This file is indexed.

/usr/src/castle-game-engine-5.0.0/3d/castleboxes.pas is in castle-game-engine-src 5.0.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
{
  Copyright 2003-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Axis-aligned 3D boxes (TBox3D). }
unit CastleBoxes;

interface

uses CastleVectors, SysUtils, CastleUtils, CastleGenericLists, CastleTriangles;

type
  EBox3DEmpty = class(Exception);

  TGetIndexFromIndexNumFunc = function (indexNum: integer): integer of object;

  { State of collision between a plane and some other object.

    pcNone occurs only when the "other object" is empty
    (TBox3D.IsEmpty, in case of box).
    Other values mean that the other object is not empty.

    pcOutside means that the whole object is on the side of the plane pointed
    by plane direction (normal) vector. More formally, every point P
    inserted into the plane equation will yield (P*PlaneNormal + PlaneD) > 0.

    pcInside is the reverse of pcOutside:
    the other object is on the side of plane
    pointed by inverted plane normal. Every point inserted into plane
    equation will yield < 0.

    pcIntersecting is, well, the remaining case. It means that there's
    for sure some point P of other object that, when inserted into
    plane equation, will yield = 0. }
  TPlaneCollision = (pcIntersecting, pcOutside, pcInside, pcNone);

  { Axis-aligned box. Rectangular prism with all sides parallel to basic planes
    X = 0, Y = 0 and Z = 0. This is sometimes called AABB, "axis-aligned bounding
    box". Many geometric operations are fast and easy on this type.

    The actual box dimensions are stored inside the @link(Data) field, as two 3D points.
    First point has always all the smaller coords, second point has all
    the larger coords. I.e. always

@preformatted(
  Data[0, 0] <= Data[1, 0] and
  Data[0, 1] <= Data[1, 1] and
  Data[0, 2] <= Data[1, 2]
)
    The only exception is the special value EmptyBox3D.

    Note that the box may still have all sizes equal 0. Consider a 3D model with
    only a single 3D point --- it's not empty, but all the sizes must be 0.

    This is an old-style object (withut any virtual
    methods). This way there's no need for using constructors / destructors
    to manage this, you can simply declare TBox3D type and copy / pass around
    this box to other procedures. }
  TBox3D = object
    Data: array [0..1   ] of TVector3Single;

    { Check is box empty.
      You can think of this function as "compare Box with EmptyBox3D".

      But actually it works a little faster, by utilizing the assumption
      that EmptyBox3D is the only allowed value that breaks
      @code(Data[0, 0] <= Data[1, 0]) rule. }
    function IsEmpty: boolean;

    { Check is box empty or has all the sizes equal 0. }
    function IsEmptyOrZero: boolean;

    procedure CheckNonEmpty;

    { These functions calculate the middle point, average size, max size
      and particular sizes of given bounding box.

      @raises(EBox3DEmpty If the Box is empty.)

      @groupBegin }
    function Middle: TVector3Single;
    function AverageSize: Single; overload;
    function MaxSize: Single; overload;
    function MinSize: Single;
    function SizeX: Single;
    function SizeY: Single;
    function SizeZ: Single;
    { @groupEnd }

    { Average size of TBox3D, or EmptyBoxSize if box is empty.
      @param(AllowZero Decides what to do when box is not empty but the result
        would be zero, which means that the box is infinitely thin in all axes.
        If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
    function AverageSize(const AllowZero: boolean;
      const EmptyBoxSize: Single): Single; overload;

    { Largest size of TBox3D, or EmptyBoxSize if box is empty.
      @param(AllowZero Decides what to do when box is not empty but the result
        would be zero, which means that the box is infinitely thin in all axes.
        If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
    function MaxSize(const AllowZero: boolean;
      const EmptyBoxSize: Single): Single; overload;

    { Area of the six TBox3D sides, EmptyBoxArea if box is empty.
      @param(AllowZero Decides what to do when box is not empty but the result
        would be zero, which means that the box is infinitely thin in all axes.
        If @true, then result is just 0, otherwise it's EmptyBoxSize.) }
    function Area(const AllowZero: boolean;
      const EmptyBoxArea: Single): Single;

    { This decreases Data[0, 0], Data[0, 1], Data[0, 2] by AExpand
       and increases Data[1, 0], Data[1, 1], Data[1, 2] by AExpand.
      So you get Box with all sizes increased by 2 * AExpand.

      Box must not be empty.
      Note that AExpand may be negative, but then you must be sure
      that it doesn't make Box empty. }
    procedure ExpandMe(const AExpand: Single); overload;

    { This decreases Data[0] by AExpand, and increases Data[1] by AExpand.
      So you get Box with all sizes increased by 2 * AExpand.

      Box must not be empty.
      Note that AExpand may be negative, but then you must be sure
      that it doesn't make Box empty. }
    procedure ExpandMe(const AExpand: TVector3Single); overload;

    function Expand(const AExpand: Single): TBox3D; overload;
    function Expand(const AExpand: TVector3Single): TBox3D; overload;

    { Check is the point inside the box.
      Always false if Box is empty (obviously, no point is inside an empty box).

      @groupBegin }
    function PointInside(const Point: TVector3Single): boolean; overload;
    function PointInside(const Point: TVector3Double): boolean; overload;
    { @groupEnd }

    { Is the 2D point inside the 2D projection of the box.
      2D projection (of point and box) is obtained by rejecting
      the IgnoreIndex coordinate (must be 0, 1 or 2). }
    function PointInside2D(const Point: TVector3Single; const IgnoreIndex: Integer): boolean;

    { Sum two TBox3D values. This calculates the smallest box that encloses
      both Box1 and Box2. You can also use + operator. }
    procedure Add(const box2: TBox3D); overload;

    { Make box larger, if necessary, to contain given Point. }
    procedure Add(const Point: TVector3Single); overload;

    { Three box sizes. }
    function Sizes: TVector3Single;

    { Calculate eight corners of the box. Place them in AllPoints^[0..7]. }
    procedure GetAllPoints(allpoints: PVector3Single);

    { Transform the Box by given matrix.
      Since this is still an axis-aligned box, rotating etc. of the box
      usually makes larger box.

      Note that this is very optimized for Matrix with no projection
      (where last row of the last matrix = [0, 0, 0, 1]). It still works
      for all matrices (eventually fallbacks to simple "transform 8 corners and get
      box enclosing them" method).

      @raises(ETransformedResultInvalid When the Matrix will
      transform some point to a direction (vector with 4th component
      equal zero). In this case we just cannot interpret the result as a 3D point,
      so we also cannot interpret the final result as a box.) }
    function Transform(const Matrix: TMatrix4Single): TBox3D;

    { Move Box. Does nothing if Box is empty. }
    function Translate(const Translation: TVector3Single): TBox3D;

    { Move Box, by -Translation. Does nothing if Box is empty. }
    function AntiTranslate(const Translation: TVector3Single): TBox3D;

    function ToNiceStr: string;
    function ToRawStr: string;

    procedure Clamp(var point: TVector3Single); overload;
    procedure Clamp(var point: TVector3Double); overload;

    { TryBoxRayClosestIntersection calculates intersection between the
      ray (returns closest intersection to RayOrigin) and the box.

      The box is treated just like a set of 6 rectangles in 3D.
      This means that the intersection will always be placed on one of the
      box sides, even if RayOrigin starts inside the box.
      See TryBoxRayEntrance for the other version.

      Returns also IntersectionDistance, which is the distance to the Intersection
      relative to RayDirection (i.e. Intersection is always = RayOrigin +
      IntersectionDistance * RayDirection).

      @groupBegin }
    function TryRayClosestIntersection(
      out Intersection: TVector3Single;
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single): boolean; overload;
    function TryRayClosestIntersection(
      out Intersection: TVector3Single;
      const RayOrigin, RayDirection: TVector3Single): boolean; overload;
    function TryRayClosestIntersection(
      out IntersectionDistance: Single;
      const RayOrigin, RayDirection: TVector3Single): boolean; overload;
    { @groupEnd }

    { Intersection between the ray (returns closest intersection to RayOrigin)
      and the box, treating the box as a filled volume.

      If RayOrigin is inside the box, TryBoxRayEntrance simply returns
      RayOrigin. If RayOrigin is outside of the box, the answer is the same
      as with TryBoxRayClosestIntersection.

      @groupBegin }
    function TryRayEntrance(
      out Entrance: TVector3Single; out EntranceDistance: Single;
      const RayOrigin, RayDirection: TVector3Single): boolean; overload;
    function TryRayEntrance(
      out Entrance: TVector3Single;
      const RayOrigin, RayDirection: TVector3Single): boolean; overload;
    { @groupEnd }

    function SegmentCollision(
      const Segment1, Segment2: TVector3Single): boolean;

    { Deprecated name for SegmentCollision. @deprecated @exclude }
    function IsSegmentCollision(
      const Segment1, Segment2: TVector3Single): boolean; deprecated;

    { Collision between axis-aligned box (TBox3D) and 3D plane.
      Returns detailed result as TPlaneCollision. }
    function PlaneCollision(const Plane: TVector4Single): TPlaneCollision;

    { Check is axis-aligned box (TBox3D) fully inside/outside the plane.

