This file is indexed.

/usr/share/common-lisp/source/slime/nregex.lisp is in cl-swank 2:2.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
;;;
;;; This code was written by:
;;;
;;;    Lawrence E. Freil <lef@freil.com>
;;;    National Science Center Foundation
;;;    Augusta, Georgia 30909
;;;
;;; This program was released into the public domain on 2005-08-31.
;;; (See the slime-devel mailing list archive for details.)
;;;
;;; nregex.lisp - My 4/8/92 attempt at a Lisp based regular expression
;;;               parser. 
;;;
;;;               This regular expression parser operates by taking a
;;;               regular expression and breaking it down into a list
;;;               consisting of lisp expressions and flags.  The list
;;;               of lisp expressions is then taken in turned into a
;;;               lambda expression that can be later applied to a
;;;               string argument for parsing.
;;;;
;;;; Modifications made 6 March 2001 By Chris Double (chris@double.co.nz)
;;;; to get working with Corman Lisp 1.42, add package statement and export
;;;; relevant functions.
;;;;

(in-package :cl-user)

;; Renamed to slime-nregex avoid name clashes with other versions of
;; this file. -- he

;;;; CND - 6/3/2001
(defpackage slime-nregex
  (:use #:common-lisp)
  (:export 
   #:regex
   #:regex-compile
  ))

;;;; CND - 6/3/2001
(in-package :slime-nregex)

;;;
;;; First we create a copy of macros to help debug the beast
(eval-when (:compile-toplevel :load-toplevel :execute)
(defvar *regex-debug* nil)		; Set to nil for no debugging code
)

(defmacro info (message &rest args)
  (if *regex-debug*
      `(format *standard-output* ,message ,@args)))

;;;
;;; Declare the global variables for storing the paren index list.
;;;
(defvar *regex-groups* (make-array 10))
(defvar *regex-groupings* 0)

;;;
;;; Declare a simple interface for testing.  You probably wouldn't want
;;; to use this interface unless you were just calling this once.
;;;
(defun regex (expression string)
  "Usage: (regex <expression> <string)
   This function will call regex-compile on the expression and then apply
   the string to the returned lambda list."
  (let ((findit (cond ((stringp expression)
		       (regex-compile expression))
		      ((listp expression)
		       expression)))
	(result nil))
    (if (not (funcall (if (functionp findit)
			  findit
			(eval `(function ,findit))) string))
	(return-from regex nil))
    (if (= *regex-groupings* 0)
	(return-from regex t))
    (dotimes (i *regex-groupings*)
      (push (funcall 'subseq 
		     string 
		     (car (aref *regex-groups* i))
		     (cadr (aref *regex-groups* i)))
	    result))
    (reverse result)))

;;;
;;; Declare some simple macros to make the code more readable.
;;;
(defvar *regex-special-chars* "?*+.()[]\\${}")

(defmacro add-exp (list)
  "Add an item to the end of expression"
  `(setf expression (append expression ,list)))

;;;
;;; Define a function that will take a quoted character and return
;;; what the real character should be plus how much of the source
;;; string was used.  If the result is a set of characters, return an
;;; array of bits indicating which characters should be set.  If the
;;; expression is one of the sub-group matches return a
;;; list-expression that will provide the match.  
;;;
(defun regex-quoted (char-string &optional (invert nil))
  "Usage: (regex-quoted <char-string> &optional invert)
       Returns either the quoted character or a simple bit vector of bits set for
       the matching values"
  (let ((first (char char-string 0))
	(result (char char-string 0))
	(used-length 1))
    (cond ((eql first #\n)
	   (setf result #\NewLine))
	  ((eql first #\c)
	   (setf result #\Return))
	  ((eql first #\t)
	   (setf result #\Tab))
	  ((eql first #\d)
	   (setf result #*0000000000000000000000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000))
	  ((eql first #\D)
	   (setf result #*1111111111111111111111111111111111111111111111110000000000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111))
	  ((eql first #\w)
	   (setf result #*0000000000000000000000000000000000000000000000001111111111000000011111111111111111111111111000010111111111111111111111111110000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000))
	  ((eql first #\W)
	   (setf result #*1111111111111111111111111111111111111111111111110000000000111111100000000000000000000000000111101000000000000000000000000001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111))
	  ((eql first #\b)
	   (setf result #*0000000001000000000000000000000011000000000010100000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000))
	  ((eql first #\B)
	   (setf result #*1111111110111111111111111111111100111111111101011111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111))
	  ((eql first #\s)
	   (setf result #*0000000001100000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000))
	  ((eql first #\S)
	   (setf result #*1111111110011111111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111))
	  ((and (>= (char-code first) (char-code #\0))
		(<= (char-code first) (char-code #\9)))
	   (if (and (> (length char-string) 2)
		    (and (>= (char-code (char char-string 1)) (char-code #\0))
			 (<= (char-code (char char-string 1)) (char-code #\9))
			 (>= (char-code (char char-string 2)) (char-code #\0))
			 (<= (char-code (char char-string 2)) (char-code #\9))))
	       ;;
	       ;; It is a single character specified in octal
	       ;;
	       (progn 
		 (setf result (do ((x 0 (1+ x))
				   (return 0))
				  ((= x 2) return)
				(setf return (+ (* return 8)
						(- (char-code (char char-string x))
						   (char-code #\0))))))
		 (setf used-length 3))
	     ;;
	     ;; We have a group number replacement.
	     ;;
	     (let ((group (- (char-code first) (char-code #\0))))
	       (setf result `((let ((nstring (subseq string (car (aref *regex-groups* ,group))
						     (cadr (aref *regex-groups* ,group)))))
				(if (< length (+ index (length nstring)))
				    (return-from compare nil))
				(if (not (string= string nstring
						  :start1 index
						  :end1 (+ index (length nstring))))
				    (return-from compare nil)
				  (incf index (length nstring)))))))))
	  (t 
	   (setf result first)))
    (if (and (vectorp result) invert)
	(bit-xor result #*1111111110011111111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 t))
    (values result used-length)))

