This file is indexed.

/usr/src/castle-game-engine-5.0.0/x3d/castlearraysgenerator.pas is in castle-game-engine-src 5.0.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
{
  Copyright 2002-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Generating TGeometryArrays for VRML/X3D shapes (TArraysGenerator). }
unit CastleArraysGenerator;

interface

uses CastleShapes, X3DNodes, X3DFields, CastleUtils, CastleGeometryArrays,
  CastleVectors;

type
  TRadianceTransferFunction = function (Node: TAbstractGeometryNode;
    RadianceTransfer: PVector3Single;
    const RadianceTransferCount: Cardinal): TVector3Single of object;

  { Callback used by TRenderingAttributes.OnVertexColor.
    Passed here VertexPosition is in local coordinates (that is,
    local of this object, multiply by State.Transform to get scene coords).
    VertexIndex is the direct index to Node.Coordinates. }
  TVertexColorFunction = procedure (var Color: TVector3Single;
    Shape: TShape; const VertexPosition: TVector3Single;
    VertexIndex: Integer) of object;

  { Generate TGeometryArrays for a VRML/X3D shape. This is the basis
    of our renderer: generate a TGeometryArrays for a shape,
    then TGLRenderer will pass TGeometryArrays to OpenGL.

    Geometry must be based on coordinates when using this,
    that is TAbstractGeometryNode.Coord must return @true. }
  TArraysGenerator = class
  private
    FShape: TShape;
    FState: TX3DGraphTraverseState;
    FGeometry: TAbstractGeometryNode;

    FCurrentRangeNumber: Cardinal;
    FCoord: TMFVec3f;
    FCoordIndex: TMFLong;

    { How Geometry and State are generated from Shape.
      We have to record it, to use with Shape.Normals* later. }
    OverTriangulate: boolean;
  protected
    { Indexes, only when Arrays.Indexes = nil but original node was indexed. }
    IndexesFromCoordIndex: TLongIntList;

    { Index to Arrays. Suitable always to index Arrays.Position / Color / Normal
      and other Arrays attribute arrays. Calculated in
      each TAbstractCoordinateGenerator.GenerateVertex,
      always call "inherited" first fro GenerateVertex overrides.

      There are three cases:

      1. When CoordIndex <> nil (so we have indexed node) and
         Arrays.Indexes <> nil (so we can render it by indexes,
         because AllowIndexed = true) then it's an index to
         node coordinates. It's equivalent to CoordIndex[IndexNum],
         and it can be used to index node's Coord as well as Arrays.Position
         (since they are ordered the same in this case).

      2. When CoordIndex <> nil (so we have indexed node) and
         Arrays.Indexes = nil (so we cannot render it by indexes,
         because AllowIndexed = false) then it's a number of vertex,
         that is it's incremented in each TAbstractCoordinateGenerator.GenerateVertex
         call.

         In this case IndexesFromCoordIndex <> nil,
         and Arrays attributes have the same count as IndexesFromCoordIndex.Count.
         GenerateVertex must be called in exactly the same order
         as IndexesFromCoordIndex were generated for this.

      3. When CoordIndex = nil (so we don't have an indexed node,
         also Arrays.Indexes = IndexesFromCoordIndex = nil always in this case)
         then it's an index to attributes. This is the trivial case,
         as Arrays attributes are then ordered just like node's Coord.
         It's equal to IndexNum then.
    }
    ArrayIndexNum: Integer;

    { Generated TGeometryArrays instance, available inside GenerateCoordinate*. }
    Arrays: TGeometryArrays;

    { Current shape properties, constant for the whole
      lifetime of the generator, set in constructor.
      @groupBegin }
    property Shape: TShape read FShape;
    property State: TX3DGraphTraverseState read FState;
    property Geometry: TAbstractGeometryNode read FGeometry;
    { @groupEnd }

    procedure WarningShadingProblems(
      const ColorPerVertex, NormalPerVertex: boolean);

    { Coordinates, taken from Geometry.Coord.
      Usually coming from (coord as Coordinate).points field.
      If @nil then nothing will be rendered.

      In our constructor we initialize Coord and CoordIndex
      from Geometry, using TAbstractGeometryNode.Coord and
      TAbstractGeometryNode.CoordIndex values. }
    property Coord: TMFVec3f read FCoord;

    { Coordinate index, taken from Geometry.CoordIndex.

      If @nil, then GenerateVertex (and all other
      routines taking some index) will just directly index Coord
      (this is useful for non-indexed geometry, like TriangleSet
      instead of IndexedTriangleSet). }
    property CoordIndex: TMFLong read FCoordIndex;

    { Generate arrays content for given vertex.
      Given IndexNum indexes Coord, or (if CoordIndex is assigned)
      indexes CoordIndex (and CoordIndex then indexes actual Coord). }
    procedure GenerateVertex(IndexNum: Integer); virtual;

    { Get vertex coordinate. Returned vertex is in local coordinate space
      (use State.Transform if you want to get global coordinates). }
    function GetVertex(IndexNum: integer): TVector3Single;

    { Count of indexes. You can pass index between 0 and CoordCount - 1
      to various methods taking an index, like GenerateVertex. }
    function CoordCount: Integer;

    { Generate contents of Arrays.
      These are all called only when Coord is assigned.

      GenerateCoordinate can be overridden only by the class
      that actually knows how to deconstruct (triangulate etc.) this node.
      It must call GenerateVertex (or call GenerateCoordsRange,
      that has to be then overridden to call GenerateVertex after inherited).

      GenerateCoordinateBegin, GenerateCoordinateEnd will be called
      before / after GenerateCoordinate. It's useful to override them for
      intermediate classes in this file, that cannot triangulate,
      but still want to add something before / after GenerateCoordinate.
      When overriding GenerateCoordinateBegin, always call inherited
      at the begin. When overriding GenerateCoordinateEnd, always call inherited
      at the end.
      @groupBegin }
    procedure GenerateCoordinate; virtual; abstract;
    procedure GenerateCoordinateBegin; virtual;
    procedure GenerateCoordinateEnd; virtual;
    { @groupEnd }

    { Generate arrays content for one coordinate range (like a face).
      This is not called, not used, anywhere in this base
      TAbstractCoordinateGenerator class.
      In descendants, it may be useful to use this, like
      Geometry.MakeCoordRanges(State, @@GenerateCoordsRange).

      GenerateCoordsRange is supposed to generate the parts of the mesh
      between BeginIndex and EndIndex - 1 vertices.
      BeginIndex and EndIndex are indexes to CoordIndex array,
      if CoordIndex is assigned, or just indexes to Coord. }
    procedure GenerateCoordsRange(
      const RangeNumber: Cardinal;
      BeginIndex, EndIndex: Integer); virtual;

    { The number of current range (like a face), equal to RangeNumber passed to
      GenerateCoordsRange. Read this only while in GenerateCoordsRange.
      In fact, this is just set by GenerateCoordsRange in this class
      (so call @code(inherited) first when overriding it).

      It's comfortable e.g. when you need RangeNumber inside GenerateVertex,
      and you know that GenerateVertex will be called only from
      GenerateCoordsRange. }
    property CurrentRangeNumber: Cardinal read FCurrentRangeNumber;

    { If CoordIndex assigned (this VRML/X3D node is IndexedXxx)
      then calculate and set IndexesFromCoordIndex here.
      This is also the place to set Arrays.Primitive and Arrays.Counts. }
    procedure PrepareIndexesPrimitives; virtual; abstract;

    { Called when constructing Arrays, before the Arrays.Count is set.
      Descendants can override this to do stuff like Arrays.AddColor or
      Arrays.AddAttribute('foo'). Descendants can also set AllowIndexed
      to @false, if we can't use indexed rendering (because e.g. we have
      colors per-face, which means that the same vertex position may have
      different colors,  which means it has to be duplicated in arrays anyway,
      so there's no point in indexing). }
    procedure PrepareAttributes(var AllowIndexed: boolean); virtual;
  public
    { Assign these before calling GenerateArrays.
      @groupBegin }
    TexCoordsNeeded: Cardinal;
    MaterialOpacity: Single;
    FogVolumetric: boolean;
    FogVolumetricDirection: TVector3Single;
    FogVolumetricVisibilityStart: Single;
    ShapeBumpMappingUsed: boolean;
    OnRadianceTransfer: TRadianceTransferFunction;
    OnVertexColor: TVertexColorFunction;
    { Do we need TGeometryArrays.Faces }
    FacesNeeded: boolean;
    { @groupEnd }

    constructor Create(AShape: TShape; AOverTriangulate: boolean); virtual;

    { Create and generate Arrays contents. }
    function GenerateArrays: TGeometryArrays;

    class function BumpMappingAllowed: boolean; virtual;
  end;

  TArraysGeneratorClass = class of TArraysGenerator;

{ TArraysGenerator class suitable for given geometry.
  Returns @nil if not suitable generator for this node,
  which means that this node cannot be rendered through TGeometryArrays. }
function GetArraysGenerator(AGeometry: TAbstractGeometryNode): TArraysGeneratorClass;

implementation

uses SysUtils, CastleLog, FGL, CastleTriangles, CastleColors,
  CastleBoxes, CastleTriangulate, CastleStringUtils, CastleWarnings;

{ Copying to interleaved memory utilities ------------------------------------ }

type
  EAssignInterleavedRangeError = class(Exception);

{ Copy Source contents to given Target memory. Each item in Target
  is separated by the Stride bytes.

  We copy CopyCount items (you usually want to pass the count of Target
  data here). Source.Count must be >= CopyCount,
  we check it and eventually raise EAssignInterleavedRangeError.

  Warning: this is safely usable only for arrays of types that don't
  require initialization / finalization. Otherwise target memory data
  will be properly referenced.

  @raises EAssignInterleavedRangeError When Count < CopyCount. }
procedure AssignToInterleaved(Source: TFPSList; Target: Pointer;
  const Stride, CopyCount: Cardinal); forward;

{ Copy Source contents to given Target memory. Each item in Target
  is separated by the Stride bytes.

  We copy CopyCount items (you usually want to pass the count of Target
  data here). Indexes.Count must be >= CopyCount,
  we check it and eventually raise EAssignInterleavedRangeError.

  Item number I is taken from Items[Indexes[I]].
  All values on Indexes list must be valid (that is >= 0 and < Source.Count),
  or we raise EAssignInterleavedRangeError.

  Warning: this is safely usable only for arrays of types that don't
  require initialization / finalization. Otherwise target memory data
  will be properly referenced.

  @raises(EAssignInterleavedRangeError When Indexes.Count < CopyCount,
    or some index points outside of array.) }
procedure AssignToInterleavedIndexed(Source: TFPSList; Target: Pointer;
  const Stride, CopyCount: Cardinal; Indexes: TLongIntList); forward;

procedure AssignToInterleaved(Source: TFPSList; Target: Pointer;
  const Stride, CopyCount: Cardinal);
var
  I: Integer;
  SourcePtr: Pointer;
begin
  if Source.Count < CopyCount then
    raise EAssignInterleavedRangeError.CreateFmt('Not enough items: %d, but at least %d required',
      [Source.Count, CopyCount]);

  SourcePtr := Source.List;
  for I := 0 to CopyCount - 1 do
  begin
    Move(SourcePtr^, Target^, Source.ItemSize);
    PtrUInt(SourcePtr) += Source.ItemSize;
    PtrUInt(Target) += Stride;
  end;
end;

procedure AssignToInterleavedIndexed(Source: TFPSList; Target: Pointer;
  const Stride, CopyCount: Cardinal; Indexes: TLongIntList);
var
  I: Integer;
  Index: LongInt;
begin
  if Indexes.Count < CopyCount then
    raise EAssignInterleavedRangeError.CreateFmt('Not enough items: %d, but at least %d required',
      [Indexes.Count, CopyCount]);

  for I := 0 to CopyCount - 1 do
  begin
    Index := Indexes.L[I];
    if (Index < 0) or
       (Index >= Source.Count) then
      raise EAssignInterleavedRangeError.CreateFmt('Invalid index: %d, but we have %d items',
        [Index, Source.Count]);

    { Beware to not make multiplication below (* ItemSize) using 64-bit ints.
      This would cause noticeable slowdown when using AssignToInterleavedIndexed
      for ArraysGenerator, that in turn affects dynamic scenes
      and especially dynamic shading like radiance_transfer. }
    Move(Pointer(PtrUInt(Source.List) + PtrUInt(Index) * PtrUInt(Source.ItemSize))^,
      Target^, Source.ItemSize);
    PtrUInt(Target) += Stride;
  end;
end;

{ classes -------------------------------------------------------------------- }

type
  TTextureCoordsImplementation = (
    { Texture coords not generated, because not needed by Renderer. }
    tcNotGenerated,
    { All texture coords (on all texture units, for multi-texturing)
      are automatically generated.

