This file is indexed.

/usr/src/castle-game-engine-5.0.0/3d/castletriangles.pas is in castle-game-engine-src 5.0.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
{
  Copyright 2003-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Triangles.

  @italic(Triangle) is a @code(TTriangle<point-type>) type.
  Where @code(<point-type>) is such suffix that vector type
  @code(TVector<point-type>) exists. For example, we have
  TVector3Single type that represents a point in 3D space,
  so you can use TTriangle3Single to represent triangle in 3D space.
  There are also 2D triangles like TTriangle2Single and TTriangle2Double.

  Triangle's three points must not be collinear,
  i.e. routines in this unit generally don't accept "degenerated" triangles
  that are not really triangles. So 3D triangle must unambiguously
  define some plane in the 3D space. The only function in this unit
  that is able to handle "degenerated" triangles is IsValidTriangle,
  which is exactly used to check whether the triangle is degenerated.

  Since every valid triangle unambiguously determines some plane in the
  3D space, it also determines it's normal vector. In this unit,
  when dealing with normal vectors, I use two names:
  @unorderedList(
    @itemSpacing Compact
    @item(@italic(@noAutoLink(TriangleNormal))
      means that this is the normalized (i.e. scaled to length 1.0)
      normal vector.)
    @item(@italic(@noAutoLink(TriangleDir))
      means that this is not necessarily normalized normal vector.)
  )
}
unit CastleTriangles;

interface

uses CastleUtils, CastleVectors, CastleGenericLists;

type
  TTriangle2Single = packed array[0..2]of TVector2Single;     PTriangle2Single = ^TTriangle2Single;
  TTriangle2Double = packed array[0..2]of TVector2Double;     PTriangle2Double = ^TTriangle2Double;
  TTriangle2Extended = packed array[0..2]of TVector2Extended; PTriangle2Extended = ^TTriangle2Extended;

  TTriangle3Single = packed array[0..2]of TVector3Single;     PTriangle3Single = ^TTriangle3Single;
  TTriangle3Double = packed array[0..2]of TVector3Double;     PTriangle3Double = ^TTriangle3Double;
  TTriangle3Extended = packed array[0..2]of TVector3Extended; PTriangle3Extended = ^TTriangle3Extended;

  TTriangle4Single = packed array[0..2]of TVector4Single;     PTriangle4Single = ^TTriangle4Single;

function Triangle3Single(const T: TTriangle3Double): TTriangle3Single; overload;
function Triangle3Single(const p0, p1, p2: TVector3Single): TTriangle3Single; overload;
function Triangle3Double(const T: TTriangle3Single): TTriangle3Double; overload;
function Triangle3Double(const p0, p1, p2: TVector3Double): TTriangle3Double; overload;

{ Check does the triangle define a correct plane in 3D space.
  That is, check does the triangle not degenerate to a point or line segment
  (which can happen when some points are at the same position, or are colinear).
  @groupBegin }
function IsValidTriangle(const Tri: TTriangle3Single): boolean; overload;
function IsValidTriangle(const Tri: TTriangle3Double): boolean; overload;
{ @groupEnd }

{ Normal vector of a triangle. Returns vector pointing our from CCW triangle
  side (for right-handed coordinate system), and orthogonal to triangle plane.
  The version "Dir" (TriangleDir) doesn't normalize the result
  (it may not have length equal 1).

  For degenerated triangles (when IsValidTriangle would return false),
  we return zero vector.
  @groupBegin }
function TriangleDir(const Tri: TTriangle3Single): TVector3Single; overload;
function TriangleDir(const Tri: TTriangle3Double): TVector3Double; overload;
function TriangleDir(const p0, p1, p2: TVector3Single): TVector3Single; overload;
function TriangleDir(const p0, p1, p2: TVector3Double): TVector3Double; overload;
function TriangleNormal(const Tri: TTriangle3Single): TVector3Single; overload;
function TriangleNormal(const Tri: TTriangle3Double): TVector3Double; overload;
function TriangleNormal(const p0, p1, p2: TVector3Single): TVector3Single; overload;
function TriangleNormal(const p0, p1, p2: TVector3Double): TVector3Double; overload;
{ @groupEnd }

{ Transform triangle by 4x4 matrix. This simply transforms each triangle point.

