This file is indexed.

/usr/include/plugins/skeleton.h is in cimg-dev 1.5.9+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
 #
 #  File        : skeleton.h
 #                ( C++ header file - CImg plug-in )
 #
 #  Description : CImg plugin that implements the computation of the Hamilton-Jacobi skeletons
 #                using Siddiqi algorithm with the correction proposed by Torsello,
 #                as described in :
 #
 #  [SBTZ02] K. Siddiqi, S. Bouix, A. Tannenbaum and S.W. Zucker. Hamilton-Jacobi Skeletons
 #           International Journal of Computer Vision, 48(3):215-231, 2002
 #
 #  [TH03]   A. Torsello and E. R. Hancock. Curvature Correction of the Hamilton-Jacobi Skeleton
 #           IEEE Computer Vision and Pattern Recognition, 2003
 #
 #  [BST05] S. Bouix, K. Siddiqi and A. Tannenbaum. Flux driven automatic centerline
 #          extraction. Medical Image Analysis, 9:209-221, 2005
 #
 #  IMPORTANT WARNING : You must include STL's <queue> before plugin inclusion to make it working !
 #
 #  Copyright   : Francois-Xavier Dupe
 #                ( http://www.greyc.ensicaen.fr/~fdupe/ )
 #
 #  This software is governed by the CeCILL license under French law and
 #  abiding by the rules of distribution of free software. You can use,
 #  modify and/or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty and the software's author, the holder of the
 #  economic rights, and the successive licensors have only limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading, using, modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean that it is complicated to manipulate, and that also
 #  therefore means that it is reserved for developers and experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and, more generally, to use and operate it in the
 #  same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/
#ifndef cimg_plugin_skeleton
#define cimg_plugin_skeleton

/**
 * Compute the flux of the gradient
 * @param grad   the gradient of the distance function
 * @param sY     the sampling size in Y
 * @param sZ     the sampling size in Z
 * @return the flux
 */
CImg<floatT> get_flux(const CImgList<floatT> & grad,
                      const float sY=1.0f, const float sZ=1.0f) const {

  int stop = 0;  // Stop flag
  float f = 0;   // The current flux
  int count = 0; // Counter
  CImg<floatT> flux(width(),height(),depth(),1,0);

  cimg_forXYZ((*this),x,y,z) {
    if (!(*this)(x,y,z)) continue; // If the point is the background

    // Look at the neigthboorhound and compute the flux
    stop = 0;
    f = 0;
    count = 0;

    for (int k = -1; k<=1; ++k)
      for (int l = -1; l<= 1; ++l)
        for (int m = -1; m<= 1; ++m) {
          if (stop==1) continue;

          // Protection
          if ((x+k<0) || (x+k>=width()) || (y+l<0) || (y+l>=height()) ||
              (z+m<0) || (z+m>=depth()) || (k==0 && l==0 && m==0)) continue;
          ++count;

          // Test if the point is in the interior
          if ((*this)(x+k,y+l,z+m)==0) { stop = 1; continue; }

          // Compute the flux
          f+=(grad(0,x+k,y+l,z+m)*k + grad(1,x+k,y+l,z+m)*l/sY + grad(2,x+k,y+l,z+m)*m/sZ)/std::sqrt((float)(k*k+l*l+m*m));
        }

    // Update
    if (stop==1 || count==0) flux(x,y,z) = 0;
    else flux(x,y,z) = f/count;
  }

  return flux;
}

/**
 * Definition of a point with his flux value
 */
struct _PointFlux {
  int pos [3];
  float flux;
  float dist;
};

/**
 * Class for the priority queue
 */
class _compare_point {
  /**
   * Create medial curves
   */
  bool curve;

 public:
  _compare_point(const bool curve=false) { this->curve = curve; }

  bool operator()(const _PointFlux & p1, const _PointFlux & p2) const {
    if (curve) {
      if (p1.dist>p2.dist) return true;
      else if (p1.dist==p2.dist && p1.flux<p2.flux) return true;
    } else {
      if (p1.flux<p2.flux) return true;
      else if (p1.flux==p2.flux && p1.dist>p2.dist) return true;
    }
    return false;
  }
};