      Actually we could use some other value
      like tcTexIndexed (anything else than tcNotGenerated) to indicate
      this, since for everything <> tcNotGenerated we actually check
      TexCoordGen to know if coords should be explicit or automatic.
      But using special tcAllGenerated feels cleaner. }
    tcAllGenerated,
    { IndexNum is an index to TexCoordIndex, as this indexes TexCoordGen/Array[TextureUnit]. }
    tcTexIndexed,
    { IndexNum is an index to CoordIndex, as this indexes TexCoordGen/Array[TextureUnit]. }
    tcCoordIndexed,
    { IndexNum is a direct index to TexCoordGen/Array[TextureUnit]. }
    tcNonIndexed);

  { Handle texture coordinates.

    Usage:

    - TexCoord is already set from TAbstractGeometryNode.TexCoord,
      so just be sure it's overriden for your Geometry node class.

      Don't worry, we will automatically check TexCoord class,
      and do something useful with it only if we can.
      When TexCoord = @nil,
      then we'll generate default texture coordinates,
      following VRML 2.0 / X3D IndexedFaceSet default texture coord algorithm.

      (X3D spec doesn't say what happens for nodes like
      IndexedTriangleSet when texture is specified (in Appearance.texture)
      but texture coords are not present.
      For now, we just generate texture coords for them just like for
      IndexedFaceSet.)

    - Set TexCoordIndex, if available. This works just like CoordIndex:

      If @nil, then GenerateVertex (and all other
      routines taking some index) will just directly index TexCoord
      (this is useful for non-indexed geometry, like TriangleSet
      instead of IndexedTriangleSet). Otherwise, they will index TexCoordIndex,
      and then TexCoordIndex provides index to TexCoord.

      As a special case, if TexCoordIndex is assigned but empty
      (actually, just checked as "shorter than CoordIndex")
      then IndexNum indexed CoordIndex. So CoordIndex acts as
      TexCoordIndex in this case. This case is specially for
      for IndexedFaceSet in VRML >= 2.0.

      Always when TexCoordIndex is non-nil, also make sure that CoordIndex
      is non-nil. When TexCoordIndex is nil, make sure that CoordIndex is nil.
      (This restriction may be removed in the future,
      but for now nothing needs it.)

    This class takes care to generate tex coords, or use supplied
    TexCoord and TexCoordIndex. At least for texture units in
    TexCoordsNeeded (although we may pass some more, will be unused).
    So you do not have to generate any texture coordinates
    in descendants. Everything related to textures is already
    handled in this class. }
  TAbstractTextureCoordinateGenerator = class(TArraysGenerator)
  private
    TexImplementation: TTextureCoordsImplementation;

    { Source of explicit texture coordinates, for each texture unit
      that has Arrays.TexCoord[I].Generation = tgExplicit.
      The value of Arrays.TexCoord[I].Dimensions determines
      which of these is actually used.

      These arrays have always exactly the same length,
      equal to Arrays.TexCoords.Count. }
    TexCoordArray2d: array of TMFVec2f;
    TexCoordArray3d: array of TMFVec3f;
    TexCoordArray4d: array of TMFVec4f;

    TexCoord: TX3DNode;
  protected
    TexCoordIndex: TMFLong;

    { Return texture coordinate for given vertex, identified by IndexNum.
      IndexNum indexes TexCoordGen/Array[TextureUnit], or TexCoordIndex
      (if TexCoordIndex assigned),
      or CoordIndex (if TexCoordIndex assigned but empty, for IndexedFaceSet).

      Returns @false if no texture coords are available, for given
      TextureUnit.

      Works in all cases when we actually render some texture.

      Overloaded version with only TVector2Single just ignores the 3rd and
      4th texture coordinate, working only when texture coord is
      normal 2D coord. }
    function GetTextureCoord(IndexNum: integer;
      const TextureUnit: Cardinal; out Tex: TVector4Single): boolean;
    function GetTextureCoord(IndexNum: integer;
      const TextureUnit: Cardinal; out Tex: TVector2Single): boolean;

    procedure PrepareAttributes(var AllowIndexed: boolean); override;

    procedure GenerateVertex(IndexNum: Integer); override;

    procedure GenerateCoordinateBegin; override;
  public
    constructor Create(AShape: TShape; AOverTriangulate: boolean); override;
  end;

  TMaterials1Implementation = (miOverall,
    miPerVertexCoordIndexed,
    miPerVertexMatIndexed,
    miPerFace,
    miPerFaceMatIndexed);

  { Handle per-face or per-vertex VRML 1.0 materials.

    Usage:
    - Just set MaterialIndex and MaterialBinding using your node's fields.
      Call UpdateMat1Implementation afterwards.
    - For VRML >= 2.0 nodes, you don't have to do anything.
      You can just leave MaterialBinding as default BIND_DEFAULT,
      but it really doesn't matter: the only effect of this class
      are calls to Render_BindMaterial_1. And Render_BindMaterial_1
      simply does nothing for VRML >= 2.0 geometry nodes.

    Since this must have a notion of what "face" is, it assumes that
    your GenerateCoordsRange constitutes rendering of a single face.
    If this isn't true, then "per face" materials will not work
    correctly.

    Note that "per vertex" materials require smooth shading,
    so you should set this in your Render. There's no way to implement
    them with flat shading.

    Everything related to VRML 1.0 materials is already handled in this class. }
  TAbstractMaterial1Generator = class(TAbstractTextureCoordinateGenerator)
  private
    { Must be set in constructor. MaterialsBegin (may someday) depend on this.

      For this reason, call UpdateMat1Implementation inside descendant
      constructor after changing this. }
    Mat1Implementation: TMaterials1Implementation;
    FaceMaterial1Color: TVector4Single;
    function GetMaterial1Color(const MaterialIndex: Integer): TVector4Single;
  protected
    { You can leave MaterialIndex as nil if you are sure that
      MaterialBinding will not be any _INDEXED value.

      Be sure to change these only inside constructor,
      and call UpdateMat1Implementation afterwards. We want Mat1Implementation
      ready after constructor. }
    MaterialIndex: TMFLong;
    MaterialBinding: Integer;
    procedure UpdateMat1Implementation;

    procedure PrepareAttributes(var AllowIndexed: boolean); override;
    procedure GenerateVertex(IndexNum: Integer); override;
    procedure GenerateCoordsRange(const RangeNumber: Cardinal;
      BeginIndex, EndIndex: integer); override;
  public
    constructor Create(AShape: TShape; AOverTriangulate: boolean); override;
  end;

  { Handle per-face or per-vertex VRML >= 2.0 colors.

    - Usage: set Color or ColorRGBA (at most one of them), ColorPerVertex,
      ColorIndex.

      If Color and ColorRGBA = @nil, this class will not do anything.
      Otherwise, colors will be used.

      ColorPerVertex specifies per-vertex or per-face.
      Just like for VRML 1.0, the same restrictions apply:
      - if you want per-face to work, then GenerateCoordsRange must
        correspond to a single face.
      - if you want per-vertex to work, you must use smooth shading.

      ColorIndex: if set and non-empty, then vertex IndexNum or face number will
      index ColorIndex, and then ColorIndex indexes Color items.
      Otherwise, for vertex we use CoordIndex (if assigned, otherwise it directly
      accesses colors)
      and for face we'll use just face number.

    - We also handle RadianceTransfer for all X3DComposedGeometryNode
      descendants. If set, and non-empty,
      and OnRadianceTransfer is defined, we will use it.

      We will then ignore Color, ColorRGBA, ColorPerVertex, ColorIndex
      settings --- only the colors returned by OnRadianceTransfer
      will be used.

    - Attributes.OnVertexColor, if assigned,
      will be automatically used here to calculate color for each vertex.
      If this will be assigned, then the above things
      (Color, ColorRGBA, ColorPerVertex, ColorIndex, RadianceTransfer)
      will be ignored -- only the colors returned by OnVertexColor will
      be used.

    Everything related to setting VRML 2.0
    material should be set in Render_MaterialsBegin, and everything
    related to VRML 2.0 colors is handled in this class.
    So in summary, this class takes care of everything related to
    materials / colors. }
  TAbstractColorGenerator = class(TAbstractMaterial1Generator)
  private
    RadianceTransferVertexSize: Cardinal;
    RadianceTransfer: TVector3SingleList;
    FaceColor: TVector4Single;
  protected
    Color: TMFVec3f;
    ColorRGBA: TMFColorRGBA;
    ColorPerVertex: boolean;
    ColorIndex: TMFLong;

    procedure PrepareAttributes(var AllowIndexed: boolean); override;
    procedure GenerateVertex(IndexNum: integer); override;
    procedure GenerateCoordsRange(const RangeNumber: Cardinal;
      BeginIndex, EndIndex: Integer); override;
  end;

  TNormalsImplementation = (
    { Do nothing about normals (in TAbstractNormalGenerator)
      class. Passing normals to OpenGL is left for descendants. }
    niNone,
    { The first item of Normals specifies the one and only normal
      for the whole geometry. }
    niOverall,
    { Each vertex has it's normal vector, IndexNum specifies direct index
      to Normals. }
    niPerVertexNonIndexed,
    { Each vertex has it's normal vector, IndexNum specifies index to
      CoordIndex and this is an index to Normals. }
    niPerVertexCoordIndexed,
    { Each vertex has it's normal vector, IndexNum specifies index to
      NormalIndex and this is an index to Normals. }
    niPerVertexNormalIndexed,
    { Face number is the index to Normals. }
    niPerFace,
    { Face number is the index to NormalIndex, and this indexes Normals. }
    niPerFaceNormalIndexed);

  { Handle normals, both taken from user data (that is, stored in VRML file)
    and generated.

    Usage:

    - You have to set NorImplementation in descendant.
      Default value, NorImplementation = niNone, simply means that
      this class does nothing and it's your responsibility to generate
      and use normal vectors. See TNormalsImplementation for other meanings,
      and which properties from
        Normals
        NormalsCcw (should always be set when setting Normals)
        NormalIndex
      you also have to assign to make them work.

      For VRML 1.0, you most definitely want to set both Normals
      and NormalIndex and then call NorImplementation :=
      NorImplementationFromVRML1Binding. This should take care of
      VRML 1.0 needs completely.

    - If and only if NorImplementation = niNone (either you left it as
      default, or NorImplementationFromVRML1Binding returned this,
      or you set this...)
      you have to make appropriate glNormal calls yourself.

      Normals should always point from CCW (you *do not* check here FrontFaceCcw
      field, as we *do not* call glFrontFace anywhere).

      If NorImplementation <> niNone then we handle everything
      related to normals in this class.