  @raises(ETransformedResultInvalid Raised when matrix
  will transform some point to a direction (vector with 4th component
  equal zero). In this case we just cannot interpret the result as a 3D point.)

  @groupBegin }
function TriangleTransform(const Tri: TTriangle3Single; const M: TMatrix4Single): TTriangle3Single; overload;
function TriangleTransform(const Tri: TTriangle3Double; const M: TMatrix4Double): TTriangle3Double; overload;
{ @groupEnd }

{ Normal vector of a triangle defined as three indexes intro vertex array.
  VerticesStride is the shift between vertex values in the array,
  VerticesStride = 0 behaves like VerticesStride = SizeOf(TVector3Single). }
function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
  VerticesArray: PVector3Single; VerticesStride: integer): TVector3Single;

{ Surface area of 3D triangle.
  This works for degenerated (equal to line segment or even single point)
  triangles too: returns 0 for them.

  @groupBegin }
function TriangleArea(const Tri: TTriangle3Single): Single; overload;
function TriangleArea(const Tri: TTriangle3Double): Double; overload;
function TriangleAreaSqr(const Tri: TTriangle3Single): Single; overload;
function TriangleAreaSqr(const Tri: TTriangle3Double): Double; overload;
{ @groupEnd }

{ Plane of the triangle. Note that this has many possible solutions
  (plane representation as equation @code(Ax + By + Cz + D = 0)
  is not unambiguous), this just returns some solution deterministically.

  It's guaranteed that the direction of this plane (i.e. first 3 items
  of returned vector) will be in the same direction as calcualted by
  TriangleDir, which means that it points outward from CCW side of
  the triangle (assuming right-handed coord system).

  For TriangleNormPlane, this direction is also normalized
  (makes a vector with length 1). This way TrianglePlane calculates
  also TriangleNormal.

  For three points that do not define a plane, a plane with first three
  components = 0 is returned. In fact, the 4th component will be zero too
  in this case (for now), but don't depend on it.
  @groupBegin }
function TrianglePlane(const Tri: TTriangle3Single): TVector4Single; overload;
function TrianglePlane(const Tri: TTriangle3Double): TVector4Double; overload;
function TrianglePlane(const p0, p1, p2: TVector3Single): TVector4Single; overload;
function TrianglePlane(const p0, p1, p2: TVector3Double): TVector4Double; overload;
function TriangleNormPlane(const Tri: TTriangle3Single): TVector4Single; overload;
function TriangleNormPlane(const Tri: TTriangle3Double): TVector4Double; overload;
{ @groupEnd }

function IsPointWithinTriangle2d(const P: TVector2Single; const Tri: TTriangle2Single): boolean; overload;
function IsPointWithinTriangle2d(const P: TVector2Double; const Tri: TTriangle2Double): boolean; overload;

{ Assuming a point lies on a triangle plane,
  check does it lie inside a triangle.
  Give first 3 components of triangle plane as TriDir.
  @groupBegin }
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3Single;
  const Tri: TTriangle3Single; const TriDir: TVector3Single): boolean; overload;
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3Double;
  const Tri: TTriangle3Double; const TriDir: TVector3Double): boolean; overload;
{ @groupEnd }