/**
 * Compute the log-density using the algorithm from Torsello
 * @param dist  the distance map
 * @param grad  the gradient of the distance map, e.g. the flux
 * @param flux  the divergence map
 * @param delta the threshold for the division
 * @return the logdensity \rho
 */
CImg<floatT> get_logdensity(const CImg<floatT> & dist,
                            const CImgList<floatT> & grad,
                            const CImg<floatT> & flux, float delta = 0.1) const {
  std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(true);
  CImg<floatT> logdensity(width(),height(),depth(),1,0);

  // 1 - Put all the pixel inside the priority queue
  cimg_forXYZ(dist,x,y,z) if (dist(x,y,z)!=0) {
    _PointFlux p;
    p.pos[0] = x;
    p.pos[1] = y;
    p.pos[2] = z;
    p.flux = 0;
    p.dist = dist(x,y,z);
    pqueue.push(p);
  }

  // 2 - Compute the logdensity
  while (!pqueue.empty()) {
    _PointFlux p = pqueue.top();
    pqueue.pop();

    const float
      Fx = grad(0,p.pos[0],p.pos[1],p.pos[2]),
      Fy = grad(1,p.pos[0],p.pos[1],p.pos[2]),
      Fz = grad(2,p.pos[0],p.pos[1],p.pos[2]);

    logdensity(p.pos[0],p.pos[1],p.pos[2]) = logdensity.linear_atXYZ(p.pos[0]-Fx,p.pos[1]-Fy,p.pos[2]-Fz)
      - 0.5f * (flux(p.pos[0],p.pos[1],p.pos[2])+flux.linear_atXYZ(p.pos[0]-Fx,p.pos[1]-Fy,p.pos[2]-Fz));

    const float tmp = 1.0f - (1.0f-fabs(Fx)) * (1.0f-fabs(Fy)) * (1.0f-fabs(Fz));
    if (tmp>delta) logdensity(p.pos[0],p.pos[1],p.pos[2])/=tmp;
    else if (delta<1) logdensity(p.pos[0],p.pos[1],p.pos[2]) = 0;
  }

  return logdensity;
}

/**
 * Computed the corrected divergence map using Torsello formula and idea
 * @param logdensity the log density map
 * @param grad       the gradient of the distance map
 * @param flux       the flux using siddiqi formula
 * @param delta      the discrete step
 * @return the corrected divergence map
 */
CImg<floatT> get_corrected_flux(const CImg<floatT> & logdensity,
                                const CImgList<floatT> & grad,
                                const CImg<floatT> & flux,
                                float delta = 1.0) const {

  CImg<floatT> corr_map(width(),height(),depth(),1,0);
  cimg_forXYZ(corr_map,x,y,z) {
    const float
      Fx = grad(0,x,y,z),
      Fy = grad(1,x,y,z),
      Fz = grad(2,x,y,z);
    corr_map(x,y,z) = (logdensity(x,y,z) - logdensity.linear_atXYZ(x-Fx,y-Fy,z-Fz)) * expf(logdensity(x,y,z) - 0.5f * delta) +
      0.5f * ( flux.linear_atXYZ(x-Fx,y-Fy,z-Fz)*expf(logdensity.linear_atXYZ(x-Fx,y-Fy,z-Fz)) + flux(x,y,z)*expf(logdensity(x,y,z)));
  }

  return corr_map;
}

/**
 * Test if a point is simple using Euler number for 2D case
 * or using Malandain criterion for 3D case
 * @param img the image
 * @param x the x coordinate
 * @param y the y coordinate
 * @param z the z coordinate
 * @return true if simple
 */
bool _isSimple (const CImg<T> & img, int x, int y, int z ) const {
  if (img.depth()==1) { // 2D case
    int V = 0, E = 0;  // Number of vertices and edges

    for (int k = -1; k<=1; ++k)
      for (int l = -1; l<=1; ++l) {
        // Protection
        if (x+k<0 || x+k>=img.width() || y+l<0 || y+l>=img.height()) continue;