      Inside/outside are defined as for TPlaneCollision:
      Outside is where plane direction (normal) points.
      Inside is where the @italic(inverted) plane direction (normal) points.

      They work exactly like Box3DPlaneCollision, except they returns @true
      when box is inside/outside (when Box3DPlaneCollision returned pcInside/pcOutside),
      and @false otherwise.

      For example Box3DPlaneCollisionInside doesn't differentiate between case
      when box is empty, of partially intersects the plane, and is on the outside.
      But it works (very slightly) faster.

      @groupBegin }
    function PlaneCollisionInside(const Plane: TVector4Single): boolean;
    function PlaneCollisionOutside(const Plane: TVector4Single): boolean;
    { @groupEnd }

    function IsTriangleCollision(
      const Triangle: TTriangle3Single): boolean;

    { Smallest possible sphere completely enclosing given Box.
      When Box is empty we return SphereRadiusSqr = 0 and undefined SphereCenter. }
    procedure BoundingSphere(
      var SphereCenter: TVector3Single; var SphereRadiusSqr: Single);

    function Collision(const Box2: TBox3D): boolean;

    { Radius of the minimal sphere that contains this box.
      Sphere center is assumed to be in (0, 0, 0).
      0 if box is empty. }
    function Radius: Single;

    { Radius of the minimal circle that contains the 2D projection of this box.
      2D box projection is obtained by rejecting the IgnoreIndex coordinate
      (must be 0, 1 or 2).
      Circle center is assumed to be in (0, 0).
      0 if box is empty. }
    function Radius2D(const IgnoreIndex: Integer): Single;

    { Check for collision between box and sphere, fast @italic(but not
      entirely correct).

      This considers a Box enlarged by SphereRadius in each direction.
      Then checks whether SphereCenter is inside such enlarged Box.
      So this check will incorrectly report collision while in fact
      there's no collision in the case when the sphere center is near
      the corner of the Box.

      So this check is not 100% correct. But often this is good enough
      --- in games, if you know that the SphereRadius is going to be
      relatively small compared to the Box, this may be perfectly
      acceptable. And it's fast. }
    function SphereSimpleCollision(
      const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;

    { Check for box <-> sphere collision.
      This is a little slower than SphereSimpleCollision, although still
      damn fast, and it's a precise check. }
    function SphereCollision(
      const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;

    { Calculate a plane in 3D space with direction = given Direction, moved
      maximally in Direction and still intersecting the given Box.

      For example, if Direction = -Z = (0, 0, -1), then this will return
      the bottom plane of this box. For Direction = (1, 1, 1), this will return
      a plane intersecting the Data[1] (maximum) point, with slope = (1, 1, 1).
      The resulting plane always intersects at least one of the 8 corners of the box.

      @raises(EBox3DEmpty If the Box is empty.) }
    function MaximumPlane(const Direction: TVector3Single): TVector4Single;

    { Calculate a plane in 3D space with direction = given Direction, moved
      such that it touches the Box but takes minimum volume of this box.

      For example, if Direction = +Z = (0, 0, 1), then this will return
      the bottom plane of this box. For Direction = (1, 1, 1), this will return
      a plane intersecting the Data[0] (minimum) point, with slope = (1, 1, 1).
      The resulting plane always intersects at least one of the 8 corners of the box.

      @raises(EBox3DEmpty If the Box is empty.) }
    function MinimumPlane(const Direction: TVector3Single): TVector4Single;

    { Calculate the distances between a given 3D point and a box.
      MinDistance is the distance to the closest point of the box,
      MaxDistance is the distance to the farthest point of the box.

      Note that always MinDistance <= MaxDistance.
      Note that both distances are always >= 0.

      When the point is inside the box, it works correct too: minimum distance
      is zero in this case.

      @raises EBox3DEmpty When used with an empty box.

      TODO: calculation of MinDistance is not perfect now. We assume that
      the closest/farthest point of the box is one of the 8 box corners.
      Which may not be true in case of the closest point, because it may
      lie in the middle of some box face (imagine a sphere with increasing
      radius reaching from a point to a box). So our minimum may be a *little*
      too large. }
    procedure PointDistances(const P: TVector3Single;
      out MinDistance, MaxDistance: Single);

    { Calculate the distances along a direction to a box.
      The idea is that you have a 3D plane orthogonal to direction Dir
      and passing through Point. You can move this plane,
      but you have to keep it's direction constant.
      MinDistance is the minimal distance along the Dir that you can
      move this plane, such that it touches the box.
      MaxDistance is the maximum such distance.

      Note that always MinDistance <= MaxDistance.
      Note that one distance (MinDistance) or both distances may be negative.

      As a practical example: imagine a DirectionalLight (light rays are
      parallel) that has a location. Now MinDistance and MaxDistance give
      ranges of depth where the Box is, as seen from the light source.

      @raises EBox3DEmpty When used with an empty box. }
    procedure DirectionDistances(
      const Point, Dir: TVector3Single;
      out MinDistance, MaxDistance: Single);

    { Shortest distance between the box and a point.
      Always zero when the point is inside the box.

      @raises EBox3DEmpty When used with an empty box. }
    function PointDistance(const Point: TVector3Single): Single;

    { Maximum distance between the box and a point.
      Returns EmptyBoxDistance when box is empty. }
    function PointMaxDistance(const Point: TVector3Single;
      const EmptyBoxDistance: Single): Single;

    function Equal(const Box2: TBox3D): boolean;
    function Equal(const Box2: TBox3D; const EqualityEpsilon: Single): boolean;

    { Diagonal of the box, zero if empty. }
    function Diagonal: Single;
  end;

  TBox3DBool = array [boolean] of TVector3Single;
  PBox3D = ^TBox3D;

const
  { Special TBox3D value meaning "bounding box is empty".
    This is different than just bounding box with zero sizes,
    as bounding box with zero sizes still has some position.
    Empty bounding box doesn't contain any portion of 3D space. }
  EmptyBox3D: TBox3D = (Data: ((0, 0, 0), (-1, -1, -1)));

type
  TBox3DList = specialize TGenericStructList<TBox3D>;

{ Various comfortable functions to construct TBox3D value.
  @groupBegin }
function Box3D(const p0, p1: TVector3Single): TBox3D;
function Box3DAroundPoint(const Pt: TVector3Single; Size: Single): TBox3D;
function Box3DAroundPoint(const Pt: TVector3Single; Size: TVector3Single): TBox3D;
{ @groupEnd }

{ Calculate bounding box of a set of 3D points.
  This calculates the smallest possible box enclosing all given points.
  For VertsCount = 0 this returns EmptyBox3D.

  Overloaded version with Transform parameter transforms each point
  by given matrix.

  Overloaded version with GetVertex as a function uses GetVertex to query
  for indexes from [0 .. VertsCount - 1] range.

  As usual, VertsStride = 0 means VertsStride = SizeOf(TVector3Single).

  @groupBegin }
function CalculateBoundingBox(
  Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal): TBox3D; overload;
function CalculateBoundingBox(
  Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal;
  const Transform: TMatrix4Single): TBox3D; overload;
function CalculateBoundingBox(Verts: TVector3SingleList): TBox3D; overload;
function CalculateBoundingBox(Verts: TVector3SingleList;
  const Transform: TMatrix4Single): TBox3D; overload;
function CalculateBoundingBox(
  GetVertex: TGetVertexFromIndexFunc;
  VertsCount: integer): TBox3D; overload;
{ @groupEnd }

{ Calculate bounding box of a set of indexed 3D points.

  This is much like CalculateBoundingBox, except there are two functions:
  For each number in [0 .. VertsIndicesCount - 1] range, GetVertIndex
  returns an index. If this index is >= 0 then it's used to query
  GetVertex function to get actual vertex position.

  Indexes < 0 are ignored, this is sometimes comfortable. E.g. for VRML models,
  you often have a list of indexes with -1 in between marking end of faces.

  Returns smallest box enclosing all vertexes.

  Overloaded version with Transform parameter transforms each point
  by given matrix.

  @groupBegin }
function CalculateBoundingBoxFromIndices(
  GetVertIndex: TGetIndexFromIndexNumFunc;
  VertsIndicesCount: integer;
  GetVertex: TGetVertexFromIndexFunc): TBox3D; overload;
function CalculateBoundingBoxFromIndices(
  GetVertIndex: TGetIndexFromIndexNumFunc;
  VertsIndicesCount: integer;
  GetVertex: TGetVertexFromIndexFunc;
  const Transform: TMatrix4Single): TBox3D; overload;
{ @groupEnd }

function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;

var
  { Special equality epsilon used by IsCenteredBox3DPlaneCollision.
    For implementation reasons, they always
    use Double precision (even when called with arguments with Single precision),
    and still have to use epsilon slightly larger than usual
    CastleVectors.DoubleEqualityEpsilon. }
  Box3DPlaneCollisionEqualityEpsilon: Double = 1e-5;

{ Tests for collision between box3d centered around (0, 0, 0)
  and a plane.

  Note that you can't express empty box3d here: all BoxHalfSize items
  must be >= 0. The case when size = 0 is considered like infintely small
  box in some dimension (e.g. if all three sizes are = 0 then the box
  becomes a point).

