/usr/src/castle-game-engine-5.0.0/3d/castletriangles.pas is in castle-game-engine-src 5.0.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Triangles.
@italic(Triangle) is a @code(TTriangle<point-type>) type.
Where @code(<point-type>) is such suffix that vector type
@code(TVector<point-type>) exists. For example, we have
TVector3Single type that represents a point in 3D space,
so you can use TTriangle3Single to represent triangle in 3D space.
There are also 2D triangles like TTriangle2Single and TTriangle2Double.
Triangle's three points must not be collinear,
i.e. routines in this unit generally don't accept "degenerated" triangles
that are not really triangles. So 3D triangle must unambiguously
define some plane in the 3D space. The only function in this unit
that is able to handle "degenerated" triangles is IsValidTriangle,
which is exactly used to check whether the triangle is degenerated.
Since every valid triangle unambiguously determines some plane in the
3D space, it also determines it's normal vector. In this unit,
when dealing with normal vectors, I use two names:
@unorderedList(
@itemSpacing Compact
@item(@italic(@noAutoLink(TriangleNormal))
means that this is the normalized (i.e. scaled to length 1.0)
normal vector.)
@item(@italic(@noAutoLink(TriangleDir))
means that this is not necessarily normalized normal vector.)
)
}
unit CastleTriangles;
interface
uses CastleUtils, CastleVectors, CastleGenericLists;
type
TTriangle2Single = packed array[0..2]of TVector2Single; PTriangle2Single = ^TTriangle2Single;
TTriangle2Double = packed array[0..2]of TVector2Double; PTriangle2Double = ^TTriangle2Double;
TTriangle2Extended = packed array[0..2]of TVector2Extended; PTriangle2Extended = ^TTriangle2Extended;
TTriangle3Single = packed array[0..2]of TVector3Single; PTriangle3Single = ^TTriangle3Single;
TTriangle3Double = packed array[0..2]of TVector3Double; PTriangle3Double = ^TTriangle3Double;
TTriangle3Extended = packed array[0..2]of TVector3Extended; PTriangle3Extended = ^TTriangle3Extended;
TTriangle4Single = packed array[0..2]of TVector4Single; PTriangle4Single = ^TTriangle4Single;
function Triangle3Single(const T: TTriangle3Double): TTriangle3Single; overload;
function Triangle3Single(const p0, p1, p2: TVector3Single): TTriangle3Single; overload;
function Triangle3Double(const T: TTriangle3Single): TTriangle3Double; overload;
function Triangle3Double(const p0, p1, p2: TVector3Double): TTriangle3Double; overload;
{ Check does the triangle define a correct plane in 3D space.
That is, check does the triangle not degenerate to a point or line segment
(which can happen when some points are at the same position, or are colinear).
@groupBegin }
function IsValidTriangle(const Tri: TTriangle3Single): boolean; overload;
function IsValidTriangle(const Tri: TTriangle3Double): boolean; overload;
{ @groupEnd }
{ Normal vector of a triangle. Returns vector pointing our from CCW triangle
side (for right-handed coordinate system), and orthogonal to triangle plane.
The version "Dir" (TriangleDir) doesn't normalize the result
(it may not have length equal 1).
For degenerated triangles (when IsValidTriangle would return false),
we return zero vector.
@groupBegin }
function TriangleDir(const Tri: TTriangle3Single): TVector3Single; overload;
function TriangleDir(const Tri: TTriangle3Double): TVector3Double; overload;
function TriangleDir(const p0, p1, p2: TVector3Single): TVector3Single; overload;
function TriangleDir(const p0, p1, p2: TVector3Double): TVector3Double; overload;
function TriangleNormal(const Tri: TTriangle3Single): TVector3Single; overload;
function TriangleNormal(const Tri: TTriangle3Double): TVector3Double; overload;
function TriangleNormal(const p0, p1, p2: TVector3Single): TVector3Single; overload;
function TriangleNormal(const p0, p1, p2: TVector3Double): TVector3Double; overload;
{ @groupEnd }
{ Transform triangle by 4x4 matrix. This simply transforms each triangle point.
@raises(ETransformedResultInvalid Raised when matrix
will transform some point to a direction (vector with 4th component
equal zero). In this case we just cannot interpret the result as a 3D point.)