        // Count the number of vertices
        if (img(x+k,y+l)!=0 && !(k==0 && l==0)) {
          ++V;

          // Count the number of edges
          for (int k1 = -1; k1<=1; ++k1)
            for (int l1 = -1; l1<=1; ++l1) {
              // Protection
              if (x+k+k1<0 || x+k+k1>=img.width() || y+l+l1<0 || y+l+l1>=img.height()) continue;

              if (!(k1==0 && l1==0) && img(x+k+k1,y+l+l1)!=0 && k+k1>-2 && l+l1>-2 &&
                  k+k1<2 && l+l1<2 && !(k+k1==0 && l+l1==0))
                ++E;
            }
        }
      }

    // Remove the corner if exists
    if (x-1>=0 && y-1>=0 && img(x-1,y-1)!=0 && img(x,y-1)!=0 && img(x-1,y)!=0) E-=2;
    if (x-1>=0 && y+1<img.height() && img(x-1,y+1)!=0 && img(x,y+1)!=0 && img(x-1,y)!=0) E-=2;
    if (x+1<img.width() && y-1>=0 && img(x+1,y-1)!=0 && img(x,y-1)!=0 && img(x+1,y)!=0) E-=2;
    if (x+1<img.width() && y+1<img.height() && img(x+1,y+1)!=0 && img(x,y+1)!=0 && img(x+1,y)!=0) E-=2;

    // Final return true if it is a tree (eg euler number equal to 1)
    if ((V-E/2)==1) return true;

  } else  { // 3D case
    CImg<intT> visit(3,3,3,1,0); // Visitor table
    int C_asterix = 0, C_bar = 0, count = 0;
    visit(1,1,1) = -1;

    // Compute C^*

    // Seeking for a component
    for (int k = -1; k<=1; ++k)
      for (int l = -1; l<=1; ++l)
        for (int m = -1; m<=1; ++m) {
          int label = 0;

          // Protection
          if (x+k<0 || x+k>=img.width() ||
              y+l<0 || y+l>=img.height() ||
              z+m<0 || z+m>=img.depth() ||
              (k==0 && l==0 && m==0)) continue;

          if (visit(1+k,1+l,1+m)==0 && img(x+k,y+l,z+m)!=0) {
            // Look after the neightbor
            for (int k1 = -1; k1<=1; ++k1)
              for (int l1 = -1; l1<=1; ++l1)
                for (int m1 = -1; m1<=1; ++m1) {
                  // Protection
                  if (x+k+k1<0 || x+k+k1>=img.width() ||
                      y+l+l1<0 || y+l+l1>=img.height() ||
                      z+m+m1<0 || z+m+m1>=img.depth() ||
                      k+k1>1   || k+k1<-1 ||
                      l+l1>1   || l+l1<-1 ||
                      m+m1>1   || m+m1<-1 ) continue;

                  // Search for a already knew component
                  if (visit(1+k+k1,1+l+l1,1+m+m1)>0 &&
                      img(x+k+k1,y+l+l1,z+m+m1)!=0) {
                    if (label==0) label = visit(1+k+k1,1+l+l1,1+m+m1);
                    else if (label!=visit(1+k+k1,1+l+l1,1+m+m1)) {
                      // Meld component
                      --C_asterix;

                      int C = visit(1+k+k1,1+l+l1,1+m+m1);
                      cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = label;
                    }
                  }
                }