  @groupBegin }
function IsCenteredBox3DPlaneCollision(
  const BoxHalfSize: TVector3Single;
  const Plane: TVector4Single): boolean; overload;
function IsCenteredBox3DPlaneCollision(
  const BoxHalfSize: TVector3Double;
  const Plane: TVector4Double): boolean; overload;
{ @groupEnd }

{ Smallest possible box enclosing a sphere with Center, Radius. }
function BoundingBox3DFromSphere(const Center: TVector3Single;
  const Radius: Single): TBox3D;

operator+ (const Box1, Box2: TBox3D): TBox3D;
operator+ (const B: TBox3D; const V: TVector3Single): TBox3D;
operator+ (const V: TVector3Single; const B: TBox3D): TBox3D;

implementation

{ TBox3D --------------------------------------------------------------------- }

function TBox3D.IsEmpty: boolean;
begin
  Result := Data[0, 0] > Data[1, 0];
end;

function TBox3D.IsEmptyOrZero: boolean;
begin
  Result := (Data[0, 0] > Data[1, 0]) or
    ( (Data[0, 0] = Data[1, 0]) and
      (Data[0, 1] = Data[1, 1]) and
      (Data[0, 2] = Data[1, 2])
    );
end;

procedure TBox3D.CheckNonEmpty;
begin
  if IsEmpty then
    raise EBox3DEmpty.Create('Empty box 3d: no middle point, no sizes etc.');
end;

function TBox3D.Middle: TVector3Single;
begin
 CheckNonEmpty;
 {petla for i := 0 to 2 rozwinieta aby zyskac tycityci na czasie}
 result[0] := (Data[0, 0]+Data[1, 0])/2;
 result[1] := (Data[0, 1]+Data[1, 1])/2;
 result[2] := (Data[0, 2]+Data[1, 2])/2;
end;

function TBox3D.AverageSize: Single;
begin
 CheckNonEmpty;
 {korzystamy z faktu ze TBox3D ma wierzcholki uporzadkowane
  i w zwiazku z tym w roznicach ponizej nie musimy robic abs() }
 result := ((Data[1, 0]-Data[0, 0]) +
            (Data[1, 1]-Data[0, 1]) +
            (Data[1, 2]-Data[0, 2]))/3;
end;

function TBox3D.AverageSize(const AllowZero: boolean;
  const EmptyBoxSize: Single): Single;
begin
  if IsEmpty then
    Result := EmptyBoxSize else
  begin
    Result := ((Data[1, 0]-Data[0, 0]) +
               (Data[1, 1]-Data[0, 1]) +
               (Data[1, 2]-Data[0, 2]))/3;
    if (not AllowZero) and (Result = 0) then
      Result := EmptyBoxSize;
  end;
end;

function TBox3D.MaxSize: Single;
begin
  CheckNonEmpty;
  Result := Max(
     Data[1, 0] - Data[0, 0],
     Data[1, 1] - Data[0, 1],
     Data[1, 2] - Data[0, 2]);
end;

function TBox3D.MaxSize(const AllowZero: boolean;
  const EmptyBoxSize: Single): Single;
begin
  if IsEmpty then
    Result := EmptyBoxSize else
  begin
    Result := Max(
      Data[1, 0] - Data[0, 0],
      Data[1, 1] - Data[0, 1],
      Data[1, 2] - Data[0, 2]);
    if (not AllowZero) and (Result = 0) then
      Result := EmptyBoxSize;
  end;
end;

function TBox3D.Area(const AllowZero: boolean;
  const EmptyBoxArea: Single): Single;
var
  A, B, C: Single;
begin
  if IsEmpty then
    Result := EmptyBoxArea else
  begin
    A := Data[1, 0] - Data[0, 0];
    B := Data[1, 1] - Data[0, 1];
    C := Data[1, 2] - Data[0, 2];
    Result := 2*A*B + 2*B*C + 2*A*C;
    if (not AllowZero) and (Result = 0) then
      Result := EmptyBoxArea;
  end;
end;

function TBox3D.MinSize: Single;
begin
 CheckNonEmpty;

 Result := Min(
   Data[1, 0] - Data[0, 0],
   Data[1, 1] - Data[0, 1],
   Data[1, 2] - Data[0, 2]);

 { Another version is below (but this is slower without any benefit...)

   var sizes: TVector3Single;
     sizes := Box3DSizes(box);
     result := sizes[MaxVectorCoord(sizes)];
 }
end;

function TBox3D.SizeX: Single;
begin
  CheckNonEmpty;
  Result := Data[1, 0] - Data[0, 0];
end;

function TBox3D.SizeY: Single;
begin
  CheckNonEmpty;
  Result := Data[1, 1] - Data[0, 1];
end;

function TBox3D.SizeZ: Single;
begin
  CheckNonEmpty;
  Result := Data[1, 2] - Data[0, 2];
end;

procedure TBox3D.ExpandMe(const AExpand: Single);
begin
 Data[0, 0] -= AExpand;
 Data[0, 1] -= AExpand;
 Data[0, 2] -= AExpand;

 Data[1, 0] += AExpand;
 Data[1, 1] += AExpand;
 Data[1, 2] += AExpand;
end;

procedure TBox3D.ExpandMe(const AExpand: TVector3Single);
begin
 Data[0, 0] -= AExpand[0];
 Data[0, 1] -= AExpand[1];
 Data[0, 2] -= AExpand[2];

 Data[1, 0] += AExpand[0];
 Data[1, 1] += AExpand[1];
 Data[1, 2] += AExpand[2];
end;

function TBox3D.Expand(const AExpand: Single): TBox3D;
begin
  Result.Data[0, 0] := Data[0, 0] - AExpand;
  Result.Data[0, 1] := Data[0, 1] - AExpand;
  Result.Data[0, 2] := Data[0, 2] - AExpand;

  Result.Data[1, 0] := Data[1, 0] + AExpand;
  Result.Data[1, 1] := Data[1, 1] + AExpand;
  Result.Data[1, 2] := Data[1, 2] + AExpand;
end;

function TBox3D.Expand(const AExpand: TVector3Single): TBox3D;
begin
  Result.Data[0, 0] := Data[0, 0] - AExpand[0];
  Result.Data[0, 1] := Data[0, 1] - AExpand[1];
  Result.Data[0, 2] := Data[0, 2] - AExpand[2];

  Result.Data[1, 0] := Data[1, 0] + AExpand[0];
  Result.Data[1, 1] := Data[1, 1] + AExpand[1];
  Result.Data[1, 2] := Data[1, 2] + AExpand[2];
end;

function TBox3D.PointInside(const Point: TVector3Single): boolean;
begin
  if IsEmpty then Exit(false);
  Result :=
    (Data[0, 0] <= Point[0]) and (Point[0] <=  Data[1, 0]) and
    (Data[0, 1] <= Point[1]) and (Point[1] <=  Data[1, 1]) and
    (Data[0, 2] <= Point[2]) and (Point[2] <=  Data[1, 2]);
end;

function TBox3D.PointInside(const Point: TVector3Double): boolean;
begin
  if IsEmpty then Exit(false);
  Result :=
    (Data[0, 0] <= Point[0]) and (Point[0] <=  Data[1, 0]) and
    (Data[0, 1] <= Point[1]) and (Point[1] <=  Data[1, 1]) and
    (Data[0, 2] <= Point[2]) and (Point[2] <=  Data[1, 2]);
end;

{ Separated from PointInside2D, to not slowdown it by implicit
  try/finally section because we use string. }
procedure PointInside2D_InvalidIgnoreIndex;
begin
  raise EInternalError.Create('Invalid IgnoreIndex for TBox3D.PointInside2D');
end;

function TBox3D.PointInside2D(const Point: TVector3Single;
  const IgnoreIndex: Integer): boolean;
begin
  if IsEmpty then Exit(false);
  case IgnoreIndex of
    0: Result :=
         (Data[0, 1] <= Point[1]) and (Point[1] <=  Data[1, 1]) and
         (Data[0, 2] <= Point[2]) and (Point[2] <=  Data[1, 2]);
    1: Result :=
         (Data[0, 2] <= Point[2]) and (Point[2] <=  Data[1, 2]) and
         (Data[0, 0] <= Point[0]) and (Point[0] <=  Data[1, 0]);
    2: Result :=
         (Data[0, 0] <= Point[0]) and (Point[0] <=  Data[1, 0]) and
         (Data[0, 1] <= Point[1]) and (Point[1] <=  Data[1, 1]);
    else PointInside2D_InvalidIgnoreIndex;
  end;
end;

procedure TBox3D.Add(const box2: TBox3D);
begin
  if Box2.IsEmpty then
    Exit else
  if IsEmpty then
    Data := Box2.Data else
  begin
    MinTo1st(Data[0, 0], box2.Data[0, 0]);
    MaxTo1st(Data[1, 0], box2.Data[1, 0]);
    MinTo1st(Data[0, 1], box2.Data[0, 1]);
    MaxTo1st(Data[1, 1], box2.Data[1, 1]);
    MinTo1st(Data[0, 2], box2.Data[0, 2]);
    MaxTo1st(Data[1, 2], box2.Data[1, 2]);
  end;
end;