    Note that PerVertexXxx normals require smooth shading to work Ok. }
  TAbstractNormalGenerator = class(TAbstractColorGenerator)
  private
    { Will be set to Normals or it's inverted version, to keep
      pointing from CCW. }
    CcwNormals: TVector3SingleList;
    FaceNormal: TVector3Single;
    function CcwNormalsSafe(const Index: Integer): TVector3Single;
  protected
    NormalIndex: TMFLong;
    Normals: TVector3SingleList;
    NormalsCcw: boolean;

    { This is calculated in constructor. Unlike similar TexImplementation
      (which is calculated only in GenerateCoordinateBegin).
      Reasons:
      - Descendants may want to change NorImplementation. In other words,
        full automatic detection only in TAbstractNormalGenerator
        is not done, it's possible in descendants to explicitly change this.
      - NodeLit uses this, so it must be available after creation and
        before rendering. }
    NorImplementation: TNormalsImplementation;

    function NorImplementationFromVRML1Binding(
      NormalBinding: Integer): TNormalsImplementation;

    { Returns normal vector for given vertex, identified by IndexNum
      (IndexNum has the same meaning as for GenerateVertex) and FaceNumber
      (since normals may be available per-face, we need to know face number
      as well as vertex number).

      Returns normal always from
      CCW (just like we pass to OpenGL always CCW normals, since we always
      assume front face = CCW).

      Override this in descendants only to handle
      NorImplementation = niNone case. }
    procedure GetNormal(IndexNum: Integer; RangeNumber: Integer;
      out N: TVector3Single); virtual;

    { If @true, then it's guaranteed that normals for the same face will
      be equal. This may be useful for various optimization purposes.

      Override this in descendants only to handle
      NorImplementation = niNone case. The implementation in this class
      just derives it from NorImplementation, and for niNone answers @false
      (safer answer). }
    function NormalsFlat: boolean; virtual;

    procedure GenerateCoordinateBegin; override;
    procedure GenerateCoordinateEnd; override;
    procedure GenerateCoordsRange(const RangeNumber: Cardinal;
      BeginIndex, EndIndex: Integer); override;

    procedure PrepareAttributes(var AllowIndexed: boolean); override;

    procedure GenerateVertex(IndexNum: Integer); override;
  end;

  { Handle fog coordinate.
    Descendants don't have to do anything, this just works
    (using TAbstractGeometryNode.FogCoord). }
  TAbstractFogGenerator = class(TAbstractNormalGenerator)
  private
    FogCoord: TSingleList;
  protected
    procedure PrepareAttributes(var AllowIndexed: boolean); override;
    procedure GenerateVertex(IndexNum: Integer); override;
  public
    constructor Create(AShape: TShape; AOverTriangulate: boolean); override;
  end;

  TX3DVertexAttributeNodes = specialize TFPGObjectList<TAbstractVertexAttributeNode>;

  { Handle GLSL attributes from VRML/X3D "attrib" field.
    Descendants don't have to do anything, this just works
    (using TAbstractGeometryNode.Attrib). }
  TAbstractShaderAttribGenerator = class(TAbstractFogGenerator)
  private
    Attrib: TX3DVertexAttributeNodes;
  protected
    procedure PrepareAttributes(var AllowIndexed: boolean); override;
    procedure GenerateVertex(IndexNum: Integer); override;
  public
    constructor Create(AShape: TShape; AOverTriangulate: boolean); override;
    destructor Destroy; override;
  end;

  { Handle bump mapping.

    Descendants should:
    - override BumpMappingAllowed to return true,
    - call CalculateTangentVectors when needed.
    - Also make sure that GetNormal always
      works (since it's called by CalculateTangentVectors),
      so if you may use NorImplementation = niNone: be sure to override
      GetNormal to return correct normal. }
  TAbstractBumpMappingGenerator = class(TAbstractShaderAttribGenerator)
  private
    { Helpers for bump mapping }
    HasTangentVectors: boolean;
    STangent, TTangent: TVector3Single;
  protected
    procedure GenerateVertex(IndexNum: Integer); override;
    procedure PrepareAttributes(var AllowIndexed: boolean); override;

    { Update tangent vectors (HasTangentVectors, STangent, TTangent).
      Without this, bump mapping will be wrong.
      Give triangle indexes (like IndexNum for GenerateVertex). }
    procedure CalculateTangentVectors(
      const TriangleIndex1, TriangleIndex2, TriangleIndex3: Integer);
  end;

  { Most complete implementation of arrays generator,
    should be used to derive non-abstract renderers for nodes. }
  TAbstractCompleteGenerator = TAbstractBumpMappingGenerator;

{ TArraysGenerator ------------------------------------------------------ }

constructor TArraysGenerator.Create(AShape: TShape; AOverTriangulate: boolean);
begin
  inherited Create;

  FShape := AShape;
  OverTriangulate := AOverTriangulate;
  FGeometry := FShape.Geometry(OverTriangulate);
  FState := FShape.State(OverTriangulate);

  Check(Geometry.Coord(State, FCoord),
    'TAbstractCoordinateRenderer is only for coordinate-based nodes');
  FCoordIndex := Geometry.CoordIndex;
end;

procedure TArraysGenerator.WarningShadingProblems(
  const ColorPerVertex, NormalPerVertex: boolean);
const
  SPerVertex: array [boolean] of string = ('per-face', 'per-vertex');
begin
  OnWarning(wtMajor, 'VRML/X3D', Format(
    'Colors %s and normals %s used in the same node %s. Shading results may be incorrect',
    [ SPerVertex[ColorPerVertex], SPerVertex[NormalPerVertex],
      Geometry.NodeTypeName]));
end;

function TArraysGenerator.GenerateArrays: TGeometryArrays;
var
  AllowIndexed: boolean;
  MaxIndex: Integer;
begin
  Arrays := TGeometryArrays.Create;
  Result := Arrays;

  { no geometry if coordinates are empty. Leave empty Arrays. }
  if Coord = nil then Exit;

  { initialize stuff for generating }
  IndexesFromCoordIndex := nil;
  try
    ArrayIndexNum := -1;

    PrepareIndexesPrimitives;

    { Assert about Arrays.Counts.Sum. Note that even when
      IndexesFromCoordIndex = nil, Arrays.Counts.Sum should usually be equal
      to final Arrays.Count. But not always: it may not be equal
      for invalid nodes, with non-complete triangle strips / fans etc.
      (then Arrays.Counts will not contain all coordinates). }
    Assert(
      (Arrays.Counts = nil) or
      (IndexesFromCoordIndex = nil) or
      (Arrays.Counts.Sum = IndexesFromCoordIndex.Count) );

    if IndexesFromCoordIndex <> nil then
    begin
      Assert(CoordIndex <> nil);
      MaxIndex := IndexesFromCoordIndex.Max;

      { check do we have enough coordinates. TGeometryArrays data may be passed
        quite raw to OpenGL, so this may be our last chance to check correctness
        and avoid passing data that would cause OpenGL errors. }
      if MaxIndex >= Coord.Count then
      begin
        CoordIndex.OnWarning_WrongVertexIndex(Geometry.NodeTypeName,
          MaxIndex, Coord.Count);
        Exit; { leave Arrays created but empty }
      end;
    end;

    AllowIndexed := true;
    PrepareAttributes(AllowIndexed);

    try
      if Log and LogShapes then
        WritelnLog('Renderer', Format('Shape %s is rendered with indexes: %s',
          [Shape.NiceName, BoolToStr[AllowIndexed]]));

      if AllowIndexed or (IndexesFromCoordIndex = nil) then
      begin
        Arrays.Indexes := IndexesFromCoordIndex;
        IndexesFromCoordIndex := nil;

        Arrays.Count := Coord.Count;

        AssignToInterleaved(Coord.Items, Arrays.Position, Arrays.CoordinateSize, Arrays.Count);
      end else
      begin
        Arrays.Count := IndexesFromCoordIndex.Count;

        { Expand IndexesFromCoordIndex, to specify vertexes multiple times }
        AssignToInterleavedIndexed(Coord.Items, Arrays.Position, Arrays.CoordinateSize, Arrays.Count, IndexesFromCoordIndex);
      end;

      GenerateCoordinateBegin;
      try
        GenerateCoordinate;
      finally GenerateCoordinateEnd; end;
    except
      on E: EAssignInterleavedRangeError do
        OnWarning(wtMajor, 'VRML/X3D', Format('Invalid number of items in a normal or texture coordinate array for shape "%s": %s',
          [Shape.NiceName, E.Message]));
    end;
  finally FreeAndNil(IndexesFromCoordIndex); end;
end;

procedure TArraysGenerator.PrepareAttributes(var AllowIndexed: boolean);
begin
  if Geometry is TAbstractComposedGeometryNode then
  begin
    Arrays.CullBackFaces := Geometry.Solid;
    Arrays.FrontFaceCcw := (Geometry as TAbstractComposedGeometryNode).FdCcw.Value;
  end;
end;

procedure TArraysGenerator.GenerateCoordinateBegin;
begin
  { nothing to do in this class }
end;

procedure TArraysGenerator.GenerateCoordinateEnd;
begin
  { nothing to do in this class }
end;

procedure TArraysGenerator.GenerateVertex(IndexNum: integer);
begin
  if CoordIndex <> nil then
  begin
    if Arrays.Indexes = nil then
      Inc(ArrayIndexNum) else
      ArrayIndexNum := CoordIndex.Items.L[IndexNum];
  end else
    ArrayIndexNum := IndexNum;
end;

function TArraysGenerator.GetVertex(IndexNum: integer): TVector3Single;
begin
  { This assertion should never fail, it's the responsibility
    of the programmer. }
  Assert(IndexNum < CoordCount);

  if CoordIndex <> nil then
    Result := Coord.ItemsSafe[CoordIndex.Items.L[IndexNum]] else
    Result := Coord.Items.L[IndexNum];
end;

function TArraysGenerator.CoordCount: Integer;
begin
  if CoordIndex <> nil then
    Result := CoordIndex.Items.Count else
    Result := Coord.Items.Count;
end;

procedure TArraysGenerator.GenerateCoordsRange(
  const RangeNumber: Cardinal; BeginIndex, EndIndex: Integer);
begin
  FCurrentRangeNumber := RangeNumber;
end;

class function TArraysGenerator.BumpMappingAllowed: boolean;
begin
  Result := false;
end;

{ TAbstractTextureCoordinateGenerator ----------------------------------------- }

constructor TAbstractTextureCoordinateGenerator.Create(AShape: TShape; AOverTriangulate: boolean);
begin
  inherited;
  if not Geometry.TexCoord(State, TexCoord) then
    TexCoord := nil;
end;

procedure TAbstractTextureCoordinateGenerator.PrepareAttributes(
  var AllowIndexed: boolean);

  { Is a texture used on given unit, and it's 3D texture. }
  function IsTexture3D(const TexUnit: Cardinal): boolean;

    { Knowing that Tex is not nil,
      check is it a single (not MultiTexture) 3D texture. }
    function IsSingleTexture3D(Tex: TX3DNode): boolean;
    begin
      Result :=
         (Tex is TAbstractTexture3DNode) or
        ((Tex is TShaderTextureNode) and
         (TShaderTextureNode(Tex).FdDefaultTexCoord.Value = 'BOUNDS3D'));
    end;

  var
    Tex: TAbstractTextureNode;
  begin
    Tex := State.Texture;
    Result := (
      (Tex <> nil) and
      ( ( (TexUnit = 0) and IsSingleTexture3D(Tex) )
        or
        ( (Tex is TMultiTextureNode) and
          (TMultiTextureNode(Tex).FdTexture.Count > TexUnit) and
          IsSingleTexture3D(TMultiTextureNode(Tex).FdTexture[TexUnit])
        )));
  end;

  { Set length of TexCoordArray* arrays. }
  procedure SetTexLengths(const Count: Integer);
  begin
    SetLength(TexCoordArray2d, Count);
    SetLength(TexCoordArray3d, Count);
    SetLength(TexCoordArray4d, Count);
  end;

  function Bounds2DTextureGenVectors: TTextureGenerationVectors;
  var
    LocalBBox: TBox3D;
    LocalBBoxSize: TVector3Single;

    { Setup and enable glTexGen to make automatic 2D texture coords
      based on shape bounding box. On texture unit 0. }
    procedure SetupCoordGen(out Gen: TVector4Single;
      const Coord: integer; const GenStart, GenEnd: Single);

    { We want to map float from range
        LocalBBox[0, Coord]...LocalBBox[0, Coord] + LocalBBoxSize[Coord]
      to
        GenStart...GenEnd.