@groupBegin }
function TriangleTransform(const Tri: TTriangle3Single; const M: TMatrix4Single): TTriangle3Single; overload;
function TriangleTransform(const Tri: TTriangle3Double; const M: TMatrix4Double): TTriangle3Double; overload;
{ @groupEnd }
{ Normal vector of a triangle defined as three indexes intro vertex array.
VerticesStride is the shift between vertex values in the array,
VerticesStride = 0 behaves like VerticesStride = SizeOf(TVector3Single). }
function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
VerticesArray: PVector3Single; VerticesStride: integer): TVector3Single;
{ Surface area of 3D triangle.
This works for degenerated (equal to line segment or even single point)
triangles too: returns 0 for them.
@groupBegin }
function TriangleArea(const Tri: TTriangle3Single): Single; overload;
function TriangleArea(const Tri: TTriangle3Double): Double; overload;
function TriangleAreaSqr(const Tri: TTriangle3Single): Single; overload;
function TriangleAreaSqr(const Tri: TTriangle3Double): Double; overload;
{ @groupEnd }
{ Plane of the triangle. Note that this has many possible solutions
(plane representation as equation @code(Ax + By + Cz + D = 0)
is not unambiguous), this just returns some solution deterministically.
It's guaranteed that the direction of this plane (i.e. first 3 items
of returned vector) will be in the same direction as calcualted by
TriangleDir, which means that it points outward from CCW side of
the triangle (assuming right-handed coord system).
For TriangleNormPlane, this direction is also normalized
(makes a vector with length 1). This way TrianglePlane calculates
also TriangleNormal.
For three points that do not define a plane, a plane with first three
components = 0 is returned. In fact, the 4th component will be zero too
in this case (for now), but don't depend on it.
@groupBegin }
function TrianglePlane(const Tri: TTriangle3Single): TVector4Single; overload;
function TrianglePlane(const Tri: TTriangle3Double): TVector4Double; overload;
function TrianglePlane(const p0, p1, p2: TVector3Single): TVector4Single; overload;
function TrianglePlane(const p0, p1, p2: TVector3Double): TVector4Double; overload;
function TriangleNormPlane(const Tri: TTriangle3Single): TVector4Single; overload;
function TriangleNormPlane(const Tri: TTriangle3Double): TVector4Double; overload;
{ @groupEnd }
function IsPointWithinTriangle2d(const P: TVector2Single; const Tri: TTriangle2Single): boolean; overload;
function IsPointWithinTriangle2d(const P: TVector2Double; const Tri: TTriangle2Double): boolean; overload;
{ Assuming a point lies on a triangle plane,
check does it lie inside a triangle.
Give first 3 components of triangle plane as TriDir.
@groupBegin }
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3Single;
const Tri: TTriangle3Single; const TriDir: TVector3Single): boolean; overload;
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3Double;
const Tri: TTriangle3Double; const TriDir: TVector3Double): boolean; overload;
{ @groupEnd }
{ Check triangle with line segment collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
@groupBegin }
function IsTriangleSegmentCollision(const Tri: TTriangle3Single;
const TriPlane: TVector4Single;
const pos1, pos2: TVector3Single): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Double;
const TriPlane: TVector4Double;
const pos1, pos2: TVector3Double): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Single;
const pos1, pos2: TVector3Single): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3Double;
const pos1, pos2: TVector3Double): boolean; overload;
{ @groupEnd }
function IsTriangleSphereCollision(const Tri: TTriangle3Single;
const TriPlane: TVector4Single;
const SphereCenter: TVector3Single; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Double;
const TriPlane: TVector4Double;
const SphereCenter: TVector3Double; SphereRadius: Double): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Single;
const SphereCenter: TVector3Single; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3Double;
const SphereCenter: TVector3Double; SphereRadius: Double): boolean; overload;
{ Calculate triangle with line segment collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
When there's no intersection, returns @false and doesn't modify Intersection
or T.
