/usr/include/plugins/chlpca.h is in cimg-dev 1.5.9+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | /*
#
# File : chlpca.cpp
# ( C++ source file )
#
# Description : Example of use for the CImg plugin 'plugins/chlpca.h'.
# This file is a part of the CImg Library project.
# ( http://cimg.sourceforge.net )
#
# Copyright : Jerome Boulanger
# ( http://www.irisa.fr/vista/Equipe/People/Jerome.Boulanger.html )
#
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
// Define some useful macros.
//! Some loops
#define cimg_for_step1(bound,i,step) for (int i = 0; i<(int)(bound); i+=step)
#define cimg_for_stepX(img,x,step) cimg_for_step1((img)._width,x,step)
#define cimg_for_stepY(img,y,step) cimg_for_step1((img)._height,y,step)
#define cimg_for_stepZ(img,z,step) cimg_for_step1((img)._depth,z,step)
#define cimg_for_stepXY(img,x,y,step) cimg_for_stepY(img,y,step) cimg_for_stepX(img,x,step)
#define cimg_for_stepXYZ(img,x,y,step) cimg_for_stepZ(img,z,step) cimg_for_stepY(img,y,step) cimg_for_stepX(img,x,step)
//! Loop for point J(xj,yj) in the neighborhood of a point I(xi,yi) of size (2*rx+1,2*ry+1)
/**
Point J is kept inside the boundaries of the image img.
example of summing the pixels values in a neighborhood 11x11
cimg_forXY(img,xi,yi) cimg_for_windowXY(img,xi,yi,xj,yj,5,5) dest(yi,yi) += src(xj,yj);
**/
#define cimg_forXY_window(img,xi,yi,xj,yj,rx,ry) \
for (int yi0=cimg::max(0,yi-ry), yi1=cimg::min(yi+ry,(int)img.height()-1), yj=yi0;yj<=yi1;++yj) \
for (int xi0=cimg::max(0,xi-rx), xi1=cimg::min(xi+rx,(int)img.width()-1), xj=xi0;xj<=xi1;++xj)
#define cimg_forXYZ_window(img,xi,yi,zi,xj,yj,zj,rx,ry,rz) \
for (int zi0=cimg::max(0,zi-rz), zi1=cimg::min(zi+rz,(int)img.depth()-1) , zj=zi0;zj<=zi1;++zj) \
for (int yi0=cimg::max(0,yi-ry), yi1=cimg::min(yi+ry,(int)img.height()-1), yj=yi0;yj<=yi1;++yj) \
for (int xi0=cimg::max(0,xi-rx), xi1=cimg::min(xi+rx,(int)img.width()-1) , xj=xi0;xj<=xi1;++xj)
//! Crop a patch in the image around position x,y,z and return a column vector
/**
\param x x-coordinate of the center of the patch
\param y y-coordinate of the center of the patch
\param z z-coordinate of the center of the patch
\param px the patch half width
\param px the patch half height
\param px the patch half depth
\return img.get_crop(x0,y0,z0,x1,y1,z1).unroll('y');
**/
CImg<T> get_patch(int x, int y, int z,
int px, int py, int pz) const {
if (depth() == 1){
const int x0 = x - px, y0 = y - py, x1 = x + px, y1 = y + py;
return get_crop(x0, y0, x1, y1).unroll('y');
} else {
const int
x0 = x - px, y0 = y - py, z0 = z - pz,
x1 = x + px, y1 = y + py, z1 = z + pz;
return get_crop(x0, y0, z0, x1, y1, z1).unroll('y');
}
}
//! Extract a local patch dictionnary around point xi,yi,zi
CImg<T> get_patch_dictionnary(const int xi, const int yi, const int zi,
const int px, const int py, const int pz,
const int wx, const int wy, const int wz,
int & idc) const {
const int
n = (2*wx+1) * (2*wy+1) * (2 * (depth()==1?0:wz) + 1),
d = (2*px+1) * (2*py+1) * (2 * (depth()==1?0:px) + 1) * spectrum();
CImg<> S(n, d);
int idx = 0;
if (depth() == 1) {
cimg_forXY_window((*this), xi, yi, xj, yj, wx, wy){
CImg<T> patch = get_patch(xj, yj, 0, px, py, 1);
cimg_forY(S,y) S(idx,y) = patch(y);
if (xj==xi && yj==yi) idc = idx;
idx++;
}
} else {
cimg_forXYZ_window((*this), xi,yi,zi,xj,yj,zj,wx,wy,wz){
CImg<T> patch = get_patch(xj, yj, zj, px, py, pz);