      For a 3D point V let's define S1 as
        S1 = (V[Coord] - LocalBBox[0, Coord]) / LocalBBoxSize[Coord]
      and so S1 is in 0..1 range, now
        S = S1 * (GenEnd - GenStart) + GenStart
      and so S is in GenStart...GenEnd range, like we wanted.

      It remains to rewrite this to a form that we can pass to OpenGL
      glTexGenfv(..., GL_OBJECT_PLANE, ...).

        S = V[Coord] * (GenEnd - GenStart) / LocalBBoxSize[Coord]
           - LocalBBox[0, Coord] * (GenEnd - GenStart) / LocalBBoxSize[Coord]
           + GenStart

      Simple check: for GenStart = 0, GenEnd = 1 this simplifies to
        S = V[Coord] / LocalBBoxSize[Coord] -
            LocalBBox[0, Coord] / LocalBBoxSize[Coord]
          = (V[Coord] - LocalBBox[0, Coord]) / LocalBBoxSize[Coord]
          = S1
    }

    begin
      FillChar(Gen, SizeOf(Gen), 0);
      Gen[Coord] := (GenEnd - GenStart) / LocalBBoxSize[Coord];
      Gen[3] :=
        - LocalBBox.Data[0, Coord] * (GenEnd - GenStart) / LocalBBoxSize[Coord]
        + GenStart;
    end;

  var
    SCoord, TCoord: integer;
  begin
    LocalBBox := Shape.LocalBoundingBox;

    if not LocalBBox.IsEmpty then
    begin
      LocalBBoxSize := LocalBBox.Sizes;

      Geometry.GetTextureBounds2DST(LocalBBoxSize, SCoord, TCoord);

      { Calculate TextureGen[0..1]. }
      SetupCoordGen(Result[0], SCoord, 0, 1);
      SetupCoordGen(Result[1], TCoord, 0, LocalBBoxSize[TCoord] / LocalBBoxSize[SCoord]);
    end else
    begin
      { When local bounding box is empty, set these to any sensible value }
      Result[0] := Vector4Single(1, 0, 0, 0);
      Result[1] := Vector4Single(0, 1, 0, 0);
    end;

    Result[2] := Vector4Single(0, 0, 1, 0); //< whatever, just to be defined.
  end;

  function Bounds3DTextureGenVectors: TTextureGenerationVectors;
  var
    Box: TBox3D;
    XStart, YStart, ZStart, XSize, YSize, ZSize: Single;
  begin
    Box := Shape.LocalBoundingBox;

    if not Box.IsEmpty then
    begin
      { Texture S should range from 0..1 when X changes from X1 .. X2.
        So S = X / (X2 - X1) - X1 / (X2 - X1).
        Same for T.
        For R, X3D spec says that coords go backwards, so just SwapValues. }

      SwapValues(Box.Data[0][2], Box.Data[1][2]);

      XStart := Box.Data[0][0];
      YStart := Box.Data[0][1];
      ZStart := Box.Data[0][2];

      XSize := Box.Data[1][0] - Box.Data[0][0];
      YSize := Box.Data[1][1] - Box.Data[0][1];
      ZSize := Box.Data[1][2] - Box.Data[0][2];

      Result[0] := Vector4Single(1 / XSize, 0, 0, - XStart / XSize);
      Result[1] := Vector4Single(0, 1 / YSize, 0, - YStart / YSize);
      Result[2] := Vector4Single(0, 0, 1 / ZSize, - ZStart / ZSize);
    end else
    begin
      { When local bounding box is empty, set these to any sensible value }
      Result[0] := Vector4Single(1, 0, 0, 0);
      Result[1] := Vector4Single(0, 1, 0, 0);
      Result[2] := Vector4Single(0, 0, 1, 0);
    end;
  end;

  { Initialize Arrays.TexCoords and TexCoordArray2/3/4d, based on TexCoord.

    If any usable tex coords are found
    (that is, Arrays.TexCoords.Count <> 0 on exit) then this array
    contains at least TexCoordsNeeded units. }
  procedure InitializeTexCoordGenArray;

    { Add single texture coord configuration
      to Arrays.TexCoord and TexCoordArray2/3/4d.
      Assume that TexCoordArray2/3/4d already have required length.
      Pass any TexCoord node except TMultiTextureCoordinateNode. }
    procedure AddSingleTexCoord(const TextureUnit: Cardinal; TexCoord: TX3DNode);

      function TexCoordGenFromString(const S: string; const IsTexture3D: boolean): TTextureCoordinateGeneration;
      begin
        if S = 'SPHERE' then
          Result := tgSphereMap else
        if S = 'COORD' then
          Result := tgCoord else
        if (S = 'COORD-EYE') or (S = 'CAMERASPACEPOSITION') then
          Result := tgCoordEye else
        if S = 'CAMERASPACENORMAL' then
          Result := tgCameraSpaceNormal else
        if S = 'WORLDSPACENORMAL' then
          Result := tgWorldSpaceNormal else
        if S = 'CAMERASPACEREFLECTIONVECTOR' then
          Result := tgCameraSpaceReflectionVector else
        if S = 'WORLDSPACEREFLECTIONVECTOR' then
          Result := tgWorldSpaceReflectionVector else
        if S = 'PROJECTION' then
          Result := tgProjection else
        if S = 'BOUNDS' then
        begin
          if IsTexture3D then
            Result := tgBounds3d else
            Result := tgBounds2d;
        end else
        if S = 'BOUNDS2D' then
          Result := tgBounds2d else
        if S = 'BOUNDS3D' then
          Result := tgBounds3d else
        begin
          Result := tgCoord;
          OnWarning(wtMajor, 'VRML/X3D', Format('Unsupported TextureCoordinateGenerator.mode: "%s", will use "COORD" instead',
            [S]));
        end;
      end;

      { For tgProjection generation, calculate function that should be
        later used to calculate matrix to pass to glTexGen as eye plane.

        Gets projector matrices from a TextureCoordinateGenerator or
        ProjectedTextureCoordinate node.
        If this projector is a correct light source or viewpoint,
        then get it's projection and modelview matrix and return @true.
        Returns @false (and does correct OnWarning)
        if it's empty or incorrect. }
      function GetProjectorMatrixFunction(GeneratorNode: TX3DNode): TProjectorMatrixFunction;
      var
        ProjectorValue: TX3DNode; { possible ProjectorLight or ProjectorViewpoint }
      begin
        Result := nil;

        if GeneratorNode is TTextureCoordinateGeneratorNode then
        begin
          ProjectorValue := TTextureCoordinateGeneratorNode(GeneratorNode).FdProjectedLight.Value;
          if (ProjectorValue <> nil) and
             (ProjectorValue is TAbstractLightNode) then
          begin
            Result := @TAbstractLightNode(ProjectorValue).GetProjectorMatrix;
          end else
            OnWarning(wtMajor, 'VRML/X3D', 'Using TextureCoordinateGenerator.mode = "PROJECTION", but TextureCoordinateGenerator.projectedLight is NULL or incorrect');
        end else
        if GeneratorNode is TProjectedTextureCoordinateNode then
        begin
          ProjectorValue := TProjectedTextureCoordinateNode(GeneratorNode).FdProjector.Value;
          if (ProjectorValue <> nil) and
             (ProjectorValue is TAbstractLightNode) then
          begin
            Result := @TAbstractLightNode(ProjectorValue).GetProjectorMatrix;
          end else
          if (ProjectorValue <> nil) and
             (ProjectorValue is TAbstractX3DViewpointNode) then
          begin
            Result := @TAbstractX3DViewpointNode(ProjectorValue).GetProjectorMatrix;
          end else
            OnWarning(wtMajor, 'VRML/X3D', 'ProjectedTextureCoordinate.projector is NULL or incorrect');
        end else
          { This should not actually happen (GeneratorNode passed here should be like this) }
          OnWarning(wtMajor, 'VRML/X3D', 'Invalid texture generator node');
      end;

    begin
      if TexCoord is TTextureCoordinateNode then
      begin
        Arrays.AddTexCoord2D(TextureUnit);
        TexCoordArray2d[TextureUnit] := TTextureCoordinateNode(TexCoord).FdPoint;
      end else
      if TexCoord is TTextureCoordinate2Node_1 then
      begin
        Arrays.AddTexCoord2D(TextureUnit);
        TexCoordArray2d[TextureUnit] := TTextureCoordinate2Node_1(TexCoord).FdPoint;
      end else
      if TexCoord is TTextureCoordinate3DNode then
      begin
        Arrays.AddTexCoord3D(TextureUnit);
        TexCoordArray3d[TextureUnit] := TTextureCoordinate3DNode(TexCoord).FdPoint;
      end else
      if TexCoord is TTextureCoordinate4DNode then
      begin
        Arrays.AddTexCoord4D(TextureUnit);
        TexCoordArray4d[TextureUnit] := TTextureCoordinate4DNode(TexCoord).FdPoint;
      end else
      if TexCoord is TTextureCoordinateGeneratorNode then
      begin
        Arrays.AddTexCoordGenerated(
          TexCoordGenFromString(TTextureCoordinateGeneratorNode(TexCoord).FdMode.Value,
            IsTexture3D(TextureUnit)), TextureUnit);
      end else
      if TexCoord is TProjectedTextureCoordinateNode then
      begin
        Arrays.AddTexCoordGenerated(tgProjection, TextureUnit);
      end else
      begin
        { dummy default }
        Arrays.AddTexCoordGenerated(tgBounds2d, TextureUnit);
        if TexCoord <> nil then
          OnWarning(wtMajor, 'VRML/X3D', Format('Unsupported texture coordinate node: %s, inside multiple texture coordinate', [TexCoord.NodeTypeName])) else
          OnWarning(wtMajor, 'VRML/X3D', 'NULL texture coordinate node');
      end;

      { Calculate some Generation-specific values }
      case Arrays.TexCoords[TextureUnit].Generation of
        tgBounds2d: Arrays.TexCoords[TextureUnit].GenerationBoundsVector := Bounds2DTextureGenVectors;
        tgBounds3d: Arrays.TexCoords[TextureUnit].GenerationBoundsVector := Bounds3DTextureGenVectors;
        tgProjection: Arrays.TexCoords[TextureUnit].GenerationProjectorMatrix := GetProjectorMatrixFunction(TexCoord);
      end;
    end;

  var
    MultiTexCoord: TX3DNodeList;
    I, LastCoord: Integer;
  begin
    if TexCoord = nil then
    begin
      { Leave TexCoords.Count = 0, no OnWarning }
      Exit;
    end else
    if TexCoord is TMultiTextureCoordinateNode then
    begin
      MultiTexCoord := TMultiTextureCoordinateNode(TexCoord).FdTexCoord.Items;
      SetTexLengths(MultiTexCoord.Count);
      for I := 0 to MultiTexCoord.Count - 1 do
        AddSingleTexCoord(I, MultiTexCoord[I]);
    end else
    begin
      SetTexLengths(1);
      AddSingleTexCoord(0, TexCoord);
    end;