procedure TBox3D.Add(const Point: TVector3Single);
begin
  if IsEmpty then
  begin
    Data[0] := Point;
    Data[1] := Point;
  end else
  begin
    MinTo1st(Data[0, 0], Point[0]);
    MaxTo1st(Data[1, 0], Point[0]);
    MinTo1st(Data[0, 1], Point[1]);
    MaxTo1st(Data[1, 1], Point[1]);
    MinTo1st(Data[0, 2], Point[2]);
    MaxTo1st(Data[1, 2], Point[2]);
  end;
end;

function TBox3D.Sizes: TVector3Single;
begin
  CheckNonEmpty;
  Result[0] := Data[1, 0] - Data[0, 0];
  Result[1] := Data[1, 1] - Data[0, 1];
  Result[2] := Data[1, 2] - Data[0, 2];
end;

procedure TBox3D.GetAllPoints(allpoints: PVector3Single);
const
  {zapisy dwojkowe liczb od 0 do 7 czyli wszystkie kombinacje 0 i 1-nek
   na 3 pozycjach.}
  kombinacje: array[0..7, 0..2]of 0..1 =
  ((0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1));
var i, j: integer;
begin
 for i := 0 to 7 do
  for j := 0 to 2 do
   PArray_Vector3Single(allpoints)^[i][j] := Data[kombinacje[i, j], j];
end;

function TBox3D.Transform(
  const Matrix: TMatrix4Single): TBox3D;

  function Slower(const Matrix: TMatrix4Single): TBox3D;
  var
    BoxPoints: array [0..7] of TVector3Single;
    i: integer;
  begin
    GetAllPoints(@boxpoints);
    for i := 0 to 7 do boxpoints[i] := MatrixMultPoint(Matrix, boxpoints[i]);

    { Non-optimized version:
        Result := CalculateBoundingBox(@boxpoints, 8, 0);

      But it turns out that the code below, that does essentially the same
      thing as CalculateBoundingBox implementation, works noticeably faster.
      This is noticeable on "The Castle" with many creatures: then a considerable
      time is spend inside TCreature.BoundingBox, that must calculate
      transformed bounding boxes.
    }

    Result.Data[0] := BoxPoints[0];
    Result.Data[1] := BoxPoints[0];
    for I := 1 to High(BoxPoints) do
    begin
      if BoxPoints[I, 0] < Result.Data[0, 0] then Result.Data[0, 0] := BoxPoints[I, 0];
      if BoxPoints[I, 1] < Result.Data[0, 1] then Result.Data[0, 1] := BoxPoints[I, 1];
      if BoxPoints[I, 2] < Result.Data[0, 2] then Result.Data[0, 2] := BoxPoints[I, 2];
      if BoxPoints[I, 0] > Result.Data[1, 0] then Result.Data[1, 0] := BoxPoints[I, 0];
      if BoxPoints[I, 1] > Result.Data[1, 1] then Result.Data[1, 1] := BoxPoints[I, 1];
      if BoxPoints[I, 2] > Result.Data[1, 2] then Result.Data[1, 2] := BoxPoints[I, 2];
    end;
  end;

  function Faster(const Matrix: TMatrix4Single): TBox3D;
  { Reasoning why this works Ok: look at Slower approach, and imagine
    how each of the 8 points is multiplied by the same matrix.
    Each of the 8 points is

    ( Data[0][0] or Data[1][0],
      Data[0][1] or Data[1][1],
      Data[0][2] or Data[1][2],
      1 )

    To calculate X components of 8 resulting points, you multiply 8 original
    points by the same Matrix row. Since we're only interested in the minimum
    and maximum X component, we can actually just take

      Result[0][0] := ( min( Matrix[0, 0] * Data[0][0], Matrix[0, 0] * Data[1][0] ),
                        min( Matrix[1, 0] * Data[0][1], Matrix[1, 0] * Data[1][1] ),
                        min( Matrix[2, 0] * Data[0][2], Matrix[2, 0] * Data[1][2] ),
                        Matrix[3, 0] )

    Result[0][1] is the same, but with max instead of min.
    This way we fully calculated X components.

    Idea from http://www.soe.ucsc.edu/~pang/160/f98/Gems/Gems/TransBox.c,
    see also http://www.gamedev.net/community/forums/topic.asp?topic_id=349370.

    This is 2-3 times faster than Slower (compiled with -dRELEASE, like
    0.44 to 0.13 =~ 3.3 times faster). See
    testcastleboxes.pas for speed (and correctness) test. }
  var
    I, J: Integer;
    A, B: Single;
  begin
    { Initially, both Result corners are copies of Matrix[3][0..2]
      (the "translate" numbers of Matrix) }
    Move(Matrix[3], Result.Data[0], SizeOf(Result.Data[0]));
    Move(Matrix[3], Result.Data[1], SizeOf(Result.Data[1]));

    for I := 0 to 2 do
    begin
      { Calculate Result[0][I], Result[1][I] }
      for J := 0 to 2 do
      begin
        A := Matrix[J][I] * Data[0][J];
        B := Matrix[J][I] * Data[1][J];
        if A < B then
        begin
          Result.Data[0][I] += A;
          Result.Data[1][I] += B;
        end else
        begin
          Result.Data[0][I] += B;
          Result.Data[1][I] += A;
        end;
      end;
    end;
  end;

begin
  if IsEmpty then
    Exit(EmptyBox3D);

  if (Matrix[0][3] = 0) and
     (Matrix[1][3] = 0) and
     (Matrix[2][3] = 0) and
     (Matrix[3][3] = 1) then
    Result := Faster(Matrix) else
    Result := Slower(Matrix);
end;

function TBox3D.Translate(
  const Translation: TVector3Single): TBox3D;
begin
  if not IsEmpty then
  begin
    Result.Data[0] := VectorAdd(Data[0], Translation);
    Result.Data[1] := VectorAdd(Data[1], Translation);
  end else
    Result := EmptyBox3D;
end;

function TBox3D.AntiTranslate(
  const Translation: TVector3Single): TBox3D;
begin
  if not IsEmpty then
  begin
    Result.Data[0] := VectorSubtract(Data[0], Translation);
    Result.Data[1] := VectorSubtract(Data[1], Translation);
  end else
    Result := EmptyBox3D;
end;

function TBox3D.ToNiceStr: string;
begin
 if IsEmpty then
  result := 'EMPTY' else
  result := VectorToNiceStr(Data[0])+' - '+VectorToNiceStr(Data[1]);
end;

function TBox3D.ToRawStr: string;
begin
 if IsEmpty then
  result := 'EMPTY' else
  result := VectorToRawStr(Data[0])+' - '+VectorToRawStr(Data[1]);
end;

{$define CLAMP_IMPLEMENTATION:=
  var i: integer;
  begin
   for i := 0 to 2 do
   begin
    if point[i] < Data[0, i] then point[i] := Data[0, i] else
     if point[i] > Data[1, i] then point[i] := Data[1, i];
   end;
  end;}

procedure TBox3D.Clamp(var point: TVector3Single); CLAMP_IMPLEMENTATION
procedure TBox3D.Clamp(var point: TVector3Double); CLAMP_IMPLEMENTATION

function TBox3D.TryRayClosestIntersection(
  out Intersection: TVector3Single;
  out IntersectionDistance: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean;
var
  IntrProposed: boolean absolute result;

  procedure ProposeBoxIntr(const PlaneConstCoord: integer;
    const PlaneConstValue: Single);
  var
    NowIntersection: TVector3Single;
    NowIntersectionDistance: Single;
    c1, c2: integer;
  begin
    if TrySimplePlaneRayIntersection(NowIntersection, NowIntersectionDistance,
      PlaneConstCoord, PlaneConstValue, RayOrigin, RayDirection) then
    begin
      RestOf3dCoords(PlaneConstCoord, c1, c2);
      if Between(NowIntersection[c1], Data[0, c1], Data[1, c1]) and
         Between(NowIntersection[c2], Data[0, c2], Data[1, c2]) then
      begin
        if (not IntrProposed) or
           (NowIntersectionDistance < IntersectionDistance) then
        begin
          IntrProposed := true;
          Intersection := NowIntersection;
          IntersectionDistance := NowIntersectionDistance;
        end;
      end;
    end;
  end;

var
  I: integer;
begin
  IntrProposed := false;
  for I := 0 to 2 do
  begin
    { wykorzystujemy ponizej fakt ze jezeli RayOrigin[i] < Data[0, i] to na pewno
      promien ktory przecinalby scianke Data[1, i] pudelka przecinalby najpierw
      tez inna scianke. Wiec jezeli RayOrigin[i] < Data[0, i] to nie musimy sprawdzac
      przeciecia z plaszczyzna Data[1, i]. }
    if RayOrigin[i] < Data[0, i] then
      ProposeBoxIntr(i, Data[0, i]) else
    if RayOrigin[i] > Data[1, i] then
      ProposeBoxIntr(i, Data[1, i]) else
    begin
      ProposeBoxIntr(i, Data[0, i]);
      ProposeBoxIntr(i, Data[1, i]);
    end;
  end;
end;

function TBox3D.TryRayClosestIntersection(
  out Intersection: TVector3Single;
  const RayOrigin, RayDirection: TVector3Single): boolean;
var
  IntersectionDistance: Single;
begin
  Result := TryRayClosestIntersection(
    Intersection, IntersectionDistance, RayOrigin, RayDirection);
end;