cimg_forY(S,y) S(idx,y) = patch(y);
if (xj==xi && yj==yi && zj==zi) idc = idx;
idx++;
}
}
S.columns(0, idx - 1);
return S;
}
//! Add a patch to the image
/**
\param x x-coordinate of the center of the patch
\param y y-coordinate of the center of the patch
\param z z-coordinate of the center of the patch
\param img the patch as a 1D column vector
\param px the patch half width
\param px the patch half height
\param px the patch half depth
**/
CImg<T> & add_patch(const int xi, const int yi, const int zi,
const CImg<T> & patch,
const int px, const int py, const int pz) {
const int
x0 = xi - px, y0 = yi - py, z0 = (depth() == 1 ? 0 : zi - pz),
sx = 2 * px + 1, sy = 2 * py + 1, sz = (depth() == 1 ? 1 : 2 * pz +1);
draw_image(x0, y0, z0, 0, patch.get_resize(sx, sy, sz, spectrum(), -1), -1);
return (*this);
}
//! Add a constant patch to the image
/**
\param x x-coordinate of the center of the patch
\param y y-coordinate of the center of the patch
\param z z-coordinate of the center of the patch
\param value in the patch
\param px the patch half width
\param px the patch half height
\param px the patch half depth
**/
CImg<T> & add_patch(const int xi, const int yi, const int zi, const T value,
const int px, const int py, const int pz) {
const int
x0 = xi - px, y0 = yi - py, z0 = (depth() == 1 ? 0 : zi - pz),
x1 = xi + px, y1 = yi + py, z1 = (depth() == 1 ? 0 : zi + pz);
draw_rectangle(x0, y0, z0, 0, x1, y1, z1, spectrum()-1, value, -1);
return (*this);
}
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
/**
\param px the patch half width
\param px the patch half height
\param px the patch half depth
\param wx the training region half width
\param wy the training region half height
\param wz the training region half depth
\param nstep the subsampling of the image domain
\param nsim the number of patches used for training as a factor of the patch size
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
\param threshold the threshold on the value of the coefficients
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
**/
CImg<T> get_chlpca(const int px, const int py, const int pz,
const int wx, const int wy, const int wz,
const int nstep, const float nsim,
const float lambda_min, const float threshold,
const float noise_std, const bool pca_use_svd) const {
const int
nd = (2*px+1) * (2*py+1) * (depth()==1?1:2*pz+1) * spectrum(),
K = nsim * nd;
#ifdef DEBUG
fprintf(stderr,"chlpca: p:%dx%dx%d,w:%dx%dx%d,nd:%d,K:%d\n",
2*px+1,2*py+1,2*pz+1,2*wx+1,2*wy+1,2*wz+1,nd,K);
#endif
float sigma;
if (noise_std < 0) sigma = std::sqrt(variance_noise());
else sigma = noise_std;
CImg<T> dest(*this), count(*this);
dest.fill(0);
count.fill(0);
cimg_for_stepZ(*this,zi,(depth()==1||pz==0)?1:nstep){
#ifdef cimg_use_openmp
#pragma omp parallel for
#endif
cimg_for_stepXY((*this),xi,yi,nstep){
// extract the training region X
int idc = 0;
CImg<T> S = get_patch_dictionnary(xi,yi,zi,px,py,pz,wx,wy,wz,idc);
// select the K most similar patches within the training set
CImg<T> Sk(S);
CImg<unsigned int> index(S.width());
if (K < Sk.width() - 1){
CImg<T> mse(S.width());
CImg<unsigned int> perms;
cimg_forX(S,x){mse(x) = S.get_column(idc).MSE(S.get_column(x)); }
mse.sort(perms,true);
cimg_foroff(perms,i) {
cimg_forY(S,j) Sk(i,j) = S(perms(i),j);
index(perms(i)) = i;
}
Sk.columns(0, K);
perms.threshold(K);