@groupBegin }
function TryTriangleSegmentCollision(var Intersection: TVector3Single;
const Tri: TTriangle3Single; const TriPlane: TVector4Single;
const Pos1, Pos2: TVector3Single): boolean; overload;
function TryTriangleSegmentCollision(var Intersection: TVector3Double;
const Tri: TTriangle3Double; const TriPlane: TVector4Double;
const Pos1, Pos2: TVector3Double): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Single;
const Tri: TTriangle3Single; const TriPlane: TVector4Single;
const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Double;
const Tri: TTriangle3Double; const TriPlane: TVector4Double;
const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Single; var T: Single;
const Tri: TTriangle3Single; const TriPlane: TVector4Single;
const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3Double; var T: Double;
const Tri: TTriangle3Double; const TriPlane: TVector4Double;
const Segment0, SegmentVector: TVector3Double): boolean; overload;
{ @groupEnd }
{ Calculate triangle with ray collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
When there's no intersection, returns @false and doesn't modify Intersection
or T.
@groupBegin }
function TryTriangleRayCollision(var Intersection: TVector3Single;
const Tri: TTriangle3Single; const TriPlane: TVector4Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Double;
const Tri: TTriangle3Double; const TriPlane: TVector4Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Single; var T: Single;
const Tri: TTriangle3Single; const TriPlane: TVector4Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3Double; var T: Double;
const Tri: TTriangle3Double; const TriPlane: TVector4Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }
{ Random triangle point, chosen with a constant density for triangle area. }
function SampleTrianglePoint(const Tri: TTriangle3Single): TVector3Single;
{ For a given Point lying on a given Triangle, calculate it's barycentric
coordinates.
The resulting Barycentric coordinates can be used for linearly
interpolating values along the triangle, as they satisfy the equation:
@preformatted(
Result[0] * Triangle[0] +
Result[1] * Triangle[1] +
Result[2] * Triangle[2] = Point
)
See also [http://en.wikipedia.org/wiki/Barycentric_coordinate_system_%28mathematics%29] }
function Barycentric(const Triangle: TTriangle3Single;
const Point: TVector3Single): TVector3Single;
type
{ Triangle expressed in particular coordinate system, for T3DTriangle. }
T3DTriangleGeometry = record
Triangle: TTriangle3Single;
{ Area of the triangle. In other words, just a precalculated for you
TriangleArea(Triangle). }
Area: Single;
case Integer of
0: ({ This is a calculated TriangleNormPlane(Triangle),
that is a 3D plane containing our Triangle, with normalized
direction vector. }
Plane: TVector4Single;);
1: (Normal: TVector3Single;);
end;
{ 3D triangle.
This object should always be initialized by @link(Init),
and updated only by it's methods (never modify fields of
this object directly).
I use old-style Pascal "object" to define this,
since this makes it a little more efficient. This doesn't need
any virtual methods or such, so (at least for now) it's easier
and more memory-efficient to keep this as an old-style object.
And memory efficiency is somewhat important here, since large
scenes may easily have milions of triangles, and each triangle
results in one TTriangle (descendant of T3DTriangle) instance. }
T3DTriangle = object
public
{ Initialize new triangle. Given ATriangle must satisfy IsValidTriangle. }
constructor Init(const ATriangle: TTriangle3Single);
public
{ Geometry of this item.
We need two geometry descriptions:
@unorderedList(
@item(Local is based on initial Triangle, given when constructing
this T3DTriangle. It's constant for this T3DTriangle. It's used
by octree collision routines, that is things like
TBaseTrianglesOctree.SphereCollision, TBaseTrianglesOctree.RayCollision
and such expect parameters in the same coord space.
This may be local coord space of this shape (this is used
by TShape.OctreeTriangles) or world coord space
(this is used by TCastleSceneCore.OctreeTriangles).)
@item(World is the geometry of Local transformed to be in world
coordinates. Initially, World is just a copy of Local.
If Local already contains world-space geometry, then World
can just remain constant, and so is always Local copy.
If Local contains local shape-space geometry, then World
will have to be updated by TTriangle.UpdateWorld whenever some octree item's
geometry will be needed in world coords. This will have to be
done e.g. by TBaseTrianglesOctree.XxxCollision for each returned item.)
) }
Local, World: T3DTriangleGeometry;
end;
P3DTriangle = ^T3DTriangle;
{ Return for given Triangle do we want to ignore collisions with it.