{ Check triangle with line segment collision.
  You can pass the triangle plane along with a triangle,
  this will speed calculation.
  @groupBegin }
function IsTriangleSegmentCollision(const Tri: TTriangle3Single;
  const TriPlane: TVector4Single;
  const pos1, pos2: TVector3Single): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Double;
  const TriPlane: TVector4Double;
  const pos1, pos2: TVector3Double): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Single;
  const pos1, pos2: TVector3Single): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Double;
  const pos1, pos2: TVector3Double): boolean; overload;
{ @groupEnd }

function IsTriangleSphereCollision(const Tri: TTriangle3Single;
  const TriPlane: TVector4Single;
  const SphereCenter: TVector3Single; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Double;
  const TriPlane: TVector4Double;
  const SphereCenter: TVector3Double; SphereRadius: Double): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Single;
  const SphereCenter: TVector3Single; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Double;
  const SphereCenter: TVector3Double; SphereRadius: Double): boolean; overload;

{ Calculate triangle with line segment collision.
  You can pass the triangle plane along with a triangle,
  this will speed calculation.

  When there's no intersection, returns @false and doesn't modify Intersection
  or T.
  @groupBegin }
function TryTriangleSegmentCollision(var Intersection: TVector3Single;
  const Tri: TTriangle3Single; const TriPlane: TVector4Single;
  const Pos1, Pos2: TVector3Single): boolean; overload;
function TryTriangleSegmentCollision(var Intersection: TVector3Double;
  const Tri: TTriangle3Double; const TriPlane: TVector4Double;
  const Pos1, Pos2: TVector3Double): boolean; overload;

function TryTriangleSegmentDirCollision(var Intersection: TVector3Single;
  const Tri: TTriangle3Single; const TriPlane: TVector4Single;
  const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Double;
  const Tri: TTriangle3Double; const TriPlane: TVector4Double;
  const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Single; var T: Single;
  const Tri: TTriangle3Single; const TriPlane: TVector4Single;
  const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Double; var T: Double;
  const Tri: TTriangle3Double; const TriPlane: TVector4Double;
  const Segment0, SegmentVector: TVector3Double): boolean; overload;
{ @groupEnd }

{ Calculate triangle with ray collision.
  You can pass the triangle plane along with a triangle,
  this will speed calculation.

  When there's no intersection, returns @false and doesn't modify Intersection
  or T.
  @groupBegin }
function TryTriangleRayCollision(var Intersection: TVector3Single;
  const Tri: TTriangle3Single; const TriPlane: TVector4Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Double;
  const Tri: TTriangle3Double; const TriPlane: TVector4Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Single; var T: Single;
  const Tri: TTriangle3Single; const TriPlane: TVector4Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Double; var T: Double;
  const Tri: TTriangle3Double; const TriPlane: TVector4Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }

{ Random triangle point, chosen with a constant density for triangle area. }
function SampleTrianglePoint(const Tri: TTriangle3Single): TVector3Single;

{ For a given Point lying on a given Triangle, calculate it's barycentric
  coordinates.

  The resulting Barycentric coordinates can be used for linearly
  interpolating values along the triangle, as they satisfy the equation:

@preformatted(
  Result[0] * Triangle[0] +
  Result[1] * Triangle[1] +
  Result[2] * Triangle[2] = Point
)

  See also [http://en.wikipedia.org/wiki/Barycentric_coordinate_system_%28mathematics%29] }
function Barycentric(const Triangle: TTriangle3Single;
  const Point: TVector3Single): TVector3Single;

type
  { Triangle expressed in particular coordinate system, for T3DTriangle. }
  T3DTriangleGeometry = record
    Triangle: TTriangle3Single;

    { Area of the triangle. In other words, just a precalculated for you
      TriangleArea(Triangle). }
    Area: Single;

    case Integer of
      0: ({ This is a calculated TriangleNormPlane(Triangle),
            that is a 3D plane containing our Triangle, with normalized
            direction vector. }
          Plane: TVector4Single;);
      1: (Normal: TVector3Single;);
  end;

  { 3D triangle.

    This object should always be initialized by @link(Init),
    and updated only by it's methods (never modify fields of
    this object directly).

