 0);
end;
function CalculateBoundingBox(Verts: TVector3SingleList;
const Transform: TMatrix4Single): TBox3D;
begin
Result := CalculateBoundingBox(PVector3Single(Verts.List), Verts.Count, 0,
Transform);
end;
function CalculateBoundingBoxFromIndices(
GetVertIndex: TGetIndexFromIndexNumFunc;
VertsIndicesCount: integer;
GetVertex: TGetVertexFromIndexFunc): TBox3D;
var
{ pozycja pierwszego nieujemnego indexu.
Zwracamy EmptyBox3D wtw. gdy firstIndex nie istnieje }
FirstIndexNum: integer;
IndexNum, Index: integer;
ThisVertex: TVector3Single;
begin
{seek for firstIndex}
firstIndexNum := 0;
while (firstIndexNum < VertsIndicesCount) and (GetVertIndex(firstIndexNum) < 0) do
Inc(firstIndexNum);
if firstIndexNum = VertsIndicesCount then {firstIndex not found ?}
begin
result := EmptyBox3D;
exit;
end;
{ Note that I do only one pass, getting all vertexes.
This is important, because GetVertex may be quite expensive
operation (in case of e.g. TVertTransform_Calculator.GetTransformed,
this is MatrixMultPoint for every vertex). At the beginning
I implemented this by caling 6 time find_extremum function,
and each call to find_extremum was iterating over every vertex.
This was obviously wrong, because this caused calling GetVertex
6 times more often than necessary. In some cases (like preparing
TCastlePrecalculatedAnimation in "The Castle") this can cause really significant
slowdown. }
ThisVertex := GetVertex(GetVertIndex(firstIndexNum));
Result.Data[0] := ThisVertex;
Result.Data[1] := ThisVertex;
for IndexNum := FirstIndexNum+1 to VertsIndicesCount - 1 do
begin
Index := GetVertIndex(IndexNum);
if Index >= 0 then
begin
ThisVertex := GetVertex(Index);
if ThisVertex[0] < Result.Data[0, 0] then Result.Data[0, 0] := ThisVertex[0];
if ThisVertex[1] < Result.Data[0, 1] then Result.Data[0, 1] := ThisVertex[1];
if ThisVertex[2] < Result.Data[0, 2] then Result.Data[0, 2] := ThisVertex[2];
if ThisVertex[0] > Result.Data[1, 0] then Result.Data[1, 0] := ThisVertex[0];
if ThisVertex[1] > Result.Data[1, 1] then Result.Data[1, 1] := ThisVertex[1];
if ThisVertex[2] > Result.Data[1, 2] then Result.Data[1, 2] := ThisVertex[2];
end;
end;
end;
type
TVertTransform_Calculator = class
PTransform: PMatrix4Single;
GetNotTransformed: TGetVertexFromIndexFunc;
function GetTransformed(index: integer): TVector3Single;
end;
function TVertTransform_Calculator.GetTransformed(index: integer): TVector3Single;
begin
result := MatrixMultPoint(PTransform^, GetNotTransformed(index));
end;
function CalculateBoundingBoxFromIndices(
GetVertIndex: TGetIndexFromIndexNumFunc;
VertsIndicesCount: integer;
GetVertex: TGetVertexFromIndexFunc;
const Transform: TMatrix4Single): TBox3D;
var
Calculator: TVertTransform_Calculator;
begin
Calculator := TVertTransform_Calculator.Create;
try
Calculator.PTransform := @Transform;
Calculator.GetNotTransformed := GetVertex;
result := CalculateBoundingBoxFromIndices(
GetVertIndex,
VertsIndicesCount,
{$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetTransformed);
finally Calculator.Free end;
end;
function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;
begin
MinMax(T[0][0], T[1][0], T[2][0], Result.Data[0][0], Result.Data[1][0]);
MinMax(T[0][1], T[1][1], T[2][1], Result.Data[0][1], Result.Data[1][1]);
MinMax(T[0][2], T[1][2], T[2][2], Result.Data[0][2], Result.Data[1][2]);
end;
function BoundingBox3DFromSphere(const Center: TVector3Single;
const Radius: Single): TBox3D;
begin
Result.Data[0] := Center;
Result.Data[0][0] -= Radius;
Result.Data[0][1] -= Radius;
Result.Data[0][2] -= Radius;
Result.Data[1] := Center;
Result.Data[1][0] += Radius;
Result.Data[1][1] += Radius;
Result.Data[1][2] += Radius;
end;
operator+ (const box1, box2: TBox3D): TBox3D;
begin
if box1.IsEmpty then
Result := box2 else
if box2.IsEmpty then
Result := box1 else
begin
result.Data[0, 0] := min(box1.Data[0, 0], box2.Data[0, 0]);
result.Data[1, 0] := max(box1.Data[1, 0], box2.Data[1, 0]);
result.Data[0, 1] := min(box1.Data[0, 1], box2.Data[0, 1]);
result.Data[1, 1] := max(box1.Data[1, 1], box2.Data[1, 1]);
result.Data[0, 2] := min(box1.Data[0, 2], box2.Data[0, 2]);
result.Data[1, 2] := max(box1.Data[1, 2], box2.Data[1, 2]);
end;
end;
operator+ (const B: TBox3D; const V: TVector3Single): TBox3D;
begin
Result := B.Translate(V);
end;
operator+ (const V: TVector3Single; const B: TBox3D): TBox3D;
begin
Result := B.Translate(V);
end;
end.
|