For now, Sender is always TTriangleOctree. }
T3DTriangleIgnoreFunc = function (
const Sender: TObject;
const Triangle: P3DTriangle): boolean of object;
{ polygons ------------------------------------------------------------------- }
{ Calculates normalized normal vector for polygon composed from
indexed vertices. Polygon is defines as vertices
Verts[Indices[0]], Verts[Indices[1]] ... Verts[Indices[IndicesCount-1]].
Returns normal pointing from CCW.
It's secured against invalid indexes on Indices list (that's the only
reason why it takes VertsCount parameter, after all): they are ignored.
If the polygon is degenerated, that is it doesn't determine a plane in
3D space (this includes, but is not limited, to cases when there are
less than 3 valid points, like when IndicesCount < 3)
then it returns ResultForIncorrectPoly.
@groupBegin }
function IndexedConvexPolygonNormal(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer;
const ResultForIncorrectPoly: TVector3Single): TVector3Single; overload;
function IndexedConvexPolygonNormal(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt;
const ResultForIncorrectPoly: TVector3Single): TVector3Single; overload;
{ @groupEnd }
{ Surface area of indexed convex polygon.
Polygon is defines as vertices
Verts[Indices[0]], Verts[Indices[1]] ... Verts[Indices[IndicesCount-1]].
It's secured against invalid indexes on Indices list (that's the only
reason why it takes VertsCount parameter, after all): they are ignored.
@groupBegin }
function IndexedConvexPolygonArea(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PArray_Vector3Single; const VertsCount: Integer): Single; overload;
function IndexedConvexPolygonArea(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt): Single; overload;
{ @groupEnd }
{ Are the polygon points ordered CCW (counter-clockwise). When viewed
with typical camera settings, that is +Y goes up and +X goes right.
Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
valid, that is it's OK if some polygon triangles degenerate into points
or line segments.
Returns something > 0 if polygon is CCW, or < 0 when it's not.
Returns zero when polygon has area 0.
@groupBegin }
function IsPolygon2dCCW(Verts: PArray_Vector2Single; const VertsCount: Integer): Single; overload;
function IsPolygon2dCCW(const Verts: array of TVector2Single): Single; overload;
{ @groupEnd }
{ Calculate polygon area.
Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
valid, that is it's OK if some polygon triangles degenerate into points
or line segments.
@groupBegin }
function Polygon2dArea(Verts: PArray_Vector2Single; const VertsCount: Integer): Single; overload;
function Polygon2dArea(const Verts: array of TVector2Single): Single; overload;
{ @groupEnd }
{ triangles and strings ------------------------------------------------------ }
{ }
function TriangleToNiceStr(const t: TTriangle2Single): string; overload;
function TriangleToNiceStr(const t: TTriangle2Double): string; overload;
function TriangleToNiceStr(const t: TTriangle3Single): string; overload;
function TriangleToNiceStr(const t: TTriangle3Double): string; overload;
function TriangleToRawStr(const t: TTriangle3Single): string; overload;
function TriangleToRawStr(const t: TTriangle3Double): string; overload;
{ TFaceIndex ----------------------------------------------------------------- }
type
{ Describe a range of indexes where the face (polygon and such) is located.
When a triangle is part of a face defined by the coordIndex field
(like in IndexedFaceSet) then this describes where
in this coordIndex this face is located. This is useful for
editing / removing a face corresponding to a given triangle.