    I use old-style Pascal "object" to define this,
    since this makes it a little more efficient. This doesn't need
    any virtual methods or such, so (at least for now) it's easier
    and more memory-efficient to keep this as an old-style object.
    And memory efficiency is somewhat important here, since large
    scenes may easily have milions of triangles, and each triangle
    results in one TTriangle (descendant of T3DTriangle) instance. }
  T3DTriangle = object
  public
    { Initialize new triangle. Given ATriangle must satisfy IsValidTriangle. }
    constructor Init(const ATriangle: TTriangle3Single);

  public
    { Geometry of this item.
      We need two geometry descriptions:

      @unorderedList(

        @item(Local is based on initial Triangle, given when constructing
          this T3DTriangle. It's constant for this T3DTriangle. It's used
          by octree collision routines, that is things like
          TBaseTrianglesOctree.SphereCollision, TBaseTrianglesOctree.RayCollision
          and such expect parameters in the same coord space.

          This may be local coord space of this shape (this is used
          by TShape.OctreeTriangles) or world coord space
          (this is used by TCastleSceneCore.OctreeTriangles).)

        @item(World is the geometry of Local transformed to be in world
          coordinates. Initially, World is just a copy of Local.

          If Local already contains world-space geometry, then World
          can just remain constant, and so is always Local copy.

          If Local contains local shape-space geometry, then World
          will have to be updated by TTriangle.UpdateWorld whenever some octree item's
          geometry will be needed in world coords. This will have to be
          done e.g. by TBaseTrianglesOctree.XxxCollision for each returned item.)
      ) }
    Local, World: T3DTriangleGeometry;
  end;
  P3DTriangle = ^T3DTriangle;

  { Return for given Triangle do we want to ignore collisions with it.
    For now, Sender is always TTriangleOctree. }
  T3DTriangleIgnoreFunc = function (
    const Sender: TObject;
    const Triangle: P3DTriangle): boolean of object;

{ polygons ------------------------------------------------------------------- }

{ Calculates normalized normal vector for polygon composed from
  indexed vertices. Polygon is defines as vertices
  Verts[Indices[0]], Verts[Indices[1]] ... Verts[Indices[IndicesCount-1]].
  Returns normal pointing from CCW.

  It's secured against invalid indexes on Indices list (that's the only
  reason why it takes VertsCount parameter, after all): they are ignored.

  If the polygon is degenerated, that is it doesn't determine a plane in
  3D space (this includes, but is not limited, to cases when there are
  less than 3 valid points, like when IndicesCount < 3)
  then it returns ResultForIncorrectPoly.

  @groupBegin }
function IndexedConvexPolygonNormal(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer;
  const ResultForIncorrectPoly: TVector3Single): TVector3Single; overload;
function IndexedConvexPolygonNormal(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt;
  const ResultForIncorrectPoly: TVector3Single): TVector3Single; overload;
{ @groupEnd }

{ Surface area of indexed convex polygon.
  Polygon is defines as vertices
  Verts[Indices[0]], Verts[Indices[1]] ... Verts[Indices[IndicesCount-1]].

  It's secured against invalid indexes on Indices list (that's the only
  reason why it takes VertsCount parameter, after all): they are ignored.

  @groupBegin }
function IndexedConvexPolygonArea(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PArray_Vector3Single; const VertsCount: Integer): Single; overload;
function IndexedConvexPolygonArea(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt): Single; overload;
{ @groupEnd }

{ Are the polygon points ordered CCW (counter-clockwise). When viewed
  with typical camera settings, that is +Y goes up and +X goes right.

  Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
  valid, that is it's OK if some polygon triangles degenerate into points
  or line segments.

  Returns something > 0 if polygon is CCW, or < 0 when it's not.
  Returns zero when polygon has area 0.
  @groupBegin }
function IsPolygon2dCCW(Verts: PArray_Vector2Single; const VertsCount: Integer): Single; overload;
function IsPolygon2dCCW(const Verts: array of TVector2Single): Single; overload;
{ @groupEnd }

{ Calculate polygon area.

  Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
  valid, that is it's OK if some polygon triangles degenerate into points
  or line segments.

  @groupBegin }
function Polygon2dArea(Verts: PArray_Vector2Single; const VertsCount: Integer): Single; overload;
function Polygon2dArea(const Verts: array of TVector2Single): Single; overload;
{ @groupEnd }

{ triangles and strings ------------------------------------------------------ }

{ }
function TriangleToNiceStr(const t: TTriangle2Single): string; overload;
function TriangleToNiceStr(const t: TTriangle2Double): string; overload;
function TriangleToNiceStr(const t: TTriangle3Single): string; overload;
function TriangleToNiceStr(const t: TTriangle3Double): string; overload;
function TriangleToRawStr(const t: TTriangle3Single): string; overload;
function TriangleToRawStr(const t: TTriangle3Double): string; overload;

{ TFaceIndex ----------------------------------------------------------------- }

type
  { Describe a range of indexes where the face (polygon and such) is located.

    When a triangle is part of a face defined by the coordIndex field
    (like in IndexedFaceSet) then this describes where
    in this coordIndex this face is located. This is useful for
    editing / removing a face corresponding to a given triangle.

    Otherwise, both IndexBegin and IndexEnd are -1. }
  TFaceIndex = object
    IndexBegin, IndexEnd: Integer;
  end;

  TFaceIndexesList = specialize TGenericStructList<TFaceIndex>;

const
  UnknownFaceIndex: TFaceIndex = (IndexBegin: -1; IndexEnd: -1);

implementation

function Triangle3Single(const T: TTriangle3Double): TTriangle3Single;
begin
  result[0] := Vector3Single(T[0]);
  result[1] := Vector3Single(T[1]);
  result[2] := Vector3Single(T[2]);
end;

function Triangle3Single(const p0, p1, p2: TVector3Single): TTriangle3Single;
begin
  result[0] := p0;
  result[1] := p1;
  result[2] := p2;
end;

function Triangle3Double(const T: TTriangle3Single): TTriangle3Double;
begin
  result[0] := Vector3Double(T[0]);
  result[1] := Vector3Double(T[1]);
  result[2] := Vector3Double(T[2]);
end;

function Triangle3Double(const p0, p1, p2: TVector3Double): TTriangle3Double;
begin
  result[0] := p0;
  result[1] := p1;
  result[2] := p2;
end;

function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
  VerticesArray: PVector3Single; VerticesStride: integer): TVector3Single;
var Tri: TTriangle3Single;
    i: integer;
begin
 if VerticesStride = 0 then VerticesStride := SizeOf(TVector3Single);
 for i := 0 to 2 do
  Tri[i] := PVector3Single(PointerAdd(VerticesArray, VerticesStride*Integer(Indexes[i])))^;
 result := TriangleNormal(Tri);
end;

function IndexedConvexPolygonNormal(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer;
  const ResultForIncorrectPoly: TVector3Single): TVector3Single;
begin
  Result := IndexedConvexPolygonNormal(
    Indices, IndicesCount,
    Verts, VertsCount, SizeOf(TVector3Single),
    ResultForIncorrectPoly);
end;

function IndexedConvexPolygonNormal(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt;
  const ResultForIncorrectPoly: TVector3Single): TVector3Single;
var Tri: TTriangle3Single;
    i: integer;
begin
  { We calculate normal vector as an average of normal vectors of
    polygon's triangles. Not taking into account invalid Indices
    (pointing beyond the VertsCount range) and degenerated triangles.