function TBox3D.TryRayClosestIntersection(
  out IntersectionDistance: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean;
var
  Intersection: TVector3Single;
begin
  Result := TryRayClosestIntersection(
    Intersection, IntersectionDistance, RayOrigin, RayDirection);
end;

function TBox3D.TryRayEntrance(
  out Entrance: TVector3Single; out EntranceDistance: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean;
begin
  if PointInside(RayOrigin) then
  begin
    Entrance := RayOrigin;
    EntranceDistance := 0;
    result := true;
  end else
    result := TryRayClosestIntersection(Entrance, EntranceDistance, RayOrigin, RayDirection);
end;

function TBox3D.TryRayEntrance(
  out Entrance: TVector3Single;
  const RayOrigin, RayDirection: TVector3Single): boolean;
begin
  if PointInside(RayOrigin) then
  begin
    Entrance := RayOrigin;
    result := true;
  end else
    result := TryRayClosestIntersection(Entrance, RayOrigin, RayDirection);
end;

function TBox3D.IsSegmentCollision(
  const Segment1, Segment2: TVector3Single): boolean;
begin
  Result := SegmentCollision(Segment1, Segment2);
end;

function TBox3D.SegmentCollision(
  const Segment1, Segment2: TVector3Single): boolean;

  function IsCollisionWithBoxPlane(const PlaneConstCoord: integer;
    const PlaneConstValue: Single): boolean;
  var
    NowIntersection: TVector3Single;
    c1, c2: integer;
  begin
    if TrySimplePlaneSegmentIntersection(NowIntersection,
      PlaneConstCoord, PlaneConstValue, Segment1, Segment2) then
    begin
      RestOf3dCoords(PlaneConstCoord, c1, c2);
      Result :=
        Between(NowIntersection[c1], Data[0, c1], Data[1, c1]) and
        Between(NowIntersection[c2], Data[0, c2], Data[1, c2]);
    end else
      Result := false;
  end;

var
  I: integer;
begin
  for I := 0 to 2 do
  begin
    { wykorzystujemy ponizej fakt ze jezeli Segment1[i] < Data[0, i] to na pewno
      promien ktory przecinalby scianke Data[1, i] pudelka przecinalby najpierw
      tez inna scianke. Wiec jezeli Segment1[i] < Data[0, i] to nie musimy sprawdzac
      przeciecia z plaszczyzna Data[1, i]. }
    if Segment1[i] < Data[0, i] then
    begin
      if IsCollisionWithBoxPlane(i, Data[0, i]) then Exit(true);
    end else
    if Segment1[i] > Data[1, i] then
    begin
      if IsCollisionWithBoxPlane(i, Data[1, i]) then Exit(true);
    end else
    begin
      if IsCollisionWithBoxPlane(i, Data[0, i]) then Exit(true);
      if IsCollisionWithBoxPlane(i, Data[1, i]) then Exit(true);
    end;
  end;

  Result := false;
end;

function TBox3D.PlaneCollision(
  const Plane: TVector4Single): TPlaneCollision;
{ This generalizes the idea from IsCenteredBox3DPlaneCollision
  in castleboxes_generic_float.inc.
  It's also explained in
  Akenine-Moller, Haines "Real-Time Rendering" (2nd ed), 13.9 (page 586)
}
var
  I: Integer;
  VMin, VMax: TVector3Single;
  B: boolean;
  BoxBool: TBox3DBool absolute Data;
begin
  if IsEmpty then
    Exit(pcNone);

  for I := 0 to 2 do
  begin
    { Normal code:
    if Plane[I] >= 0 then
    begin
      VMin[I] := Data[0][I];
      VMax[I] := Data[1][I];
    end else
    begin
      VMin[I] := Data[1][I];
      VMax[I] := Data[0][I];
    end;
    }

    { Code optimized to avoid "if", instead doing table lookup by BoxBool }
    B := Plane[I] >= 0;
    VMin[I] := BoxBool[not B][I];
    VMax[I] := BoxBool[B][I];
  end;

  if Plane[0] * VMin[0] +
     Plane[1] * VMin[1] +
     Plane[2] * VMin[2] +
     Plane[3] > 0 then
    Exit(pcOutside);

  if Plane[0] * VMax[0] +
     Plane[1] * VMax[1] +
     Plane[2] * VMax[2] +
     Plane[3] < 0 then
    Exit(pcInside);

  Result := pcIntersecting;
end;

function TBox3D.PlaneCollisionInside(
  const Plane: TVector4Single): boolean;
{ Based on Box3DPlaneCollision, except now we need only VMax point.

  Actually, we don't even store VMax. Instead, we calculate to
  PlaneResult the equation

    Plane[0] * VMax[0] +
    Plane[1] * VMax[1] +
    Plane[2] * VMax[2] +
    Plane[3]
}
var
  BoxBool: TBox3DBool absolute Data;
begin
  if IsEmpty then
    Exit(false);

  Result :=
    BoxBool[Plane[0] >= 0][0] * Plane[0] +
    BoxBool[Plane[1] >= 0][1] * Plane[1] +
    BoxBool[Plane[2] >= 0][2] * Plane[2] +
    Plane[3] < 0;
end;

function TBox3D.PlaneCollisionOutside(
  const Plane: TVector4Single): boolean;
var
  BoxBool: TBox3DBool absolute Data;
begin
  if IsEmpty then
    Exit(false);

  Result :=
    BoxBool[Plane[0] < 0][0] * Plane[0] +
    BoxBool[Plane[1] < 0][1] * Plane[1] +
    BoxBool[Plane[2] < 0][2] * Plane[2] +
    Plane[3] > 0;
end;

function TBox3D.IsTriangleCollision(const Triangle: TTriangle3Single): boolean;

{ Implementation of this is based on
  [http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html],
  by Tomas Akenine-Möller, described
  in his paper [http://jgt.akpeters.com/papers/AkenineMoller01/]
  "Fast 3D Triangle-Box Overlap Testing", downloadable from
  [http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/tribox.pdf].

  Use separating axis theorem to test overlap between triangle and box
  need to test for overlap in these directions:
  1) the (x,y,z)-directions
  2) normal of the triangle
  3) crossproduct(edge from tri, (x,y,z)-direction)
     this gives 3x3=9 more tests
}

{ The same comments about precision as for IsCenteredBox3DPlaneCollision apply also here. }
{$define EqualityEpsilon := Box3DPlaneCollisionEqualityEpsilon}

var
  TriangleMoved: TTriangle3Double;
  BoxHalfSize: TVector3Double;

  { ======================== X-tests ======================== }
  function AXISTEST_X01(const a, b, fa, fb: Double): boolean;
  var
    p0, p2, rad, min, max: Double;
  begin
    p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
    p2 := a * TriangleMoved[2][1] - b * TriangleMoved[2][2];
    if p0<p2 then begin min := p0; max := p2; end else
                  begin min := p2; max := p0; end;
    rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

  function AXISTEST_X2(const a, b, fa, fb: Double): boolean;
  var
    p0, p1, rad, min, max: Double;
  begin
    p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
    p1 := a * TriangleMoved[1][1] - b * TriangleMoved[1][2];
    if p0<p1 then begin min := p0; max := p1; end else
                  begin min := p1; max := p0; end;
    rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

  { ======================== Y-tests ======================== }
  function AXISTEST_Y02(const a, b, fa, fb: Double): boolean;
  var
    p0, p2, rad, min, max: Double;
  begin
    p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
    p2 := -a * TriangleMoved[2][0] + b * TriangleMoved[2][2];
    if p0<p2 then begin min := p0; max := p2; end else
                  begin min := p2; max := p0; end;
    rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

  function AXISTEST_Y1(const a, b, fa, fb: Double): boolean;
  var
    p0, p1, rad, min, max: Double;
  begin
    p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
    p1 := -a * TriangleMoved[1][0] + b * TriangleMoved[1][2];
    if p0<p1 then begin min := p0; max := p1; end else
                  begin min := p1; max := p0; end;
    rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

  { ======================== Z-tests ======================== }
  function AXISTEST_Z12(const a, b, fa, fb: Double): boolean;
  var
    p1, p2, rad, min, max: Double;
  begin
    p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
    p2 := a * TriangleMoved[2][0] - b * TriangleMoved[2][1];
    if p2<p1 then begin min := p2; max := p1; end else
                  begin min := p1; max := p2; end;
    rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

  function AXISTEST_Z0(const a, b, fa, fb: Double): boolean;
  var
    p0, p1, rad, min, max: Double;
  begin
    p0 := a * TriangleMoved[0][0] - b * TriangleMoved[0][1];
    p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
    if p0<p1 then begin min := p0; max := p1; end else
                  begin min := p1; max := p0; end;
    rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
    Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
  end;

var
  BoxCenter: TVector3Double;
  I: Integer;
  TriangleEdges: array [0..2] of TVector3Double;
  EdgeAbs: TVector3Double;
  min, max: Double;
  Plane: TVector4Double;
  PlaneDir: TVector3Double absolute Plane;
begin
  if IsEmpty then
    Exit(false);