            // Label the point
            if (label==0) {
              // Find a new component
              ++C_asterix;
              ++count;
              visit(1+k,1+l,1+m) = count;
            } else visit(1+k,1+l,1+m) = label;
          }
        }

    if (C_asterix!=1) return false;

    // Compute \bar{C}

    // Reinit visit
    visit.fill(0);
    visit(1,1,1) = -1;

    // Seeking for a component

    // Look at X-axis
    for (int k = -1; k<=1; ++k) {
      if (x+k<0 || x+k>=img.width()) continue;

      if (img(x+k,y,z)==0 && visit(1+k,1,1)==0) {
        ++C_bar;
        ++count;
        visit(1+k,1,1) = count;

        // Follow component
        for (int l = -1; l<=1; ++l) {
          if (y+l<img.height() && y+l>=0 && img(x+k,y+l,z)==0 && visit(1+k,1+l,1)==0)
            visit(1+k,1+l,1) = count;
          if (z+l<img.depth() && z+l>=0 && img(x+k,y,z+l)==0 && visit(1+k,1,1+l)==0)
            visit(1+k,1,1+l) = count;
        }
      }
    }

    // Look at Y-axis
    for (int k = -1; k<=1; ++k) {
      if (y+k<0 || y+k>=img.height()) continue;

      if (img(x,y+k,z)==0 && visit(1,1+k,1)==0) {
        int label = 0;
        ++C_bar;
        ++count;
        visit(1,1+k,1) = count;
        label = count;

        // Follow component
        for (int l = -1; l<=1; ++l) {
          if (l==0) continue;

          if (x+l<img.width() && x+l>=0 && img(x+l,y+k,z)==0) {
            if (visit(1+l,1+k,1)!=0) {
              if (label!=visit(1+l,1+k,1)) {
                // Meld component
                --C_bar;

                int C = visit(1+l,1+k,1);
                cimg_forXYZ(visit,a,b,c)
                  if (visit(a,b,c)==C) visit(a,b,c) = label;
              }
            } else visit(1+l,1+k,1) = label;
          }

          if (z+l<img.depth() && z+l>=0 && img(x,y+k,z+l)==0) {
            if (visit(1,1+k,1+l)!=0) {
              if (label!=visit(1,1+k,1+l)) {
                // Meld component
                --C_bar;

                int C = visit(1,1+k,1+l);
                cimg_forXYZ(visit,a,b,c)
                  if (visit(a,b,c)==C) visit(a,b,c) = label;
              }
            } else visit(1,1+k,1+l) = label;
          }
        }
      }
    }

    // Look at Z-axis
    for (int k = -1; k<=1; ++k) {
      if (z+k<0 || z+k>=img.depth()) continue;

      if (img(x,y,z+k)==0 && visit(1,1,1+k)==0) {
        int label = 0;
        ++C_bar;
        ++count;
        visit(1,1,1+k) = count;
        label = count;

        // Follow component
        for (int l = -1; l<=1; ++l) {
          if (l==0) continue;

          if (x+l<img.width() && x+l>=0 && img(x+l,y,z+k)==0) {
            if (visit(1+l,1,1+k)!=0) {
              if (label!=visit(1+l,1,1+k)) {
                // Meld component
                --C_bar;

                int C = visit(1+l,1,1+k);
                cimg_forXYZ(visit,a,b,c)
                  if (visit(a,b,c)==C) visit(a,b,c) = label;
              }
            } else visit(1+l,1,1+k) = label;
          }

          if (y+l<img.height() && y+l>=0 && img(x,y+l,z+k)==0) {
            if (visit(1,1+l,1+k)!=0) {
              if (label!=visit(1,1+l,1+k)) {
                // Meld component
                --C_bar;

                int C = visit(1,1+l,1+k);
                cimg_forXYZ(visit,a,b,c)
                  if (visit(a,b,c)==C) visit(a,b,c) = label;
              }
            } else visit(1,1+l,1+k) = label;
          }
        }
      }
    }
    if (C_bar==1) return true;
  }