    This isn't the fastest method possible, but it's safest.
    It works Ok even if the polygon isn't precisely planar, or has
    some degenerate triangles. }

  Result := ZeroVector3Single;

  I := 0;

  { Verts_Indices_I = Verts[Indices[I]], but takes into account
    that Verts is an array with VertsStride. }
  {$define Verts_Indices_I :=
    PVector3Single(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride)^}

  while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
  { This secures us against polygons with no valid Indices[].
    (including case when IndicesCount = 0). }
  if I >= IndicesCount then
    Exit(ResultForIncorrectPoly);
  Tri[0] := Verts_Indices_I;

  repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
  if I >= IndicesCount then
    Exit(ResultForIncorrectPoly);
  Tri[1] := Verts_Indices_I;

  repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
  if I >= IndicesCount then
    Exit(ResultForIncorrectPoly);
  Tri[2] := Verts_Indices_I;

  if IsValidTriangle(Tri) then
    VectorAddTo1st(result, TriangleNormal(Tri) );

  repeat
    { find next valid point, which makes another triangle of polygon }

    repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
    if I >= IndicesCount then
      Break;
    Tri[1] := Tri[2];
    Tri[2] := Verts_Indices_I;

    if IsValidTriangle(Tri) then
      VectorAddTo1st(result, TriangleNormal(Tri) );
  until false;

  { All triangle normals are summed up now. (Each triangle normal was also
    normalized, to have equal contribution to the result.)
    Normalize Result now, if we had any valid triangle. }
  if ZeroVector(Result) then
    Result := ResultForIncorrectPoly else
    NormalizeTo1st(Result);
end;

function IndexedConvexPolygonArea(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PArray_Vector3Single; const VertsCount: Integer): Single;
begin
  Result := IndexedConvexPolygonArea(
    Indices, IndicesCount,
    PVector3Single(Verts), VertsCount, SizeOf(TVector3Single));
end;

function IndexedConvexPolygonArea(
  Indices: PArray_Longint; IndicesCount: integer;
  Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt): Single;
var
  Tri: TTriangle3Single;
  i: integer;
begin
  { We calculate area as a sum of areas of
    polygon's triangles. Not taking into account invalid Indices
    (pointing beyond the VertsCount range). }

  Result := 0;

  I := 0;

  { Verts_Indices_I = Verts[Indices[I]], but takes into account
    that Verts is an array with VertsStride. }
  {$define Verts_Indices_I :=
    PVector3Single(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride)^}

  while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
  { This secures us against polygons with no valid Indices[].
    (including case when IndicesCount = 0). }
  if I >= IndicesCount then
    Exit;
  Tri[0] := Verts_Indices_I;

  repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
  if I >= IndicesCount then
    Exit;
  Tri[1] := Verts_Indices_I;

  repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
  if I >= IndicesCount then
    Exit;
  Tri[2] := Verts_Indices_I;

  Result += TriangleArea(Tri);

  repeat
    { find next valid point, which makes another triangle of polygon }

    repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
    if I >= IndicesCount then
      Break;
    Tri[1] := Tri[2];
    Tri[2] := Verts_Indices_I;

    Result += TriangleArea(Tri);
  until false;
end;

function IsPolygon2dCCW(Verts: PArray_Vector2Single; const VertsCount: Integer): Single;
{ licz pole polygonu CCW.

  Implementacja na podstawie "Graphic Gems II", gem I.1
  W Graphic Gems pisza ze to jest formula na polygon CCW (na plaszczyznie
  kartezjanskiej, z +X w prawo i +Y w gore) i nie podaja tego Abs() na koncu.
  Widac jednak ze jesli podamy zamiast wielokata CCW ten sam wielokat ale
  z wierzcholkami w odwrotnej kolejnosci to procedura policzy dokladnie to samo
  ale skosy dodatnie zostana teraz policzone jako ujemne a ujemne jako dodatnie.
  Czyli dostaniemy ujemne pole.