  { calculate BoxCenter and BoxHalfSize }
  for I := 0 to 2 do
  begin
    BoxCenter[I] := (Data[0, I] + Data[1, I]) / 2;
    BoxHalfSize[I] := (Data[1, I] - Data[0, I]) / 2;
  end;

  { calculate TriangleMoved (Triangle shifted by -BoxCenter,
    so that we can treat the BoxHalfSize as centered around origin) }
  TriangleMoved[0] := VectorSubtract(Vector3Double(Triangle[0]), BoxCenter);
  TriangleMoved[1] := VectorSubtract(Vector3Double(Triangle[1]), BoxCenter);
  TriangleMoved[2] := VectorSubtract(Vector3Double(Triangle[2]), BoxCenter);

  { calculate TriangleMoved edges }
  TriangleEdges[0] := VectorSubtract(TriangleMoved[1], TriangleMoved[0]);
  TriangleEdges[1] := VectorSubtract(TriangleMoved[2], TriangleMoved[1]);
  TriangleEdges[2] := VectorSubtract(TriangleMoved[0], TriangleMoved[2]);

  { tests 3) }
  EdgeAbs[0] := Abs(TriangleEdges[0][0]);
  EdgeAbs[1] := Abs(TriangleEdges[0][1]);
  EdgeAbs[2] := Abs(TriangleEdges[0][2]);
  if AXISTEST_X01(TriangleEdges[0][2], TriangleEdges[0][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
  if AXISTEST_Y02(TriangleEdges[0][2], TriangleEdges[0][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
  if AXISTEST_Z12(TriangleEdges[0][1], TriangleEdges[0][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);

  EdgeAbs[0] := Abs(TriangleEdges[1][0]);
  EdgeAbs[1] := Abs(TriangleEdges[1][1]);
  EdgeAbs[2] := Abs(TriangleEdges[1][2]);
  if AXISTEST_X01(TriangleEdges[1][2], TriangleEdges[1][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
  if AXISTEST_Y02(TriangleEdges[1][2], TriangleEdges[1][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
  if AXISTEST_Z0 (TriangleEdges[1][1], TriangleEdges[1][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);

  EdgeAbs[0] := Abs(TriangleEdges[2][0]);
  EdgeAbs[1] := Abs(TriangleEdges[2][1]);
  EdgeAbs[2] := Abs(TriangleEdges[2][2]);
  if AXISTEST_X2 (TriangleEdges[2][2], TriangleEdges[2][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
  if AXISTEST_Y1 (TriangleEdges[2][2], TriangleEdges[2][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
  if AXISTEST_Z12(TriangleEdges[2][1], TriangleEdges[2][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);

  { tests 1)
    first test overlap in the (x,y,z)-directions
    find min, max of the triangle each direction, and test for overlap in
    that direction -- this is equivalent to testing a minimal AABB around
    the triangle against the AABB }

  { test in X-direction }
  MinMax(TriangleMoved[0][0], TriangleMoved[1][0], TriangleMoved[2][0], min, max);
  if (min >  boxhalfsize[0] + EqualityEpsilon) or
     (max < -boxhalfsize[0] - EqualityEpsilon) then Exit(false);

  { test in Y-direction }
  MinMax(TriangleMoved[0][1], TriangleMoved[1][1], TriangleMoved[2][1], min, max);
  if (min >  boxhalfsize[1] + EqualityEpsilon) or
     (max < -boxhalfsize[1] - EqualityEpsilon) then Exit(false);

  { test in Z-direction }
  MinMax(TriangleMoved[0][2], TriangleMoved[1][2], TriangleMoved[2][2], min, max);
  if (min >  boxhalfsize[2] + EqualityEpsilon) or
     (max < -boxhalfsize[2] - EqualityEpsilon) then Exit(false);

  { tests 2)
    test if the box intersects the plane of the triangle
    compute plane equation of triangle: normal*x+d=0 }
  PlaneDir := VectorProduct(TriangleEdges[0], TriangleEdges[1]);
  Plane[3] := -VectorDotProduct(PlaneDir, TriangleMoved[0]);
  if not IsCenteredBox3DPlaneCollision(BoxHalfSize, Plane) then
    Exit(false);

  Result := true; { box and triangle overlaps }
end;

{$undef EqualityEpsilon}

procedure TBox3D.BoundingSphere(
  var SphereCenter: TVector3Single; var SphereRadiusSqr: Single);
begin
 if IsEmpty then
 begin
  SphereRadiusSqr := 0;
 end else
 begin
  SphereCenter := Middle;
  SphereRadiusSqr := PointsDistanceSqr(SphereCenter, Data[0]);
 end;
end;

function TBox3D.Collision(const Box2: TBox3D): boolean;
begin
  Result :=
    (not IsEmpty) and
    (not Box2.IsEmpty) and
    (not ((Data[1, 0] < Box2.Data[0, 0]) or (Box2.Data[1, 0] < Data[0, 0]))) and
    (not ((Data[1, 1] < Box2.Data[0, 1]) or (Box2.Data[1, 1] < Data[0, 1]))) and
    (not ((Data[1, 2] < Box2.Data[0, 2]) or (Box2.Data[1, 2] < Data[0, 2])));
end;

function TBox3D.Radius: Single;
begin
  if IsEmpty then
    Result := 0 else
    Result := Sqrt(Max(
      Max(Max(VectorLenSqr(Vector3Single(Data[0, 0], Data[0, 1], Data[0, 2])),
              VectorLenSqr(Vector3Single(Data[1, 0], Data[0, 1], Data[0, 2]))),
          Max(VectorLenSqr(Vector3Single(Data[1, 0], Data[1, 1], Data[0, 2])),
              VectorLenSqr(Vector3Single(Data[0, 0], Data[1, 1], Data[0, 2])))),
      Max(Max(VectorLenSqr(Vector3Single(Data[0, 0], Data[0, 1], Data[1, 2])),
              VectorLenSqr(Vector3Single(Data[1, 0], Data[0, 1], Data[1, 2]))),
          Max(VectorLenSqr(Vector3Single(Data[1, 0], Data[1, 1], Data[1, 2])),
              VectorLenSqr(Vector3Single(Data[0, 0], Data[1, 1], Data[1, 2]))))));
end;

{ Separated from Radius2D, to not slowdown it by implicit
  try/finally section because we use string. }
procedure Radius2D_InvalidIgnoreIndex;
begin
  raise EInternalError.Create('Invalid IgnoreIndex for TBox3D.Radius2D');
end;

function TBox3D.Radius2D(const IgnoreIndex: Integer): Single;
begin
  if IsEmpty then
    Result := 0 else
  begin
    case IgnoreIndex of
      0: Result := Max(
           Max(VectorLenSqr(Vector2Single(Data[0, 1], Data[0, 2])),
               VectorLenSqr(Vector2Single(Data[1, 1], Data[0, 2]))),
           Max(VectorLenSqr(Vector2Single(Data[1, 1], Data[1, 2])),
               VectorLenSqr(Vector2Single(Data[0, 1], Data[1, 2]))));
      1: Result := Max(
           Max(VectorLenSqr(Vector2Single(Data[0, 2], Data[0, 0])),
               VectorLenSqr(Vector2Single(Data[1, 2], Data[0, 0]))),
           Max(VectorLenSqr(Vector2Single(Data[1, 2], Data[1, 0])),
               VectorLenSqr(Vector2Single(Data[0, 2], Data[1, 0]))));
      2: Result := Max(
           Max(VectorLenSqr(Vector2Single(Data[0, 0], Data[0, 1])),
               VectorLenSqr(Vector2Single(Data[1, 0], Data[0, 1]))),
           Max(VectorLenSqr(Vector2Single(Data[1, 0], Data[1, 1])),
               VectorLenSqr(Vector2Single(Data[0, 0], Data[1, 1]))));
      else Radius2D_InvalidIgnoreIndex;
    end;

    Result := Sqrt(Result);
  end;
end;

function TBox3D.SphereSimpleCollision(
  const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
begin
  Result := (not IsEmpty) and
    (SphereCenter[0] >= Data[0][0] - SphereRadius) and
    (SphereCenter[0] <= Data[1][0] + SphereRadius) and
    (SphereCenter[1] >= Data[0][1] - SphereRadius) and
    (SphereCenter[1] <= Data[1][1] + SphereRadius) and
    (SphereCenter[2] >= Data[0][2] - SphereRadius) and
    (SphereCenter[2] <= Data[1][2] + SphereRadius);
end;

function TBox3D.SphereCollision(
  const SphereCenter: TVector3Single; const SphereRadius: Single): boolean;
{ This great and simple algorithm  was invented by Arvo, I read about
  it in "Real-Time Rendering" by Moller and Haines.
  The idea is beatifully simple: we can easily find point on the Box
  that is closest to SphereCenter: on each of X, Y, Z axis,
  1. SphereCenter[I] is within Box, so distance on this axis is 0
  2. SphereCenter[I] is not within Box, so the closest point is taken
     from appropriate box corner
  Then just compare distance between these points and radius.

  Implementation below is low-optimized: we actually calculate
  distance, d, as we go (we don't keep explicitly our "closest point",
  although we think about calculating it). And loop over three planes
  is unfolded to be sure. }
var
  D: Single;
begin
  if IsEmpty then Exit(false);

  D := 0;

  { Uses:
    4 up to 7 comparisons,
    6 additions,
    4 multiplications.