  return false;
}

/**
 * Test if a point is a end point
 * @param img the image
 * @param label the table of labels
 * @param curve set it to true for having medial curve
 * @param x the x coordinate
 * @param y the y coordinate
 * @param z the z coordinate
 * @return true if simple
 */
bool _isEndPoint(const CImg<T> & img, const CImg<T> & label,
                 const bool curve, const int x, const int y, const int z) const {
  if (label(x,y,z)==1) return true;

  if ((!curve) && (img.depth()!=1)) { // 3D case with medial surface
    // Use Pudney specification with the 9 plans
    const int plan9 [9][8][3] = { { {-1,0,-1}, {0,0,-1}, {1,0,-1}, {-1,0,0}, {1,0,0}, {-1,0,1}, {0,0,1}, {1,0,1} }, // Plan 1
                                  { {-1,1,0}, {0,1,0}, {1,1,0}, {-1,0,0}, {1,0,0}, {-1,-1,0}, {0,-1,0}, {1,-1,0} }, // Plan 2
                                  { {0,-1,-1}, {0,0,-1}, {0,1,-1}, {0,-1,0}, {0,1,0}, {0,-1,1}, {0,0,1}, {0,1,1} }, // Plan 3
                                  { {1,1,1}, {0,1,0}, {-1,1,-1}, {1,0,1}, {-1,0,-1}, {-1,-1,-1}, {0,-1,0}, {1,-1,1} }, // Plan 4
                                  { {-1,1,1}, {0,1,0}, {1,1,-1}, {-1,0,1}, {1,0,-1}, {-1,-1,1}, {0,-1,0}, {1,-1,-1} }, // Plan 5
                                  { {-1,1,1}, {0,1,1}, {1,1,1}, {-1,0,0}, {1,0,0}, {-1,-1,-1}, {0,-1,-1}, {1,-1,-1} }, // Plan 6
                                  { {-1,1,-1}, {0,1,-1}, {1,1,-1}, {-1,0,0}, {1,0,0}, {-1,-1,1}, {0,-1,1}, {1,-1,1} }, // Plan 7
                                  { {-1,1,-1}, {-1,1,0}, {-1,1,1}, {0,0,-1}, {0,0,1}, {1,-1,-1}, {1,-1,0}, {1,-1,1} }, // Plan 8
                                  { {1,1,-1}, {1,1,0}, {1,1,1}, {0,0,-1}, {0,0,1}, {-1,-1,-1}, {-1,-1,0}, {-1,-1,1} }  // Plan 9
    };

    // Count the number of neighbors on each plan
    for (int k = 0; k<9; ++k) {
      int count = 0;

      for (int l = 0; l<8; ++l) {
        if (x+plan9[k][l][0]<0 || x+plan9[k][l][0]>=img.width() ||
            y+plan9[k][l][1]<0 || y+plan9[k][l][1]>=img.height() ||
            z+plan9[k][l][2]<0 || z+plan9[k][l][2]>=img.depth()) continue;

        if (img(x+plan9[k][l][0],y+plan9[k][l][1],z+plan9[k][l][2])!=0) ++count;
      }

      if (count<2) return true;
    }
  } else { // 2D or 3D case with medial curve
    int isb = 0;

    for (int k = -1; k<=1; ++k)
      for (int l = -1; l<=1; ++l)
        for (int m = -1; m<=1; ++m) {
          // Protection
          if (x+k<0 || x+k>=img.width() || y+l<0 || y+l>=img.height() ||
              z+m<0 || z+m>=img.depth()) continue;

          if (img(x+k,y+l,z+m)!=0) ++isb;
        }

    if (isb==2) return true; // The pixel with one neighbor
  }

  // Else it's not...
  return false;
}

/**
 * Compute the skeleton of the shape using Hamilton-Jacobi scheme
 * @param flux the flux of the distance gradient
 * @param dist the euclidean distance of the object
 * @param curve create or not medial curve
 * @param thres the threshold on the flux
 * @return the skeleton
 */
CImg<T> get_skeleton (const CImg<floatT> & flux,
                      const CImg<floatT> & dist, const bool curve, const float thres) const {
  CImg<T>
    skeleton(*this),                      // The skeleton
    label(width(),height(),depth(),1,0),  // Save label
    count(width(),height(),depth(),1,0);  // A counter for the queue
  std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(curve);
  int isb = 0;