Otherwise, both IndexBegin and IndexEnd are -1. }
TFaceIndex = object
IndexBegin, IndexEnd: Integer;
end;
TFaceIndexesList = specialize TGenericStructList<TFaceIndex>;
const
UnknownFaceIndex: TFaceIndex = (IndexBegin: -1; IndexEnd: -1);
implementation
function Triangle3Single(const T: TTriangle3Double): TTriangle3Single;
begin
result[0] := Vector3Single(T[0]);
result[1] := Vector3Single(T[1]);
result[2] := Vector3Single(T[2]);
end;
function Triangle3Single(const p0, p1, p2: TVector3Single): TTriangle3Single;
begin
result[0] := p0;
result[1] := p1;
result[2] := p2;
end;
function Triangle3Double(const T: TTriangle3Single): TTriangle3Double;
begin
result[0] := Vector3Double(T[0]);
result[1] := Vector3Double(T[1]);
result[2] := Vector3Double(T[2]);
end;
function Triangle3Double(const p0, p1, p2: TVector3Double): TTriangle3Double;
begin
result[0] := p0;
result[1] := p1;
result[2] := p2;
end;
function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
VerticesArray: PVector3Single; VerticesStride: integer): TVector3Single;
var Tri: TTriangle3Single;
i: integer;
begin
if VerticesStride = 0 then VerticesStride := SizeOf(TVector3Single);
for i := 0 to 2 do
Tri[i] := PVector3Single(PointerAdd(VerticesArray, VerticesStride*Integer(Indexes[i])))^;
result := TriangleNormal(Tri);
end;
function IndexedConvexPolygonNormal(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer;
const ResultForIncorrectPoly: TVector3Single): TVector3Single;
begin
Result := IndexedConvexPolygonNormal(
Indices, IndicesCount,
Verts, VertsCount, SizeOf(TVector3Single),
ResultForIncorrectPoly);
end;
function IndexedConvexPolygonNormal(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt;
const ResultForIncorrectPoly: TVector3Single): TVector3Single;
var Tri: TTriangle3Single;
i: integer;
begin
{ We calculate normal vector as an average of normal vectors of
polygon's triangles. Not taking into account invalid Indices
(pointing beyond the VertsCount range) and degenerated triangles.
This isn't the fastest method possible, but it's safest.
It works Ok even if the polygon isn't precisely planar, or has
some degenerate triangles. }
Result := ZeroVector3Single;
I := 0;
{ Verts_Indices_I = Verts[Indices[I]], but takes into account
that Verts is an array with VertsStride. }
{$define Verts_Indices_I :=
PVector3Single(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride)^}
while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
{ This secures us against polygons with no valid Indices[].
(including case when IndicesCount = 0). }
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri[0] := Verts_Indices_I;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri[1] := Verts_Indices_I;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri[2] := Verts_Indices_I;
if IsValidTriangle(Tri) then
VectorAddTo1st(result, TriangleNormal(Tri) );
repeat
{ find next valid point, which makes another triangle of polygon }
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Break;
Tri[1] := Tri[2];
Tri[2] := Verts_Indices_I;
if IsValidTriangle(Tri) then
VectorAddTo1st(result, TriangleNormal(Tri) );
until false;
{ All triangle normals are summed up now. (Each triangle normal was also
normalized, to have equal contribution to the result.)
Normalize Result now, if we had any valid triangle. }
if ZeroVector(Result) then
Result := ResultForIncorrectPoly else
NormalizeTo1st(Result);
end;
function IndexedConvexPolygonArea(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PArray_Vector3Single; const VertsCount: Integer): Single;
begin
Result := IndexedConvexPolygonArea(
Indices, IndicesCount,
PVector3Single(Verts), VertsCount, SizeOf(TVector3Single));
end;
function IndexedConvexPolygonArea(
Indices: PArray_Longint; IndicesCount: integer;
Verts: PVector3Single; const VertsCount: Integer; const VertsStride: PtrUInt): Single;
var
Tri: TTriangle3Single;
i: integer;
begin
{ We calculate area as a sum of areas of
polygon's triangles. Not taking into account invalid Indices
(pointing beyond the VertsCount range). }
Result := 0;
I := 0;
{ Verts_Indices_I = Verts[Indices[I]], but takes into account
that Verts is an array with VertsStride. }
{$define Verts_Indices_I :=
PVector3Single(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride)^}
while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
{ This secures us against polygons with no valid Indices[].
(including case when IndicesCount = 0). }
if I >= IndicesCount then
Exit;
Tri[0] := Verts_Indices_I;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit;
Tri[1] := Verts_Indices_I;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit;
Tri[2] := Verts_Indices_I;
Result += TriangleArea(Tri);
repeat
{ find next valid point, which makes another triangle of polygon }
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Break;
Tri[1] := Tri[2];
Tri[2] := Verts_Indices_I;
Result += TriangleArea(Tri);
until false;
end;
function IsPolygon2dCCW(Verts: PArray_Vector2Single; const VertsCount: Integer): Single;
{ licz pole polygonu CCW.