} else {
cimg_foroff(index,i) index(i)=i;
}
// centering the patches
CImg<T> M(1, Sk.height(), 1, 1, 0);
cimg_forXY(Sk,x,y) { M(y) += Sk(x,y); }
M /= (T)Sk.width();
cimg_forXY(Sk,x,y) { Sk(x,y) -= M(y); }
// compute the principal component of the training set S
CImg<T> P, lambda;
if (pca_use_svd) {
CImg<T> V;
Sk.get_transpose().SVD(V,lambda,P,100);
} else {
(Sk * Sk.get_transpose()).symmetric_eigen(lambda, P);
lambda.sqrt();
}
// dimension reduction
int s = 0;
const T tx = std::sqrt((double)Sk.width()-1.0) * lambda_min * sigma;
while((lambda(s) > tx) && (s < ((int)lambda.size() - 1))) { s++; }
P.columns(0,s);
// project all the patches on the basis (compute scalar product)
Sk = P.get_transpose() * Sk;
// threshold the coefficients
if (threshold > 0) { Sk.threshold(threshold, 1); }
// project back to pixel space
Sk = P * Sk;
// recenter the patches
cimg_forXY(Sk,x,y) { Sk(x,y) += M(y); }
int j = 0;
cimg_forXYZ_window((*this),xi,yi,zi,xj,yj,zj,wx,wy,wz){
const int id = index(j);
if (id < Sk.width()) {
dest.add_patch(xj, yj, zj, Sk.get_column(id), px, py, pz);
count.add_patch(xj, yj, zj, (T)1, px, py, pz);
}
j++;
}
}
}
cimg_foroff(dest, i) {
if(count(i) != 0) { dest(i) /= count(i); }
else { dest(i) = (*this)(i); }
}
return dest;
}
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
/**
\param px the patch half width
\param px the patch half height
\param px the patch half depth
\param wx the training region half width
\param wy the training region half height
\param wz the training region half depth
\param nstep the subsampling of the image domain
\param nsim the number of patches used for training as a factor of the patch size
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
\param threshold the threshold on the value of the coefficients
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
**/
CImg<T> & chlpca(const int px, const int py, const int pz,
const int wx, const int wy, const int wz,
const int nstep, const float nsim,
const float lambda_min, const float threshold,
const float noise_std, const bool pca_use_svd) {
(*this) = get_chlpca(px, py, pz, wx, wy, wz, nstep, nsim, lambda_min,
threshold, noise_std, pca_use_svd);
return (*this);
}
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
/**
\param p the patch half size
\param w the training region half size
\param nstep the subsampling of the image domain
\param nsim the number of patches used for training as a factor of the patch size
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
\param threshold the threshold on the value of the coefficients
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
**/
CImg<T> get_chlpca(const int p=3, const int w=10,
const int nstep=5, const float nsim=10,
const float lambda_min=2, const float threshold = -1,
const float noise_std=-1, const bool pca_use_svd=true) const {
if (depth()==1) return get_chlpca(p, p, 0, w, w, 0, nstep, nsim, lambda_min,
threshold, noise_std, pca_use_svd);
else return get_chlpca(p, p, p, w, w, w, nstep, nsim, lambda_min,
threshold, noise_std, pca_use_svd);
}
CImg<T> chlpca(const int p=3, const int w=10,
const int nstep=5, const float nsim=10,
const float lambda_min=2, const float threshold = -1,
const float noise_std=-1, const bool pca_use_svd=true) {
(*this) = get_chlpca(p, w, nstep, nsim, lambda_min,
threshold, noise_std, pca_use_svd);
return (*this);
}
|