  // 1 - Init get the bound points
  cimg_forXYZ(*this,x,y,z) {
    if (skeleton(x,y,z)==0) continue;

    // Test bound condition
    isb = 0;
    for (int k = -1; k<=1; ++k)
      for (int l = -1; l<=1; ++l)
        for (int m = -1; m<=1; ++m) {
          // Protection
          if (x+k<0 || x+k>=width() || y+l<0 || y+l>=height() ||
              z+m<0 || z+m>=depth()) continue;
          if (skeleton(x+k,y+l,z+m)==0) isb = 1;
        }

    if (isb==1 && _isSimple(skeleton,x,y,z)) {
      _PointFlux p;
      p.pos[0] = x;
      p.pos[1] = y;
      p.pos[2] = z;
      p.flux = flux(x,y,z);
      p.dist = dist(x,y,z);
      pqueue.push(p);
      count(x,y,z) = 1;
    }
  }

  // 2 - Compute the skeleton
  while (!pqueue.empty()) {
    _PointFlux p = pqueue.top();     // Get the point with the max flux
    pqueue.pop();                    // Remove the point from the queue
    count(p.pos[0],p.pos[1],p.pos[2]) = 0; // Reinit counter

      // Test if the point is simple
    if (_isSimple(skeleton,p.pos[0],p.pos[1],p.pos[2])) {
      if ((! _isEndPoint(skeleton,label,curve,p.pos[0],p.pos[1],p.pos[2])) || p.flux>thres) {
        skeleton(p.pos[0],p.pos[1],p.pos[2]) = 0; // Remove the point

        for (int k = -1; k<=1; ++k)
          for (int l = -1; l<=1; ++l)
            for (int m = -1; m<=1; ++m) {
              // Protection
              if (p.pos[0]+k < 0 || p.pos[0]+k >= width() ||
                  p.pos[1]+l < 0 || p.pos[1]+l >= height() ||
                  p.pos[2]+m < 0 || p.pos[2]+m >= depth()) continue;
              if (skeleton(p.pos[0]+k,p.pos[1]+l,p.pos[2]+m)!=0 &&
                  count(p.pos[0]+k,p.pos[1]+l,p.pos[2]+m)<1 &&
                  _isSimple(skeleton,p.pos[0]+k,p.pos[1]+l,p.pos[2]+m)) {
                _PointFlux p1;
                p1.pos[0] = p.pos[0]+k;
                p1.pos[1] = p.pos[1]+l;
                p1.pos[2] = p.pos[2]+m;
                p1.flux = flux(p.pos[0]+k,p.pos[1]+l,p.pos[2]+m);
                p1.dist = dist(p.pos[0]+k,p.pos[1]+l,p.pos[2]+m);
                pqueue.push(p1);
                count(p.pos[0]+k,p.pos[1]+l,p.pos[2]+m) = 1;
              }
            }
      } else label(p.pos[0],p.pos[1],p.pos[2]) = 1; // Mark the point as skeletal
    }
  }

  return skeleton;
}

/**
 * In place version of get_skeleton
 */
CImg<T> skeleton(const CImg<floatT> & flux,
                 const CImg<floatT> & dist, bool curve ,float thres) {
  return get_skeleton(flux,dist,curve,thres).move_to(*this);
}

#endif /* cimg_skeleton_plugin */