Implementacja na podstawie "Graphic Gems II", gem I.1
W Graphic Gems pisza ze to jest formula na polygon CCW (na plaszczyznie
kartezjanskiej, z +X w prawo i +Y w gore) i nie podaja tego Abs() na koncu.
Widac jednak ze jesli podamy zamiast wielokata CCW ten sam wielokat ale
z wierzcholkami w odwrotnej kolejnosci to procedura policzy dokladnie to samo
ale skosy dodatnie zostana teraz policzone jako ujemne a ujemne jako dodatnie.
Czyli dostaniemy ujemne pole.
Mozna wiec wykorzystac powyzszy fakt aby testowac czy polygon jest CCW :
brac liczona tu wartosc i jesli >0 to CCW, <0 to CW
(jesli =0 to nie wiadomo no i polygony o polu = 0 rzeczywiscie nie maja
jednoznacznej orientacji). Moznaby pomyslec ze mozna znalezc prostsze
testy na to czy polygon jest CCW - mozna przeciez testowac tylko wyciety
z polygonu trojkat. Ale uwaga - wtedy trzebaby uwazac i koniecznie
wybrac z polygonu niezdegenerowany trojkat (o niezerowym polu),
no chyba ze caly polygon mialby zerowe pole. Tak jak jest nie trzeba
sie tym przejmowac i jest prosto.
W ten sposob ponizsza procedura jednoczesnie liczy pole polygonu
(Polygon2dArea jest zaimplementowane jako proste Abs() z wyniku tej
funkcji. }
var
i: Integer;
begin
result := 0.0;
if VertsCount = 0 then Exit;
{ licze i = 0..VertsCount-2, potem osobno przypadek gdy i = VertsCount-1.
Moglbym ujac je razem, dajac zamiast "Verts[i+1, 1]"
"Verts[(i+1)mod VertsCount, 1]" ale szkoda byloby dawac tu "mod" na potrzebe
tylko jednego przypadku. Tak jest optymalniej czasowo. }
for i := 0 to VertsCount-2 do
result += Verts^[i, 0] * Verts^[i+1, 1] -
Verts^[i, 1] * Verts^[i+1, 0];
result += Verts^[VertsCount-1, 0] * Verts^[0, 1] -
Verts^[VertsCount-1, 1] * Verts^[0, 0];
result /= 2;
end;
function IsPolygon2dCCW(const Verts: array of TVector2Single): Single;
begin
result := IsPolygon2dCCW(@Verts, High(Verts)+1);
end;
function Polygon2dArea(Verts: PArray_Vector2Single; const VertsCount: Integer): Single;
{ opieramy sie tutaj na WEWNETRZNEJ IMPLEMENTACJI funkcji IsPolygonCCW:
mianowicie wiemy ze, przynajmniej teraz, funkcja ta zwraca pole
polygonu CCW lub -pole polygonu CW. }
begin
result := Abs(IsPolygon2dCCW(Verts, VertsCount));
end;
function Polygon2dArea(const Verts: array of TVector2Single): Single;
begin
result := Polygon2dArea(@Verts, High(Verts)+1);
end;
function SampleTrianglePoint(const Tri: TTriangle3Single): TVector3Single;
var
r1Sqrt, r2: Single;
begin
{ Based on "Global Illumination Compendium" }
r1Sqrt := Sqrt(Random);
r2 := Random;
result := VectorScale(Tri[0], 1-r1Sqrt);
VectorAddTo1st(result, VectorScale(Tri[1], (1-r2)*r1Sqrt));
VectorAddTo1st(result, VectorScale(Tri[2], r2*r1Sqrt));
end;
function Barycentric(const Triangle: TTriangle3Single;
const Point: TVector3Single): TVector3Single;
{ TODO: a tiny bit of CastleBoxes unit used here, to prevent any dependency
from CastleVectors to CastleBoxes. }
type
TBox3D = array [0..1] of TVector3Single;
function Box3DSizes(const Box: TBox3D): TVector3Single;
begin
Result[0] := Box[1, 0] - Box[0, 0];
Result[1] := Box[1, 1] - Box[0, 1];
Result[2] := Box[1, 2] - Box[0, 2];
end;
function TriangleBoundingBox(const T: TTriangle3Single): TBox3D;
begin
MinMax(T[0][0], T[1][0], T[2][0], Result[0][0], Result[1][0]);
MinMax(T[0][1], T[1][1], T[2][1], Result[0][1], Result[1][1]);
MinMax(T[0][2], T[1][2], T[2][2], Result[0][2], Result[1][2]);
end;
var
C1, C2: Integer;
Det: Single;
begin
{ Map triangle and point into 2D, where the solution is simpler.