    Assert(Arrays.TexCoords.Count = Length(TexCoordArray2d));
    Assert(Arrays.TexCoords.Count = Length(TexCoordArray3d));
    Assert(Arrays.TexCoords.Count = Length(TexCoordArray4d));

    if (Arrays.TexCoords.Count <> 0) and
       (Arrays.TexCoords.Count < TexCoordsNeeded) then
    begin
      LastCoord := Arrays.TexCoords.Count - 1;
      SetTexLengths(TexCoordsNeeded);

      { We copy tex coord LastCoord values to all following items.
        This way we do what X3D spec says:
        - if non-MultiTextureCoordinate is used for multitexturing,
          channel 0 is replicated
        - if MultiTextureCoordinate is used, but with too few items,
          last channel is replicated. }
      for I := LastCoord + 1 to TexCoordsNeeded - 1 do
      begin
        Arrays.AddTexCoordCopy(I, LastCoord);
        TexCoordArray2d[I] := TexCoordArray2d[LastCoord];
        TexCoordArray3d[I] := TexCoordArray3d[LastCoord];
        TexCoordArray4d[I] := TexCoordArray4d[LastCoord];
      end;
    end;
  end;

  { Setup 2D texture coordinates suitable for IndexedFaceSet without
    explicit texture coords, following X3D 3D Texturing spec.
    We set texture generation to tgBounds2d
    on all texture units within TexCoordsNeeded.
    We also set TexImplementation := tcAllGenerated. }
  procedure Bounds2DTextureGen;
  var
    I: integer;
    TexGenVectors: TTextureGenerationVectors;
  begin
    TexGenVectors := Bounds2DTextureGenVectors;

    TexImplementation := tcAllGenerated;
    SetTexLengths(TexCoordsNeeded);
    for I := 0 to TexCoordsNeeded - 1 do
    begin
      Arrays.AddTexCoordGenerated(tgBounds2d, I);
      Arrays.TexCoords[I].GenerationBoundsVector := TexGenVectors;
    end;
  end;

  { Setup 3D texture coordinates suitable for "primitives without
    explicit texture coordinates", following X3D 3D Texturing spec.
    We set tgBounds3d on all texture units within TexCoordsNeeded.
    We also set TexImplementation := tcAllGenerated. }
  procedure Bounds3DTextureGen;
  var
    I: Integer;
    TexGenVectors: TTextureGenerationVectors;
  begin
    TexGenVectors := Bounds3DTextureGenVectors;

    TexImplementation := tcAllGenerated;
    SetTexLengths(TexCoordsNeeded);
    for I := 0 to TexCoordsNeeded - 1 do
    begin
      Arrays.AddTexCoordGenerated(tgBounds3d, I);
      Arrays.TexCoords[I].GenerationBoundsVector := TexGenVectors;
    end;
  end;

begin
  inherited;

  TexImplementation := tcNotGenerated;

  { Make sure they are initially empty. }
  Assert(Arrays.TexCoords.Count = 0);
  Assert(Length(TexCoordArray2d) = 0);
  Assert(Length(TexCoordArray3d) = 0);
  Assert(Length(TexCoordArray4d) = 0);

  if TexCoordsNeeded > 0 then
  begin
    if { Original shape node is a primitive, without explicit texCoord }
       Shape.OriginalGeometry.AutoGenerate3DTexCoords and
       { First texture is 3D texture }
       IsTexture3D(0) then
    begin
      Bounds3DTextureGen;
    end else

    { Handle VRML 1.0 case when TexCoord present but TexCoordIndex empty
      before calling InitializeTexCoordGenArray. That's because we have
      to ignore TexCoord in this case (so says VRML 1.0 spec, and it's
      sensible since for VRML 1.0 there is always some last TexCoord node).
      So we don't want to let InitializeTexCoordGenArray to call
      any Arrays.AddTexCoord. }
    if (State.ShapeNode = nil) and
       (TexCoordIndex <> nil) and
       (TexCoordIndex.Count < CoordIndex.Count) then
    begin
      Bounds2DTextureGen;
    end else

    begin
      InitializeTexCoordGenArray;
      if Arrays.TexCoords.Count > 0 then
      begin
        if TexCoordIndex = nil then
        begin
          { This happens only for X3D non-indexed primitives:
            Triangle[Fan/Strip]Set, QuadSet. Spec says that TexCoord should be
            used just like Coord, so IndexNum indexes it directly. }
          TexImplementation := tcNonIndexed;
          Assert(CoordIndex = nil);
        end else
        if TexCoordIndex.Count >= CoordIndex.Count then
        begin
          TexImplementation := tcTexIndexed;
        end else
        begin
          { If TexCoord <> nil (non-zero Arrays.TexCoords.Count guarantees this)
            but TexCoordIndex is empty then
            - VRML 2.0 spec says that coordIndex is used
              to index texture coordinates for IndexedFaceSet.
            - VRML 1.0 spec says that in this case default texture
              coordinates should be generated (that's because for
              VRML 1.0 there is always some TexCoord <> nil,
              so it cannot be used to produce different behavior).
              We handled this case in code above.
            - Note that this cannot happen at all for X3D primitives
              like IndexedTriangle[Fan/Strip]Set, QuadSet, since they
              have TexCoordIndex = CoordIndex (just taken from "index" field).
          }
          Assert(State.ShapeNode <> nil);
          TexImplementation := tcCoordIndexed;
        end;
      end else
        Bounds2DTextureGen;
    end;
  end;

  if TexImplementation in [tcTexIndexed, tcNonIndexed] then
    AllowIndexed := false;
end;

procedure TAbstractTextureCoordinateGenerator.GenerateCoordinateBegin;

  { Set explicit texture coordinates in Arrays,
    for texture units where Arrays.TexCoords[].Generation = tgExplicit.
    This is only for TexImplementation in [tcNonIndexed, tcCoordIndexed],
    other TexImplementation have to be handled elsewhere. }
  procedure EnableExplicitTexCoord;
  var
    I: Integer;

    procedure Handle(TexCoordArray: TFPSList);
    var
      A: Pointer;
    begin
      A := Arrays.TexCoord(I, 0);
      if TexImplementation = tcCoordIndexed then
      begin
        if Arrays.Indexes <> nil then
          AssignToInterleaved(TexCoordArray, A, Arrays.AttributeSize, Arrays.Count) else
          AssignToInterleavedIndexed(TexCoordArray, A, Arrays.AttributeSize, Arrays.Count, IndexesFromCoordIndex);
      end else
      begin
        Assert(TexImplementation = tcNonIndexed);
        Assert(CoordIndex = nil); { tcNonIndexed happens only for non-indexed triangle/quad primitives }
        Assert(Arrays.Indexes = nil);
        AssignToInterleaved(TexCoordArray, A, Arrays.AttributeSize, Arrays.Count);
      end;
    end;

  begin
    for I := 0 to Arrays.TexCoords.Count - 1 do
      if Arrays.TexCoords[I].Generation = tgExplicit then
        case Arrays.TexCoords[I].Dimensions of
          2: Handle(TexCoordArray2d[I].Items);
          3: Handle(TexCoordArray3d[I].Items);
          4: Handle(TexCoordArray4d[I].Items);
        end;
  end;

begin
  inherited;

  if TexImplementation in [tcNonIndexed, tcCoordIndexed] then
    EnableExplicitTexCoord;
end;

function TAbstractTextureCoordinateGenerator.GetTextureCoord(
  IndexNum: integer; const TextureUnit: Cardinal;
  out Tex: TVector4Single): boolean;

  function GenerateTexCoord(const TexCoord: TGeometryTexCoord): TVector4Single;
  var
    Vertex: TVector3Single;
  begin
    case TexCoord.Generation of
      tgBounds2d:
        begin
          Vertex := GetVertex(IndexNum);
          Result[0] := VectorDotProduct(Vertex, TexCoord.GenerationBoundsVector[0]);
          Result[1] := VectorDotProduct(Vertex, TexCoord.GenerationBoundsVector[1]);
          Result[2] := 0;
          Result[3] := 1;
        end;
      tgBounds3d:
        begin
          Vertex := GetVertex(IndexNum);
          Result[0] := VectorDotProduct(Vertex, TexCoord.GenerationBoundsVector[0]);
          Result[1] := VectorDotProduct(Vertex, TexCoord.GenerationBoundsVector[1]);
          Result[2] := VectorDotProduct(Vertex, TexCoord.GenerationBoundsVector[2]);
          Result[3] := 1;
        end;
      tgCoord:
        begin
          Vertex := GetVertex(IndexNum);
          Result[0] := Vertex[0];
          Result[1] := Vertex[1];
          Result[2] := Vertex[2];
          Result[3] := 1;
        end;
      else OnWarning(wtMajor, 'VRML/X3D', Format('Generating on CPU texture coordinates with %d not implemented yet',
        [TexCoord.Generation]));
    end;
  end;

  { Sets Tex to TexCoordArray*[TextureUnit][Index] value. }
  procedure SetTexFromTexCoordArray(const Dimensions: TTexCoordDimensions;
    const Index: Integer);
  var
    Tex2d: TVector2Single absolute Tex;
    Tex3d: TVector3Single absolute Tex;
  begin
    case Dimensions of
      2: Tex2d := TexCoordArray2d[TextureUnit].ItemsSafe[Index];
      3: Tex3d := TexCoordArray3d[TextureUnit].ItemsSafe[Index];
      4: Tex   := TexCoordArray4d[TextureUnit].ItemsSafe[Index];
    end;
  end;

begin
  Result := TexImplementation <> tcNotGenerated;

  if Result then
  begin
    { This assertion should never fail, it's the responsibility
      of the programmer. Note that we don't need any TexCoordCount
      here, since IndexNum allowed for GetTextureCoord are the same
      and come from the same range as coords. }
    Assert(IndexNum < CoordCount);

    { Initialize to common values }
    Tex := Vector4Single(0, 0, 0, 1);

    Result := TextureUnit < Arrays.TexCoords.Count;
    if not Result then Exit;

    if Arrays.TexCoords[TextureUnit].Generation = tgExplicit then
    begin
      case TexImplementation of
        tcTexIndexed:
          { tcTexIndexed is set only if
            TexCoordIndex.Count >= CoordIndex.Count, so the IndexNum index
            is Ok for sure. That's why we don't do "ItemsSafe"
            for TexCoordIndex. }
          SetTexFromTexCoordArray(Arrays.TexCoords[TextureUnit].Dimensions, TexCoordIndex.Items.L[IndexNum]);
        tcCoordIndexed:
          { We already checked that IndexNum < CoordCount, so the first index
            is Ok for sure. }
          SetTexFromTexCoordArray(Arrays.TexCoords[TextureUnit].Dimensions, CoordIndex.Items.L[IndexNum]);
        tcNonIndexed:
          SetTexFromTexCoordArray(Arrays.TexCoords[TextureUnit].Dimensions, IndexNum);
        else raise EInternalError.Create('TAbstractTextureCoordinateGenerator.GetTextureCoord?');
      end;
    end else
      Tex := GenerateTexCoord(Arrays.TexCoords[TextureUnit]);
  end;
end;

function TAbstractTextureCoordinateGenerator.GetTextureCoord(
  IndexNum: integer; const TextureUnit: Cardinal;
  out Tex: TVector2Single): boolean;
var
  Tex4f: TVector4Single;
begin
  Result := GetTextureCoord(IndexNum, TextureUnit, Tex4f);
  Tex[0] := Tex4f[0];
  Tex[1] := Tex4f[1];
end;

procedure TAbstractTextureCoordinateGenerator.GenerateVertex(indexNum: integer);

  procedure DoTexCoord(Index: Integer);
  var
    TextureUnit: Integer;
  begin
    Assert(Arrays.Indexes = nil);
    for TextureUnit := 0 to Arrays.TexCoords.Count - 1 do
      if Arrays.TexCoords[TextureUnit].Generation = tgExplicit then
        case Arrays.TexCoords[TextureUnit].Dimensions of
          2: Arrays.TexCoord2D(TextureUnit, ArrayIndexNum)^ := TexCoordArray2d[TextureUnit].ItemsSafe[Index];
          3: Arrays.TexCoord3D(TextureUnit, ArrayIndexNum)^ := TexCoordArray3d[TextureUnit].ItemsSafe[Index];
          4: Arrays.TexCoord4D(TextureUnit, ArrayIndexNum)^ := TexCoordArray4d[TextureUnit].ItemsSafe[Index];
        end;
  end;

begin
  inherited;
  if TexImplementation = tcTexIndexed then
    DoTexCoord(TexCoordIndex.Items.L[IndexNum]);
end;