    Ok, that's damn fast, but still a little slower than
    TBox3D.SphereSimpleCollision (that has 1 up to 6 comparisons and additions). }

  if SphereCenter[0] < Data[0][0] then D += Sqr(SphereCenter[0] - Data[0][0]) else
  if SphereCenter[0] > Data[1][0] then D += Sqr(SphereCenter[0] - Data[1][0]);

  if SphereCenter[1] < Data[0][1] then D += Sqr(SphereCenter[1] - Data[0][1]) else
  if SphereCenter[1] > Data[1][1] then D += Sqr(SphereCenter[1] - Data[1][1]);

  if SphereCenter[2] < Data[0][2] then D += Sqr(SphereCenter[2] - Data[0][2]) else
  if SphereCenter[2] > Data[1][2] then D += Sqr(SphereCenter[2] - Data[1][2]);

  Result := D <= Sqr(SphereRadius);
end;

function TBox3D.MaximumPlane(
  const Direction: TVector3Single): TVector4Single;
var
  BoxBool: TBox3DBool absolute Data;
  ResultDir: TVector3Single absolute Result;
begin
  CheckNonEmpty;

  { first 3 plane components are just copied from Direction }
  ResultDir := Direction;

(*
  { calculate box corner that intersects resulting plane:
    just choose appropriate coords using Direction. }
  P[0] := BoxBool[Direction[0] >= 0][0];
  P[1] := BoxBool[Direction[1] >= 0][1];
  P[2] := BoxBool[Direction[2] >= 0][2];

  { calculate 4th plane component.
    Plane must intersect P, so
      P[0] * Result[0] + .... + Result[3] = 0
  }
  Result[3] := - (P[0] * Result[0] +
                  P[1] * Result[1] +
                  P[2] * Result[2]);
*)

  { optimized version, just do this in one go: }
  Result[3] := - (BoxBool[Direction[0] >= 0][0] * Result[0] +
                  BoxBool[Direction[1] >= 0][1] * Result[1] +
                  BoxBool[Direction[2] >= 0][2] * Result[2]);
end;

function TBox3D.MinimumPlane(const Direction: TVector3Single): TVector4Single;
var
  BoxBool: TBox3DBool absolute Data;
  ResultDir: TVector3Single absolute Result;
begin
  CheckNonEmpty;

  { first 3 plane components are just copied from Direction }
  ResultDir := Direction;

  { optimized version, just do this in one go: }
  Result[3] := - (BoxBool[Direction[0] < 0][0] * Result[0] +
                  BoxBool[Direction[1] < 0][1] * Result[1] +
                  BoxBool[Direction[2] < 0][2] * Result[2]);
end;

procedure TBox3D.PointDistances(const P: TVector3Single;
  out MinDistance, MaxDistance: Single);
var
  Dist0, Dist1: Single;
  I: Integer;
begin
  CheckNonEmpty;

  MinDistance := 0;
  MaxDistance := 0;

  { For each coordinate (0, 1, 2), find which side of the box is closest.
    Effectively, we find the closest of the 8 box corners.
    The opposite corner is the farthest.
    We want to calculate distance to this point, so we do it by the way. }
  for I := 0 to 2 do
  begin
    Dist0 := Sqr(P[I] - Data[0][I]);
    Dist1 := Sqr(P[I] - Data[1][I]);
    if Dist0 < Dist1 then
    begin
      MinDistance += Dist0;
      MaxDistance += Dist1;
    end else
    begin
      MinDistance += Dist1;
      MaxDistance += Dist0;
    end;
  end;

  if PointInside(P) then
    MinDistance := 0;

  { Because of floating point inaccuracy, MinDistance may be larger
    by epsilon than MaxDistance? Fix it to be sure. }
  { For now: just assert it: }
  Assert(MinDistance <= MaxDistance);
end;

procedure TBox3D.DirectionDistances(
  const Point, Dir: TVector3Single;
  out MinDistance, MaxDistance: Single);
var
  B: TBox3DBool absolute Data;
  XMin, YMin, ZMin: boolean;
  MinPoint, MaxPoint: TVector3Single;
  Coord: Integer;
begin
  CheckNonEmpty;

  XMin := Dir[0] < 0;
  YMin := Dir[1] < 0;
  ZMin := Dir[2] < 0;

  MinPoint := PointOnLineClosestToPoint(Point, Dir,
    Vector3Single(B[XMin][0], B[YMin][1], B[ZMin][2]));
  MaxPoint := PointOnLineClosestToPoint(Point, Dir,
    Vector3Single(B[not XMin][0], B[not YMin][1], B[not ZMin][2]));

  MinDistance := PointsDistance(Point, MinPoint);
  MaxDistance := PointsDistance(Point, MaxPoint);

  { choose one of the 3 coordinates where Dir is largest, for best
    numerical stability. We need to compare now and see which
    distances should be negated. }
  Coord := MaxAbsVectorCoord(Dir);

  if Dir[Coord] > 0 then
  begin
    { So the distances to points that are *larger* on Coord are positive.
      Others should be negative. }
    if MinPoint[Coord] < Point[Coord] then
      MinDistance := -MinDistance;
    if MaxPoint[Coord] < Point[Coord] then
      MaxDistance := -MaxDistance;
  end else
  begin
    if MinPoint[Coord] > Point[Coord] then
      MinDistance := -MinDistance;
    if MaxPoint[Coord] > Point[Coord] then
      MaxDistance := -MaxDistance;
  end;

  { Because of floating point inaccuracy, MinDistance may be larger
    by epsilon than MaxDistance? Fix it to be sure. }
  { For now: just assert it: }
  Assert(MinDistance <= MaxDistance);
end;

function TBox3D.PointDistance(const Point: TVector3Single): Single;
var
  I: Integer;
begin
  CheckNonEmpty;

  { There are 4 cases:
    0. point is in no box range - calculate distance to closest corner
    1. point is 1 box range - calculate distance to closest edge
    2. point is 2 box ranges - calculate distance to closest side
    3. point is 3 box ranges - so point is inside, distance = 0

    First naive implementation was detecting these cases by calculating
    InsideRangeCount, InsideRange and such.
    But actually you can calculate all cases at once. }

  Result := 0;
  for I := 0 to 2 do
  begin
    if Point[I] < Data[0][I] then
      Result += Sqr(Point[I] - Data[0][I]) else
    if Point[I] > Data[1][I] then
      Result += Sqr(Point[I] - Data[1][I]);
  end;

  Result := Sqrt(Result);
end;

function TBox3D.PointMaxDistance(const Point: TVector3Single;
  const EmptyBoxDistance: Single): Single;
var
  B: TBox3DBool absolute Data;
begin
  if IsEmpty then
    Result := EmptyBoxDistance else
    Result := Sqrt(
      Sqr(Point[0] - B[Point[0] < (Data[0][0] + Data[1][0]) / 2][0]) +
      Sqr(Point[1] - B[Point[1] < (Data[0][1] + Data[1][1]) / 2][1]) +
      Sqr(Point[2] - B[Point[2] < (Data[0][2] + Data[1][2]) / 2][2])
    );
end;

function TBox3D.Equal(const Box2: TBox3D): boolean;
begin
  if IsEmpty then
    Result := Box2.IsEmpty else
    Result := (not Box2.IsEmpty) and
      VectorsEqual(Data[0], Box2.Data[0]) and
      VectorsEqual(Data[1], Box2.Data[1]);
end;

function TBox3D.Equal(const Box2: TBox3D; const EqualityEpsilon: Single): boolean;
begin
  if IsEmpty then
    Result := Box2.IsEmpty else
    Result := (not Box2.IsEmpty) and
      VectorsEqual(Data[0], Box2.Data[0], EqualityEpsilon) and
      VectorsEqual(Data[1], Box2.Data[1], EqualityEpsilon);
end;

function TBox3D.Diagonal: Single;
begin
  if IsEmpty then
    Result := 0 else
    Result := Sqrt(Sqr(Data[1][0] - Data[0][0]) +
                   Sqr(Data[1][1] - Data[0][1]) +
                   Sqr(Data[1][2] - Data[0][2]));
end;

{ Routines ------------------------------------------------------------------- }

{$define TGenericFloat := Single}
{$define TVector3GenericFloat := TVector3Single}
{$define TVector4GenericFloat := TVector4Single}
{$I castleboxes_generic_float.inc}