Calculate C1 and C2 --- two largest coordinates of
triangle axis-aligned bounding box. }
RestOf3DCoords(MinVectorCoord(Box3DSizes(TriangleBoundingBox(Triangle))), C1, C2);
{ Now calculate coordinates on 2D, following equations at wikipedia }
Det :=
(Triangle[1][C2] - Triangle[2][C2]) * (Triangle[0][C1] - Triangle[2][C1]) +
(Triangle[0][C2] - Triangle[2][C2]) * (Triangle[2][C1] - Triangle[1][C1]);
Result[0] := (
(Triangle[1][C2] - Triangle[2][C2]) * ( Point[C1] - Triangle[2][C1]) +
( Point[C2] - Triangle[2][C2]) * (Triangle[2][C1] - Triangle[1][C1])
) / Det;
Result[1] := (
( Point[C2] - Triangle[2][C2]) * (Triangle[0][C1] - Triangle[2][C1]) +
(Triangle[2][C2] - Triangle[0][C2]) * ( Point[C1] - Triangle[2][C1])
) / Det;
Result[2] := 1 - Result[0] - Result[1];
end;
{ T3DTriangle --------------------------------------------------------------- }
constructor T3DTriangle.Init(const ATriangle: TTriangle3Single);
begin
Local.Triangle := ATriangle;
Local.Plane := TriangleNormPlane(ATriangle);
Local.Area := TriangleArea(ATriangle);
World := Local;
end;
{$define TScalar := Single}
{$define TVector2 := TVector2Single}
{$define TVector3 := TVector3Single}
{$define TVector4 := TVector4Single}
{$define PVector2 := PVector2Single}
{$define PVector3 := PVector3Single}
{$define PVector4 := PVector4Single}
{$define TTriangle2 := TTriangle2Single}
{$define TTriangle3 := TTriangle3Single}
{$define TMatrix2 := TMatrix2Single}
{$define TMatrix3 := TMatrix3Single}
{$define TMatrix4 := TMatrix4Single}
{$define ScalarEqualityEpsilon := SingleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Single}
{$define ZeroVector3 := ZeroVector3Single}
{$define IdentityMatrix4 := IdentityMatrix4Single}
{$define TMatrix2_ := TMatrix2_Single}
{$define TMatrix3_ := TMatrix3_Single}
{$define TMatrix4_ := TMatrix4_Single}
{$define TVector2_ := TVector2_Single}
{$define TVector3_ := TVector3_Single}
{$define TVector4_ := TVector4_Single}
{$I castletriangles_dualimplementation.inc}
{$define TScalar := Double}
{$define TVector2 := TVector2Double}
{$define TVector3 := TVector3Double}
{$define TVector4 := TVector4Double}
{$define PVector2 := PVector2Double}
{$define PVector3 := PVector3Double}
{$define PVector4 := PVector4Double}
{$define TTriangle2 := TTriangle2Double}
{$define TTriangle3 := TTriangle3Double}
{$define TMatrix2 := TMatrix2Double}
{$define TMatrix3 := TMatrix3Double}
{$define TMatrix4 := TMatrix4Double}
{$define ScalarEqualityEpsilon := DoubleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Double}
{$define ZeroVector3 := ZeroVector3Double}
{$define IdentityMatrix4 := IdentityMatrix4Double}
{$define TMatrix2_ := TMatrix2_Double}
{$define TMatrix3_ := TMatrix3_Double}
{$define TMatrix4_ := TMatrix4_Double}
{$define TVector2_ := TVector2_Double}
{$define TVector3_ := TVector3_Double}
{$define TVector4_ := TVector4_Double}
{$I castletriangles_dualimplementation.inc}
end.
|