{ TAbstractMaterial1Generator ------------------------------------------ }

constructor TAbstractMaterial1Generator.Create(AShape: TShape; AOverTriangulate: boolean);
begin
  inherited;
  MaterialBinding := BIND_DEFAULT;
  UpdateMat1Implementation;
end;

procedure TAbstractMaterial1Generator.UpdateMat1Implementation;

  function IndexListNotEmpty(MFIndexes: TMFLong): boolean;
  begin
    Result :=
      (MFIndexes.Count > 0) and
      { For VRML 1.0, [-1] value is default for materialIndex
        and should be treated as "empty", as far as I understand
        the spec. }
      (not ((MFIndexes.Count = 1) and (MFIndexes.Items.L[0] = -1)));
  end;

begin
  { Calculate Mat1Implementation }

  Mat1Implementation := miOverall;

  case MaterialBinding of
    { BIND_OVERALL, BIND_DEFAULT: take default miOverall }
    BIND_PER_VERTEX:
      Mat1Implementation := miPerVertexCoordIndexed;
    BIND_PER_VERTEX_INDEXED:
      if IndexListNotEmpty(MaterialIndex) then
        Mat1Implementation := miPerVertexMatIndexed;
    BIND_PER_PART, BIND_PER_FACE:
      Mat1Implementation := miPerFace;
    BIND_PER_PART_INDEXED, BIND_PER_FACE_INDEXED:
      if IndexListNotEmpty(MaterialIndex) then
        Mat1Implementation := miPerFaceMatIndexed;
  end;

  { TODO: we handle all material bindings, but we handle BIND_PER_PART
    and BIND_PER_PART_INDEXED wrong for IndexedLineSet. }
end;

procedure TAbstractMaterial1Generator.PrepareAttributes(var AllowIndexed: boolean);
begin
  inherited;

  if Mat1Implementation in
    [ miPerFace, miPerFaceMatIndexed,
      miPerVertexCoordIndexed, miPerVertexMatIndexed ] then
  begin
    Arrays.AddColor;
    if Mat1Implementation in
      [ miPerFace, miPerFaceMatIndexed, miPerVertexMatIndexed ] then
      AllowIndexed := false;
  end;
end;

function TAbstractMaterial1Generator.GetMaterial1Color(
  const MaterialIndex: Integer): TVector4Single;
var
  M: TMaterialNode_1;
begin
  M := State.LastNodes.Material;
  if M.OnlyEmissiveMaterial then
    Result := M.EmissiveColor4Single(MaterialIndex) else
    Result := M.DiffuseColor4Single(MaterialIndex);
end;

procedure TAbstractMaterial1Generator.GenerateVertex(IndexNum: Integer);
begin
  inherited;
  case Mat1Implementation of
    miPerVertexCoordIndexed:
      Arrays.Color(ArrayIndexNum)^ := GetMaterial1Color(CoordIndex.ItemsSafe[IndexNum]);
    miPerVertexMatIndexed:
      Arrays.Color(ArrayIndexNum)^ := GetMaterial1Color(MaterialIndex.ItemsSafe[IndexNum]);
    miPerFace, miPerFaceMatIndexed:
      Arrays.Color(ArrayIndexNum)^ := FaceMaterial1Color;
  end;
end;

procedure TAbstractMaterial1Generator.GenerateCoordsRange(
  const RangeNumber: Cardinal; BeginIndex, EndIndex: Integer);
begin
  inherited;

  case Mat1Implementation of
    miPerFace:
      FaceMaterial1Color := GetMaterial1Color(RangeNumber);
    miPerFaceMatIndexed:
      FaceMaterial1Color := GetMaterial1Color(MaterialIndex.Items.L[RangeNumber]);
  end;
end;

{ TAbstractColorGenerator --------------------------------------- }

procedure TAbstractColorGenerator.PrepareAttributes(var AllowIndexed: boolean);
begin
  inherited;

  if Geometry is TAbstractComposedGeometryNode then
    RadianceTransfer := (Geometry as TAbstractComposedGeometryNode).FdRadianceTransfer.Items;

  { calculate final RadianceTransfer:
    Leave it non-nil, and calculate RadianceTransferVertexSize,
    if it's useful. }
  if RadianceTransfer <> nil then
  begin
    if (RadianceTransfer.Count <> 0) and
       Assigned(OnRadianceTransfer) then
    begin
      if RadianceTransfer.Count mod Coord.Count <> 0 then
      begin
        OnWarning(wtMajor, 'VRML/X3D', 'radianceTransfer field must be emppty, or have a number of items being multiple of coods');
        RadianceTransfer := nil;
      end else
      if RadianceTransfer.Count < Coord.Count then
      begin
        OnWarning(wtMajor, 'VRML/X3D', 'radianceTransfer field must be emppty, or have a number of items >= number of coods');
        RadianceTransfer := nil;
      end else
        RadianceTransferVertexSize := RadianceTransfer.Count div Coord.Count;
    end else
      RadianceTransfer := nil;
  end;

  if Assigned(OnVertexColor) or
     (RadianceTransfer <> nil) then
  begin
    Arrays.AddColor;
    AllowIndexed := false;
  end else
  if (Color <> nil) or (ColorRGBA <> nil) then
  begin
    Arrays.AddColor;
    if (ColorIndex <> nil) or (not ColorPerVertex) then
      AllowIndexed := false;
  end;
end;

procedure TAbstractColorGenerator.GenerateVertex(IndexNum: integer);
var
  VertexColor: TVector3Single;
  VertexIndex: Cardinal;
begin
  inherited;
  { Implement different color per vertex here. }
  if Assigned(OnVertexColor) then
  begin
    if CoordIndex <> nil then
      VertexIndex := CoordIndex.ItemsSafe[IndexNum] else
      VertexIndex := IndexNum;

    { Get vertex color, taking various possible configurations.
      OnVertexColor will be able to change it. }
    if (Color <> nil) and ColorPerVertex then
    begin
      if (ColorIndex <> nil) and (ColorIndex.Count <> 0) then
        VertexColor := Color.ItemsSafe[ColorIndex.ItemsSafe[IndexNum]] else
      if CoordIndex <> nil then
        VertexColor := Color.ItemsSafe[CoordIndex.ItemsSafe[IndexNum]] else
        VertexColor := Color.ItemsSafe[IndexNum];
    end else
    if (State.ShapeNode <> nil) and
       (State.ShapeNode.Material <> nil) then
    begin
      VertexColor := State.ShapeNode.Material.FdDiffuseColor.Value;
    end else
      VertexColor := White3Single; { default fallback }

    OnVertexColor(VertexColor, Shape, GetVertex(IndexNum), VertexIndex);
    Arrays.Color(ArrayIndexNum)^ := Vector4Single(VertexColor, MaterialOpacity);
  end else
  if RadianceTransfer <> nil then
  begin
    if CoordIndex <> nil then
      VertexIndex := CoordIndex.ItemsSafe[IndexNum] else
      VertexIndex := IndexNum;

    VertexColor := OnRadianceTransfer(Geometry,
      Addr(RadianceTransfer.L[VertexIndex * RadianceTransferVertexSize]),
      RadianceTransferVertexSize);

    Arrays.Color(ArrayIndexNum)^ := Vector4Single(VertexColor, MaterialOpacity);
  end else
  if Color <> nil then
  begin
    if ColorPerVertex then
    begin
      if (ColorIndex <> nil) and (ColorIndex.Count <> 0) then
        Arrays.Color(ArrayIndexNum)^ := Vector4Single(Color.ItemsSafe[ColorIndex.ItemsSafe[IndexNum]], MaterialOpacity) else
      if CoordIndex <> nil then
        Arrays.Color(ArrayIndexNum)^ := Vector4Single(Color.ItemsSafe[CoordIndex.ItemsSafe[IndexNum]], MaterialOpacity) else
        Arrays.Color(ArrayIndexNum)^ := Vector4Single(Color.ItemsSafe[IndexNum], MaterialOpacity);
    end else
      Arrays.Color(ArrayIndexNum)^ := FaceColor;
  end else
  if ColorRGBA <> nil then
  begin
    if ColorPerVertex then
    begin
      if (ColorIndex <> nil) and (ColorIndex.Count <> 0) then
        Arrays.Color(ArrayIndexNum)^ := ColorRGBA.ItemsSafe[ColorIndex.ItemsSafe[IndexNum]] else
      if CoordIndex <> nil then
        Arrays.Color(ArrayIndexNum)^ := ColorRGBA.ItemsSafe[CoordIndex.ItemsSafe[IndexNum]] else
        Arrays.Color(ArrayIndexNum)^ := ColorRGBA.ItemsSafe[IndexNum];
    end else
      Arrays.Color(ArrayIndexNum)^ := FaceColor;
  end;
end;

procedure TAbstractColorGenerator.GenerateCoordsRange(
  const RangeNumber: Cardinal; BeginIndex, EndIndex: Integer);
begin
  inherited;

  { Implement different color per face here. }
  if (not Assigned(OnVertexColor)) and
     (RadianceTransfer = nil) then
  begin
    if (Color <> nil) and (not ColorPerVertex) then
    begin
      if (ColorIndex <> nil) and (ColorIndex.Count <> 0) then
        FaceColor := Vector4Single(Color.ItemsSafe[ColorIndex.ItemsSafe[RangeNumber]], MaterialOpacity) else
        FaceColor := Vector4Single(Color.ItemsSafe[RangeNumber], MaterialOpacity);
    end else
    if (ColorRGBA <> nil) and (not ColorPerVertex) then
    begin
      if (ColorIndex <> nil) and (ColorIndex.Count <> 0) then
        FaceColor := ColorRGBA.ItemsSafe[ColorIndex.ItemsSafe[RangeNumber]] else
        FaceColor := ColorRGBA.ItemsSafe[RangeNumber];
    end;
  end;
end;

{ TAbstractNormalGenerator ----------------------------------------------------- }

procedure TAbstractNormalGenerator.PrepareAttributes(
  var AllowIndexed: boolean);
begin
  inherited;

  if not (
      { When IndexNum for normal works exactly like for position,
        then normals can be indexed. This is true in two cases:
        - there is no coordIndex, and normal vectors are not indexed
        - there is coordIndex, and normal vectors are indexed by coordIndex }
      (NorImplementation = niPerVertexCoordIndexed) or
     ((NorImplementation = niPerVertexNonIndexed) and (CoordIndex = nil)) ) then
    AllowIndexed := false;
end;

function TAbstractNormalGenerator.
  NorImplementationFromVRML1Binding(NormalBinding: Integer): TNormalsImplementation;
begin
  Result := niNone;

  if (Normals = nil) or (NormalIndex = nil) then
    Exit;

  case NormalBinding of
    BIND_DEFAULT, BIND_PER_VERTEX_INDEXED:
      if (NormalIndex.Count > 0) and (NormalIndex.Items.L[0] >= 0) then
        Result := niPerVertexNormalIndexed;
    BIND_PER_VERTEX:
      if CoordIndex <> nil then
        Result := niPerVertexCoordIndexed;
    BIND_OVERALL:
      if Normals.Count > 0 then
        Result := niOverall;
    BIND_PER_PART, BIND_PER_FACE:
      Result := niPerFace;
    BIND_PER_PART_INDEXED, BIND_PER_FACE_INDEXED:
      if (NormalIndex.Count > 0) and (NormalIndex.Items.L[0] >= 0) then
        Result := niPerFaceNormalIndexed;
  end;