{$define TGenericFloat := Double}
{$define TVector3GenericFloat := TVector3Double}
{$define TVector4GenericFloat := TVector4Double}
{$I castleboxes_generic_float.inc}

function Box3D(const p0, p1: TVector3Single): TBox3D;
begin
  result.Data[0] := p0;
  result.Data[1] := p1;
end;

function Box3DAroundPoint(const Pt: TVector3Single; Size: Single): TBox3D;
begin
  Size /= 2;
  Result.Data[0][0] := Pt[0] - Size;
  Result.Data[0][1] := Pt[1] - Size;
  Result.Data[0][2] := Pt[2] - Size;
  Result.Data[1][0] := Pt[0] + Size;
  Result.Data[1][1] := Pt[1] + Size;
  Result.Data[1][2] := Pt[2] + Size;
end;

function Box3DAroundPoint(const Pt: TVector3Single; Size: TVector3Single): TBox3D;
begin
  Size /= 2;
  Result.Data[0][0] := Pt[0] - Size[0];
  Result.Data[0][1] := Pt[1] - Size[1];
  Result.Data[0][2] := Pt[2] - Size[2];
  Result.Data[1][0] := Pt[0] + Size[0];
  Result.Data[1][1] := Pt[1] + Size[1];
  Result.Data[1][2] := Pt[2] + Size[2];
end;

function CalculateBoundingBox(
  GetVertex: TGetVertexFromIndexFunc;
  VertsCount: integer): TBox3D;
var
  I: Integer;
  V: TVector3Single;
begin
  if VertsCount = 0 then
    Result := EmptyBox3D else
  begin
    Result.Data[0] := GetVertex(0);
    Result.Data[1] := Result.Data[0];
    for I := 1 to VertsCount - 1 do
    begin
      V := GetVertex(I);
      MinTo1st(Result.Data[0][0], V[0]);
      MinTo1st(Result.Data[0][1], V[1]);
      MinTo1st(Result.Data[0][2], V[2]);

      MaxTo1st(Result.Data[1][0], V[0]);
      MaxTo1st(Result.Data[1][1], V[1]);
      MaxTo1st(Result.Data[1][2], V[2]);
    end;
  end;
end;

type
  { Internal helper for CalculateBoundingBox }
  TBBox_Calculator = class
    Verts: PVector3Single;
    VertsStride: Cardinal; { tutaj VertsStride juz nie moze byc = 0 }
    PMatrix: PMatrix4Single;
    function GetVertexNotTransform(index: integer): TVector3Single;
    function GetVertexTransform(index: integer): TVector3Single;
  end;

  function TBBox_Calculator.GetVertexNotTransform(index: integer): TVector3Single;
  begin
   result := PVector3Single(PointerAdd(Verts, VertsStride*Cardinal(index)))^;
  end;

  function TBBox_Calculator.GetVertexTransform(index: integer): TVector3Single;
  begin
   result := MatrixMultPoint(
     PMatrix^, PVector3Single(PointerAdd(Verts, VertsStride*Cardinal(index)))^ );
  end;

function CalculateBoundingBox(
  Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal): TBox3D;
var
  Calculator: TBBox_Calculator;
begin
  if VertsStride = 0 then VertsStride := SizeOf(TVector3Single);
  Calculator := TBBox_Calculator.Create;
  try
    Calculator.VertsStride := VertsStride;
    Calculator.Verts := Verts;
    result := CalculateBoundingBox(
      {$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetVertexNotTransform, VertsCount);
  finally Calculator.Free end;
end;

function CalculateBoundingBox(
  Verts: PVector3Single; VertsCount: Cardinal; VertsStride: Cardinal;
  const Transform: TMatrix4Single): TBox3D;
var
  Calculator: TBBox_Calculator;
begin
  if VertsStride = 0 then VertsStride := SizeOf(TVector3Single);
  Calculator := TBBox_Calculator.Create;
  try
    Calculator.VertsStride := VertsStride;
    Calculator.Verts := Verts;
    Calculator.PMatrix := @Transform;
    result := CalculateBoundingBox(
      {$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetVertexTransform, VertsCount);
  finally Calculator.Free end;
end;

function CalculateBoundingBox(Verts: TVector3SingleList): TBox3D;
begin
  Result := CalculateBoundingBox(PVector3Single(Verts.List), Verts.Count, 0);
end;

function CalculateBoundingBox(Verts: TVector3SingleList;
  const Transform: TMatrix4Single): TBox3D;
begin
  Result := CalculateBoundingBox(PVector3Single(Verts.List), Verts.Count, 0,
    Transform);
end;

function CalculateBoundingBoxFromIndices(
  GetVertIndex: TGetIndexFromIndexNumFunc;
  VertsIndicesCount: integer;
  GetVertex: TGetVertexFromIndexFunc): TBox3D;
var
  { pozycja pierwszego nieujemnego indexu.
    Zwracamy EmptyBox3D wtw. gdy firstIndex nie istnieje }
  FirstIndexNum: integer;

  IndexNum, Index: integer;
  ThisVertex: TVector3Single;
begin
  {seek for firstIndex}
  firstIndexNum := 0;
  while (firstIndexNum < VertsIndicesCount) and (GetVertIndex(firstIndexNum) < 0) do
    Inc(firstIndexNum);

  if firstIndexNum = VertsIndicesCount then {firstIndex not found ?}
  begin
    result := EmptyBox3D;
    exit;
  end;

  { Note that I do only one pass, getting all vertexes.

    This is important, because GetVertex may be quite expensive
    operation (in case of e.g. TVertTransform_Calculator.GetTransformed,
    this is MatrixMultPoint for every vertex). At the beginning
    I implemented this by caling 6 time find_extremum function,
    and each call to find_extremum was iterating over every vertex.
    This was obviously wrong, because this caused calling GetVertex
    6 times more often than necessary. In some cases (like preparing
    TCastlePrecalculatedAnimation in "The Castle") this can cause really significant
    slowdown. }

  ThisVertex := GetVertex(GetVertIndex(firstIndexNum));
  Result.Data[0] := ThisVertex;
  Result.Data[1] := ThisVertex;
  for IndexNum := FirstIndexNum+1 to VertsIndicesCount - 1 do
  begin
    Index := GetVertIndex(IndexNum);
    if Index >= 0 then
    begin
      ThisVertex := GetVertex(Index);
      if ThisVertex[0] < Result.Data[0, 0] then Result.Data[0, 0] := ThisVertex[0];
      if ThisVertex[1] < Result.Data[0, 1] then Result.Data[0, 1] := ThisVertex[1];
      if ThisVertex[2] < Result.Data[0, 2] then Result.Data[0, 2] := ThisVertex[2];
      if ThisVertex[0] > Result.Data[1, 0] then Result.Data[1, 0] := ThisVertex[0];
      if ThisVertex[1] > Result.Data[1, 1] then Result.Data[1, 1] := ThisVertex[1];
      if ThisVertex[2] > Result.Data[1, 2] then Result.Data[1, 2] := ThisVertex[2];
    end;
  end;
end;

type
  TVertTransform_Calculator = class
    PTransform: PMatrix4Single;
    GetNotTransformed: TGetVertexFromIndexFunc;
    function GetTransformed(index: integer): TVector3Single;
  end;
  function TVertTransform_Calculator.GetTransformed(index: integer): TVector3Single;
  begin
    result := MatrixMultPoint(PTransform^, GetNotTransformed(index));
  end;

function CalculateBoundingBoxFromIndices(
  GetVertIndex: TGetIndexFromIndexNumFunc;
  VertsIndicesCount: integer;
  GetVertex: TGetVertexFromIndexFunc;
  const Transform: TMatrix4Single): TBox3D;
var
  Calculator: TVertTransform_Calculator;
begin
  Calculator := TVertTransform_Calculator.Create;
  try
    Calculator.PTransform := @Transform;
    Calculator.GetNotTransformed := GetVertex;
    result := CalculateBoundingBoxFromIndices(
      GetVertIndex,
      VertsIndicesCount,
      {$ifdef FPC_OBJFPC} @ {$endif} Calculator.GetTransformed);
  finally Calculator.Free end;
end;

function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;
begin
  MinMax(T[0][0], T[1][0], T[2][0], Result.Data[0][0], Result.Data[1][0]);
  MinMax(T[0][1], T[1][1], T[2][1], Result.Data[0][1], Result.Data[1][1]);
  MinMax(T[0][2], T[1][2], T[2][2], Result.Data[0][2], Result.Data[1][2]);
end;

function BoundingBox3DFromSphere(const Center: TVector3Single;
  const Radius: Single): TBox3D;
begin
  Result.Data[0] := Center;
  Result.Data[0][0] -= Radius;
  Result.Data[0][1] -= Radius;
  Result.Data[0][2] -= Radius;

  Result.Data[1] := Center;
  Result.Data[1][0] += Radius;
  Result.Data[1][1] += Radius;
  Result.Data[1][2] += Radius;
end;

operator+ (const box1, box2: TBox3D): TBox3D;
begin
  if box1.IsEmpty then
    Result := box2 else
  if box2.IsEmpty then
    Result := box1 else
  begin
    result.Data[0, 0] := min(box1.Data[0, 0], box2.Data[0, 0]);
    result.Data[1, 0] := max(box1.Data[1, 0], box2.Data[1, 0]);
    result.Data[0, 1] := min(box1.Data[0, 1], box2.Data[0, 1]);
    result.Data[1, 1] := max(box1.Data[1, 1], box2.Data[1, 1]);
    result.Data[0, 2] := min(box1.Data[0, 2], box2.Data[0, 2]);
    result.Data[1, 2] := max(box1.Data[1, 2], box2.Data[1, 2]);
  end;
end;

operator+ (const B: TBox3D; const V: TVector3Single): TBox3D;
begin
  Result := B.Translate(V);
end;

operator+ (const V: TVector3Single; const B: TBox3D): TBox3D;
begin
  Result := B.Translate(V);
end;

end.