  Mozna wiec wykorzystac powyzszy fakt aby testowac czy polygon jest CCW :
  brac liczona tu wartosc i jesli >0 to CCW, <0 to CW
  (jesli =0 to nie wiadomo no i polygony o polu = 0 rzeczywiscie nie maja
  jednoznacznej orientacji). Moznaby pomyslec ze mozna znalezc prostsze
  testy na to czy polygon jest CCW - mozna przeciez testowac tylko wyciety
  z polygonu trojkat. Ale uwaga - wtedy trzebaby uwazac i koniecznie
  wybrac z polygonu niezdegenerowany trojkat (o niezerowym polu),
  no chyba ze caly polygon mialby zerowe pole. Tak jak jest nie trzeba
  sie tym przejmowac i jest prosto.

  W ten sposob ponizsza procedura jednoczesnie liczy pole polygonu
  (Polygon2dArea jest zaimplementowane jako proste Abs() z wyniku tej
  funkcji. }
var
  i: Integer;
begin
  result := 0.0;
  if VertsCount = 0 then Exit;

  { licze i = 0..VertsCount-2, potem osobno przypadek gdy i = VertsCount-1.
    Moglbym ujac je razem, dajac zamiast "Verts[i+1, 1]"
    "Verts[(i+1)mod VertsCount, 1]" ale szkoda byloby dawac tu "mod" na potrzebe
    tylko jednego przypadku. Tak jest optymalniej czasowo. }
  for i := 0 to VertsCount-2 do
    result += Verts^[i, 0] * Verts^[i+1, 1] -
              Verts^[i, 1] * Verts^[i+1, 0];
  result += Verts^[VertsCount-1, 0] * Verts^[0, 1] -
            Verts^[VertsCount-1, 1] * Verts^[0, 0];

  result /= 2;
end;

function IsPolygon2dCCW(const Verts: array of TVector2Single): Single;
begin
  result := IsPolygon2dCCW(@Verts, High(Verts)+1);
end;

function Polygon2dArea(Verts: PArray_Vector2Single; const VertsCount: Integer): Single;
{ opieramy sie tutaj na WEWNETRZNEJ IMPLEMENTACJI funkcji IsPolygonCCW:
  mianowicie wiemy ze, przynajmniej teraz, funkcja ta zwraca pole
  polygonu CCW lub -pole polygonu CW. }
begin
  result := Abs(IsPolygon2dCCW(Verts, VertsCount));
end;

function Polygon2dArea(const Verts: array of TVector2Single): Single;
begin
  result := Polygon2dArea(@Verts, High(Verts)+1);
end;

function SampleTrianglePoint(const Tri: TTriangle3Single): TVector3Single;
var
  r1Sqrt, r2: Single;
begin
  { Based on "Global Illumination Compendium" }
  r1Sqrt := Sqrt(Random);
  r2 := Random;
  result := VectorScale(Tri[0], 1-r1Sqrt);
  VectorAddTo1st(result, VectorScale(Tri[1], (1-r2)*r1Sqrt));
  VectorAddTo1st(result, VectorScale(Tri[2], r2*r1Sqrt));
end;

function Barycentric(const Triangle: TTriangle3Single;
  const Point: TVector3Single): TVector3Single;

  { TODO: a tiny bit of CastleBoxes unit used here, to prevent any dependency
    from CastleVectors to CastleBoxes. }
  type
    TBox3D     = array [0..1] of TVector3Single;

  function Box3DSizes(const Box: TBox3D): TVector3Single;
  begin
    Result[0] := Box[1, 0] - Box[0, 0];
    Result[1] := Box[1, 1] - Box[0, 1];
    Result[2] := Box[1, 2] - Box[0, 2];
  end;

  function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;
  begin
    MinMax(T[0][0], T[1][0], T[2][0], Result[0][0], Result[1][0]);
    MinMax(T[0][1], T[1][1], T[2][1], Result[0][1], Result[1][1]);
    MinMax(T[0][2], T[1][2], T[2][2], Result[0][2], Result[1][2]);
  end;

var
  C1, C2: Integer;
  Det: Single;
begin
  { Map triangle and point into 2D, where the solution is simpler.
    Calculate C1 and C2 --- two largest coordinates of
    triangle axis-aligned bounding box. }
  RestOf3DCoords(MinVectorCoord(Box3DSizes(TriangleBoundingBox(Triangle))), C1, C2);