  { If no normals are provided (for VRML 1.0, this means that last Normal
    node was empty, or it's the default empty node from DefaultLastNodes scen)
    then generate normals. }
  if Normals.Count = 0 then
    Result := niNone;
end;

function TAbstractNormalGenerator.CcwNormalsSafe(
  const Index: Integer): TVector3Single;
begin
  if Index < CcwNormals.Count then
    Result := CcwNormals.L[Index] else
    Result := ZeroVector3Single;
end;

procedure TAbstractNormalGenerator.GetNormal(
  IndexNum: Integer; RangeNumber: Integer; out N: TVector3Single);
begin
  case NorImplementation of
    niOverall:
      N := CcwNormals.L[0];
    niPerVertexNonIndexed:
      N := CcwNormals.L[IndexNum];
    niPerVertexCoordIndexed:
      N := CcwNormals.L[CoordIndex.Items.L[IndexNum]];
    niPerVertexNormalIndexed:
      N := CcwNormals.L[NormalIndex.ItemsSafe[IndexNum]];
    niPerFace:
      N := CcwNormals.L[RangeNumber];
    niPerFaceNormalIndexed:
      N := CcwNormals.L[NormalIndex.ItemsSafe[RangeNumber]];
    else
      raise EInternalError.CreateFmt('NorImplementation unknown (probably niNone, and not overridden GetNormal) in class %s',
        [ClassName]);
  end;
end;

function TAbstractNormalGenerator.NormalsFlat: boolean;
begin
  Result := NorImplementation in [niOverall, niPerFace, niPerFaceNormalIndexed];
end;

procedure TAbstractNormalGenerator.GenerateVertex(IndexNum: Integer);
begin
  inherited;
  case NorImplementation of
    niPerVertexNormalIndexed:
      begin
        Assert(Arrays.Indexes = nil);
        Arrays.Normal(ArrayIndexNum)^ := CcwNormalsSafe(NormalIndex.ItemsSafe[IndexNum]);
      end;
    niPerVertexNonIndexed:
      if CoordIndex <> nil then
      begin
        Assert(Arrays.Indexes = nil);
        Arrays.Normal(ArrayIndexNum)^ := CcwNormalsSafe(IndexNum);
      end;
    niPerFace, niPerFaceNormalIndexed:
      begin
        Assert(Arrays.Indexes = nil);
        Arrays.Normal(ArrayIndexNum)^ := FaceNormal;
      end;
  end;
end;

procedure TAbstractNormalGenerator.GenerateCoordinateBegin;

  procedure SetAllNormals(const Value: TVector3Single);
  var
    N: PVector3Single;
    I: Integer;
  begin
    N := Arrays.Normal;
    for I := 0 to Arrays.Count - 1 do
    begin
      N^ := Value;
      Arrays.IncNormal(N);
    end;
  end;

begin
  inherited;

  if Normals <> nil then
  begin
    if NormalsCcw then
      CcwNormals := Normals else
    begin
      CcwNormals := TVector3SingleList.Create;
      CcwNormals.AssignNegated(Normals);
    end;
  end;

  if NorImplementation = niPerVertexCoordIndexed then
  begin
    if Arrays.Indexes <> nil then
      AssignToInterleaved(CcwNormals, Arrays.Normal, Arrays.CoordinateSize, Arrays.Count) else
      AssignToInterleavedIndexed(CcwNormals, Arrays.Normal, Arrays.CoordinateSize, Arrays.Count, IndexesFromCoordIndex);
  end else
  if (NorImplementation = niPerVertexNonIndexed) and (CoordIndex = nil) then
  begin
    Assert(Arrays.Indexes = nil);
    AssignToInterleaved(CcwNormals, Arrays.Normal, Arrays.CoordinateSize, Arrays.Count);
  end else
  if NorImplementation = niOverall then
  begin
    SetAllNormals(CcwNormalsSafe(0));
  end;
end;

procedure TAbstractNormalGenerator.GenerateCoordinateEnd;
begin
  if (Normals <> nil) and (not NormalsCcw) then
    FreeAndNil(CcwNormals);

  inherited;
end;

procedure TAbstractNormalGenerator.GenerateCoordsRange(
  const RangeNumber: Cardinal; BeginIndex, EndIndex: Integer);
begin
  inherited;

  { FaceNormal will be actually copied to Arrays.Normal in GenerateVertex
    for this face. }
  case NorImplementation of
    niPerFace:
      FaceNormal := CcwNormalsSafe(RangeNumber);
    niPerFaceNormalIndexed:
      FaceNormal := CcwNormalsSafe(NormalIndex.ItemsSafe[RangeNumber]);
  end;
end;

{ TAbstractFogGenerator --------------------------------- }

constructor TAbstractFogGenerator.Create(AShape: TShape; AOverTriangulate: boolean);
begin
  inherited;

  if Geometry.FogCoord <> nil then
    FogCoord := Geometry.FogCoord.Items;
end;

procedure TAbstractFogGenerator.PrepareAttributes(
  var AllowIndexed: boolean);
begin
  inherited;

  if (FogCoord <> nil) or FogVolumetric then
  begin
    Arrays.AddFogCoord;
    Arrays.FogDirectValues := FogCoord <> nil;
  end;
end;

procedure TAbstractFogGenerator.GenerateVertex(
  IndexNum: Integer);

  function GetFogCoord: Single;
  begin
    { make IndexNum independent of coordIndex, always work like index to coords }
    if CoordIndex <> nil then
      IndexNum := CoordIndex.Items.L[IndexNum];

    { calculate Fog, based on FogCoord and IndexNum }
    if IndexNum < FogCoord.Count then
      Result := FogCoord.L[IndexNum] else
    if FogCoord.Count <> 0 then
      Result := FogCoord.Last else
      Result := 0; //< some default
  end;

  function GetFogVolumetric: Single;
  var
    Position, Projected: TVector3Single;
  begin
    { calculate global vertex position }
    if CoordIndex <> nil then
      Position := Coord.Items.L[CoordIndex.Items.L[IndexNum]] else
      Position := Coord.Items.L[IndexNum];
    Position := MatrixMultPoint(State.Transform, Position);

    Projected := PointOnLineClosestToPoint(
      ZeroVector3Single, FogVolumetricDirection, Position);
    Result := VectorLen(Projected);
    if not AreParallelVectorsSameDirection(
      Projected, FogVolumetricDirection) then
      Result := -Result;
    { Now I want
      - Result = FogVolumetricVisibilityStart -> 0
      - Result = FogVolumetricVisibilityStart + X -> X
        (so that Result = FogVolumetricVisibilityStart +
        FogVisibilityRangeScaled -> FogVisibilityRangeScaled) }
    Result -= FogVolumetricVisibilityStart;
  end;

  procedure SetFog(const Fog: Single);
  begin
    { When Result < 0 our intention is to have no fog (at least
      for volumetric fog, for explicit FogCoordinate we don't know what
      was user's intention).
      So Result < 0 should be equivalent to Result = 0.
      However, OpenGL doesn't necessarily interpret it like this.

      Since factor given by glFogCoordfEXT is interpreted just like
      eye distance (i.e. it's processed by appopriate linear or exp or exp2
      equations), negative values may produce quite unexpected results
      (unless you really look at the equations).

      This is mentioned in the extension specification
      [http://oss.sgi.com/projects/ogl-sample/registry/EXT/fog_coord.txt].
      First is says:

        * Should the specified value be used directly as the fog weighting
          factor, or in place of the z input to the fog equations?

          As the z input; more flexible and meets ISV requests.

      ... which means that what glFogCoordfEXT gives is interpreted
      just like eye distance for normal fog (so it's e.g. affected
      by fog linear / exp / exp2 modes, affected by fog start and end values,
      etc.). Later it says:

        * Should the fog coordinate be restricted to non-negative values?

          Perhaps. Eye-coordinate distance of fragments will be
          non-negative due to clipping. Specifying explicit negative
          coordinates may result in very large computed f values, although
          they are defined to be clipped after computation.

      ... and this is precisely why specifying negative glFogCoordfEXT
      parameters is a bad idea: you don't really know what OpenGL
      implementation will do. NVidia OpenGL seems to actually assume
      that factor < 0 means the same as factor = 0, so my code
      worked OK without clamping below
      (because NVidia OpenGL was actually doing it anyway).
      Mesa 3D (and Radeon, as I suspect, because similar problems
      were reported for "The Castle" on Radeon) seem to just use the negative
      value directly, which causes strange artifacts
      (see e.g. "The Castle" gate_final.wrl VRML file).

      The clamping below makes volumetric fog work
      OK as expected for all OpenGL implementations.

      Note: we don't limit Fog to be <= 1 (although we could
      for X3D FogCoordinate). glFogCoord is like a distance from the eye,
      so it may be >= 1, and GetFogVolumetric depends on it to work. }
    Arrays.FogCoord(ArrayIndexNum)^ := Max(Fog, 0);
  end;

begin
  inherited;
  if FogCoord <> nil then
    SetFog(GetFogCoord) else
  if FogVolumetric then
    SetFog(GetFogVolumetric);
end;

{ TAbstractShaderAttribGenerator ------------------------------ }

constructor TAbstractShaderAttribGenerator.Create(AShape: TShape; AOverTriangulate: boolean);
var
  A: TMFNode;
  I: Integer;
begin
  inherited;

  A := Geometry.Attrib;
  if A <> nil then
    for I := 0 to A.Count - 1 do
      if A[I] is TAbstractVertexAttributeNode then
      begin
        { To conserve time and memory, create Attrib instance only when needed }
        if Attrib = nil then
          Attrib := TX3DVertexAttributeNodes.Create(false);
        Attrib.Add(TAbstractVertexAttributeNode(A[I]));
      end;
end;

destructor TAbstractShaderAttribGenerator.Destroy;
begin
  FreeAndNil(Attrib);
  inherited;
end;

procedure TAbstractShaderAttribGenerator.PrepareAttributes(var AllowIndexed: boolean);
var
  I: Integer;
begin
  inherited;
  if Attrib <> nil then
    for I := 0 to Attrib.Count - 1 do
    begin
      { call Arrays.AddGLSLAttribute* }
      if Attrib[I] is TFloatVertexAttributeNode then
      begin
        case TFloatVertexAttributeNode(Attrib[I]).FdNumComponents.Value of
          1: Arrays.AddGLSLAttributeFloat(Attrib[I].FdName.Value, false);
          2: Arrays.AddGLSLAttributeVector2(Attrib[I].FdName.Value, false);
          3: Arrays.AddGLSLAttributeVector3(Attrib[I].FdName.Value, false);
          4: Arrays.AddGLSLAttributeVector4(Attrib[I].FdName.Value, false);
          else OnWarning(wtMajor, 'VRML/X3D', Format('Invalid FloatVertexAttribute.numComponents: %d (should be between 1..4)',
            [TFloatVertexAttributeNode(Attrib[I]).FdNumComponents.Value]));
        end;
      end else
      if Attrib[I] is TMatrix3VertexAttributeNode then
        Arrays.AddGLSLAttributeMatrix3(Attrib[I].FdName.Value, false) else
      if Attrib[I] is TMatrix4VertexAttributeNode then
        Arrays.AddGLSLAttributeMatrix4(Attrib[I].FdName.Value, false) else
        OnWarning(wtMajor, 'VRML/X3D', Format('Not handled vertex attribute class %s',
          [Attrib[I].NodeTypeName]));
    end;
end;

procedure TAbstractShaderAttribGenerator.GenerateVertex(IndexNum: Integer);
var
  I: Integer;
  VertexIndex: Integer;
begin
  inherited;
  if Attrib <> nil then
  begin
    if CoordIndex <> nil then
      VertexIndex := CoordIndex.Items.L[IndexNum] else
      VertexIndex := IndexNum;

    for I := 0 to Attrib.Count - 1 do
    begin
      { set Arrays.GLSLAttribute*(ArrayIndexNum).
        Note we don't do some warnings here, that were already done
        in PrepareAttributes. }
      if Attrib[I] is TFloatVertexAttributeNode then
      begin
        case TFloatVertexAttributeNode(Attrib[I]).FdNumComponents.Value of
          1: Arrays.GLSLAttributeFloat(Attrib[I].FdName.Value, ArrayIndexNum)^ :=
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex];
          2: Arrays.GLSLAttributeVector2(Attrib[I].FdName.Value, ArrayIndexNum)^ := Vector2Single(
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 2],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 2 + 1]);
          3: Arrays.GLSLAttributeVector3(Attrib[I].FdName.Value, ArrayIndexNum)^ := Vector3Single(
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 3],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 3 + 1],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 3 + 2]);
          4: Arrays.GLSLAttributeVector4(Attrib[I].FdName.Value, ArrayIndexNum)^ := Vector4Single(
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 4],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 4 + 1],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 4 + 2],
               TFloatVertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex * 4 + 3]);
        end;
      end else
      if Attrib[I] is TMatrix3VertexAttributeNode then
        Arrays.GLSLAttributeMatrix3(Attrib[I].FdName.Value, ArrayIndexNum)^ :=
          TMatrix3VertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex] else
      if Attrib[I] is TMatrix4VertexAttributeNode then
        Arrays.GLSLAttributeMatrix4(Attrib[I].FdName.Value, ArrayIndexNum)^ :=
          TMatrix4VertexAttributeNode(Attrib[I]).FdValue.ItemsSafe[VertexIndex];
    end;
  end;
end;

{ TAbstractBumpMappingGenerator ----------------------------------------------- }

procedure TAbstractBumpMappingGenerator.PrepareAttributes(var AllowIndexed: boolean);
begin
  inherited;
  if ShapeBumpMappingUsed then
    Arrays.AddGLSLAttributeMatrix3('castle_tangent_to_object_space', true);
end;

procedure TAbstractBumpMappingGenerator.GenerateVertex(IndexNum: Integer);

  procedure DoBumpMapping;

    function TangentToObjectSpace: TMatrix3Single;

      procedure SetResult(const Normal, STangent, TTangent: TVector3Single);
      begin
        Result[0] := STangent;
        Result[1] := TTangent;
        Result[2] := Normal;
      end;

    var
      LocalSTangent, LocalTTangent: TVector3Single;
      Normal: TVector3Single;
    begin
      GetNormal(IndexNum, CurrentRangeNumber, Normal);

      if HasTangentVectors and
        (Abs(VectorDotProduct(STangent, Normal)) < 0.95) and
        (Abs(VectorDotProduct(TTangent, Normal)) < 0.95) then
      begin
        if NormalsFlat then
        begin
          SetResult(Normal, STangent, TTangent);
        end else
        begin
          { If not NormalsFlat, you want to calculate local STangent and TTangent,
            I mean STangent and TTangent adjusted to current vertex (since each
            vertex may have different normal on the face when not NormalsFlat).

            Without doing this, you would see strange artifacts, smoothed
            faces would look somewhat like flat faces. Concenptually, for smoothed
            faces, whole tangent space should vary for each vertex, so Normal,
            and both tangents may be different on each vertex. }

          LocalSTangent := STangent;
          MakeVectorsOrthoOnTheirPlane(LocalSTangent, Normal);

          LocalTTangent := TTangent;
          MakeVectorsOrthoOnTheirPlane(LocalTTangent, Normal);

          SetResult(Normal, LocalSTangent, LocalTTangent);
        end;
      end else
      begin
        SetResult(Normal,
          { would be more correct to set LocalSTangent as anything perpendicular
            to Normal, and LocalTTangent as vector product (normal, LocalSTangent) }
          Vector3Single(1, 0, 0), Vector3Single(0, 1, 0));
      end;
    end;

  begin
    Arrays.GLSLAttributeMatrix3('castle_tangent_to_object_space',
      ArrayIndexNum)^ := TangentToObjectSpace;
  end;

begin
  inherited;
  if ShapeBumpMappingUsed then
    DoBumpMapping;
end;

procedure TAbstractBumpMappingGenerator.CalculateTangentVectors(
  const TriangleIndex1, TriangleIndex2, TriangleIndex3: Integer);

  { This procedure can change Triangle*, but only by swapping some vertexes,
    so we pass Triangle* by reference instead of by value, to avoid
    needless mem copying.

    Returns @false if cannot be calculated. }
  function CalculateTangent(IsSTangent: boolean; var Tangent: TVector3Single;
    var Triangle3D: TTriangle3Single;
    var TriangleTexCoord: TTriangle2Single): boolean;
  var
    D: TVector2Single;
    LineA, LineBC, DIn3D: TVector3Single;
    MiddleIndex: Integer;
    FarthestDistance, NewDistance, Alpha: Single;
    SearchCoord, OtherCoord: Cardinal;
  begin
    if ISSTangent then
      SearchCoord := 0 else
      SearchCoord := 1;
    OtherCoord := 1 - SearchCoord;

    { choose such that 1st and 2nd points have longest distance along
      OtherCoord, so 0 point is in the middle. }

    { MiddleIndex means that
      MiddleIndex, (MiddleIndex + 1) mod 3 are farthest. }

    MiddleIndex := 2;
    FarthestDistance := Abs(TriangleTexCoord[0][OtherCoord] - TriangleTexCoord[1][OtherCoord]);

    NewDistance := Abs(TriangleTexCoord[1][OtherCoord] - TriangleTexCoord[2][OtherCoord]);
    if NewDistance > FarthestDistance then
    begin
      MiddleIndex := 0;
      FarthestDistance := NewDistance;
    end;

    NewDistance := Abs(TriangleTexCoord[2][OtherCoord] - TriangleTexCoord[0][OtherCoord]);
    if NewDistance > FarthestDistance then
    begin
      MiddleIndex := 1;
      FarthestDistance := NewDistance;
    end;

    if Zero(FarthestDistance) then
      Exit(false);

    if MiddleIndex <> 0 then
    begin
      SwapValues(TriangleTexCoord[0], TriangleTexCoord[MiddleIndex]);
      SwapValues(Triangle3D      [0], Triangle3D      [MiddleIndex]);
    end;

    if IsSTangent then
    begin
      { we want line Y = TriangleTexCoord[0][1]. }
      LineA[0] := 0;
      LineA[1] := 1;
      LineA[2] := -TriangleTexCoord[0][1];
    end else
    begin
      { we want line X = TriangleTexCoord[0][0]. }
      LineA[0] := 1;
      LineA[1] := 0;
      LineA[2] := -TriangleTexCoord[0][0];
    end;
    LineBC := LineOfTwoDifferentPoints2d(
      TriangleTexCoord[1], TriangleTexCoord[2]);

    try
      D := Lines2DIntersection(LineA, LineBC);
    except
      on ELinesParallel do begin Result := false; Exit; end;
    end;

    { LineBC[0, 1] is vector 2D orthogonal to LineBC.
      If Abs(LineBC[0]) is *smaller* then it means that B and C points
      are most different on 0 coord. }
    if Abs(LineBC[0]) < Abs(LineBC[1]) then
      Alpha := (                  D[0] - TriangleTexCoord[1][0]) /
               (TriangleTexCoord[2][0] - TriangleTexCoord[1][0]) else
      Alpha := (                  D[1] - TriangleTexCoord[1][1]) /
               (TriangleTexCoord[2][1] - TriangleTexCoord[1][1]);

    DIn3D := VectorAdd(
      VectorScale(Triangle3D[1], 1 - Alpha),
      VectorScale(Triangle3D[2], Alpha));

    if D[SearchCoord] > TriangleTexCoord[0][SearchCoord] then
      Tangent := VectorSubtract(DIn3D, Triangle3D[0]) else
      Tangent := VectorSubtract(Triangle3D[0], DIn3D);

    NormalizeTo1st(Tangent);

    Result := true;
  end;

var
  Triangle3D: TTriangle3Single;
  TriangleTexCoord: TTriangle2Single;
begin
  HasTangentVectors := false;
  if ShapeBumpMappingUsed then
  begin
    { calculate Triangle3D }
    Triangle3D[0] := GetVertex(TriangleIndex1);
    Triangle3D[1] := GetVertex(TriangleIndex2);
    Triangle3D[2] := GetVertex(TriangleIndex3);

    { This is just to shut up FPC 2.2.0 warnings about
      TriangleTexCoord not initialized. }
    TriangleTexCoord[0][0] := 0.0;

    HasTangentVectors :=
      { calculate TriangleTexCoord }
      GetTextureCoord(TriangleIndex1, 0, TriangleTexCoord[0]) and
      GetTextureCoord(TriangleIndex2, 0, TriangleTexCoord[1]) and
      GetTextureCoord(TriangleIndex3, 0, TriangleTexCoord[2]) and
      { calculate STangent, TTangent }
      CalculateTangent(true , STangent, Triangle3D, TriangleTexCoord) and
      CalculateTangent(false, TTangent, Triangle3D, TriangleTexCoord) and
      (Abs(VectorDotProduct(STangent, TTangent)) < 0.95);
  end;
end;

{ non-abstract generators ---------------------------------------------------- }

{$I arraysgenerator_x3d_rendering.inc}
{$I arraysgenerator_x3d_geometry3d.inc}

{ global routines ------------------------------------------------------------ }

function GetArraysGenerator(AGeometry: TAbstractGeometryNode): TArraysGeneratorClass;
begin
  if AGeometry is TIndexedTriangleMeshNode_1 then
    Result := TTriangleStripSetGenerator else
  if AGeometry is TIndexedFaceSetNode_1 then
    Result := TIndexedFaceSet_1Generator else
  if AGeometry is TIndexedFaceSetNode then
    Result := TIndexedFaceSetGenerator else
  if AGeometry is TIndexedLineSetNode_1 then
    Result := TIndexedLineSet_1Generator else
  if (AGeometry is TIndexedLineSetNode) or
     (AGeometry is TLineSetNode) then
    Result := TLineSetGenerator else
  if AGeometry is TPointSetNode_1 then
    Result := TPointSet_1Generator else
  if AGeometry is TPointSetNode then
    Result := TPointSetGenerator else
  if (AGeometry is TTriangleSetNode) or
     (AGeometry is TIndexedTriangleSetNode) then
    Result := TTriangleSetGenerator else
  if (AGeometry is TTriangleFanSetNode) or
     (AGeometry is TIndexedTriangleFanSetNode) then
    Result := TTriangleFanSetGenerator else
  if (AGeometry is TTriangleStripSetNode) or
     (AGeometry is TIndexedTriangleStripSetNode) then
    Result := TTriangleStripSetGenerator else
  if (AGeometry is TQuadSetNode) or
     (AGeometry is TIndexedQuadSetNode) then
    Result := TQuadSetGenerator else
    Result := nil;
end;

end.