  { Now calculate coordinates on 2D, following equations at wikipedia }
  Det :=
    (Triangle[1][C2] - Triangle[2][C2]) * (Triangle[0][C1] - Triangle[2][C1]) +
    (Triangle[0][C2] - Triangle[2][C2]) * (Triangle[2][C1] - Triangle[1][C1]);
  Result[0] := (
    (Triangle[1][C2] - Triangle[2][C2]) * (      Point[C1] - Triangle[2][C1]) +
    (      Point[C2] - Triangle[2][C2]) * (Triangle[2][C1] - Triangle[1][C1])
    ) / Det;
  Result[1] := (
    (      Point[C2] - Triangle[2][C2]) * (Triangle[0][C1] - Triangle[2][C1]) +
    (Triangle[2][C2] - Triangle[0][C2]) * (      Point[C1] - Triangle[2][C1])
    ) / Det;
  Result[2] := 1 - Result[0] - Result[1];
end;

{ T3DTriangle  --------------------------------------------------------------- }

constructor T3DTriangle.Init(const ATriangle: TTriangle3Single);
begin
  Local.Triangle := ATriangle;
  Local.Plane := TriangleNormPlane(ATriangle);
  Local.Area := TriangleArea(ATriangle);

  World := Local;
end;

{$define TScalar := Single}
{$define TVector2 := TVector2Single}
{$define TVector3 := TVector3Single}
{$define TVector4 := TVector4Single}
{$define PVector2 := PVector2Single}
{$define PVector3 := PVector3Single}
{$define PVector4 := PVector4Single}
{$define TTriangle2 := TTriangle2Single}
{$define TTriangle3 := TTriangle3Single}
{$define TMatrix2 := TMatrix2Single}
{$define TMatrix3 := TMatrix3Single}
{$define TMatrix4 := TMatrix4Single}
{$define ScalarEqualityEpsilon := SingleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Single}
{$define ZeroVector3 := ZeroVector3Single}
{$define IdentityMatrix4 := IdentityMatrix4Single}
{$define TMatrix2_ := TMatrix2_Single}
{$define TMatrix3_ := TMatrix3_Single}
{$define TMatrix4_ := TMatrix4_Single}
{$define TVector2_ := TVector2_Single}
{$define TVector3_ := TVector3_Single}
{$define TVector4_ := TVector4_Single}
{$I castletriangles_dualimplementation.inc}

{$define TScalar := Double}
{$define TVector2 := TVector2Double}
{$define TVector3 := TVector3Double}
{$define TVector4 := TVector4Double}
{$define PVector2 := PVector2Double}
{$define PVector3 := PVector3Double}
{$define PVector4 := PVector4Double}
{$define TTriangle2 := TTriangle2Double}
{$define TTriangle3 := TTriangle3Double}
{$define TMatrix2 := TMatrix2Double}
{$define TMatrix3 := TMatrix3Double}
{$define TMatrix4 := TMatrix4Double}
{$define ScalarEqualityEpsilon := DoubleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Double}
{$define ZeroVector3 := ZeroVector3Double}
{$define IdentityMatrix4 := IdentityMatrix4Double}
{$define TMatrix2_ := TMatrix2_Double}
{$define TMatrix3_ := TMatrix3_Double}
{$define TMatrix4_ := TMatrix4_Double}
{$define TVector2_ := TVector2_Double}
{$define TVector3_ := TVector3_Double}
{$define TVector4_ := TVector4_Double}
{$I castletriangles_dualimplementation.inc}

end.