;;;
;;; Now for the main regex compiler routine.
;;;
(defun regex-compile (source &key (anchored nil))
  "Usage: (regex-compile <expression> [ :anchored (t/nil) ])
       This function take a regular expression (supplied as source) and
       compiles this into a lambda list that a string argument can then
       be applied to.  It is also possible to compile this lambda list
       for better performance or to save it as a named function for later
       use"
  (info "Now entering regex-compile with \"~A\"~%" source)
  ;;
  ;; This routine works in two parts.
  ;; The first pass take the regular expression and produces a list of 
  ;; operators and lisp expressions for the entire regular expression.  
  ;; The second pass takes this list and produces the lambda expression.
  (let ((expression '())		; holder for expressions
	(group 1)			; Current group index
	(group-stack nil)		; Stack of current group endings
	(result nil)			; holder for built expression.
	(fast-first nil))		; holder for quick unanchored scan
    ;;
    ;; If the expression was an empty string then it alway
    ;; matches (so lets leave early)
    ;;
    (if (= (length source) 0)
	(return-from regex-compile
		     '(lambda (&rest args)
			(declare (ignore args))
			t)))
    ;;
    ;; If the first character is a caret then set the anchored
    ;; flags and remove if from the expression string.
    ;;
    (cond ((eql (char source 0) #\^)
	   (setf source (subseq source 1))
	   (setf anchored t)))
    ;;
    ;; If the first sequence is .* then also set the anchored flags.
    ;; (This is purely for optimization, it will work without this).
    ;;
    (if (>= (length source) 2)
	(if (string= source ".*" :start1 0 :end1 2)
	    (setf anchored t)))
    ;;
    ;; Also, If this is not an anchored search and the first character is
    ;; a literal, then do a quick scan to see if it is even in the string.
    ;; If not then we can issue a quick nil, 
    ;; otherwise we can start the search at the matching character to skip
    ;; the checks of the non-matching characters anyway.
    ;;
    ;; If I really wanted to speed up this section of code it would be 
    ;; easy to recognize the case of a fairly long multi-character literal
    ;; and generate a Boyer-Moore search for the entire literal. 
    ;;
    ;; I generate the code to do a loop because on CMU Lisp this is about
    ;; twice as fast a calling position.
    ;;
    (if (and (not anchored)
	     (not (position (char source 0) *regex-special-chars*))
	     (not (and (> (length source) 1)
		       (position (char source 1) *regex-special-chars*))))
	(setf fast-first `((if (not (dotimes (i length nil)
				     (if (eql (char string i)
					      ,(char source 0))
					 (return (setf start i)))))
			      (return-from final-return nil)))))
    ;;
    ;; Generate the very first expression to save the starting index
    ;; so that group 0 will be the entire string matched always
    ;;
    (add-exp '((setf (aref *regex-groups* 0)
		     (list index nil))))
    ;;
    ;; Loop over each character in the regular expression building the
    ;; expression list as we go.
    ;;
    (do ((eindex 0 (1+ eindex)))
	((= eindex (length source)))
      (let ((current (char source eindex)))
	(info "Now processing character ~A index = ~A~%" current eindex)
	(case current
	  ((#\.)
	   ;;
	   ;; Generate code for a single wild character
	   ;;
	   (add-exp '((if (>= index length)
			  (return-from compare nil)
			(incf index)))))
	  ((#\$)
	   ;;
	   ;; If this is the last character of the expression then
	   ;; anchor the end of the expression, otherwise let it slide
	   ;; as a standard character (even though it should be quoted).
	   ;;
	   (if (= eindex (1- (length source)))
	       (add-exp '((if (not (= index length))
			      (return-from compare nil))))
	     (add-exp '((if (not (and (< index length)
				      (eql (char string index) #\$)))
			    (return-from compare nil)
			  (incf index))))))
	  ((#\*)
	   (add-exp '(ASTRISK)))

	  ((#\+)
	   (add-exp '(PLUS)))

	  ((#\?)
	   (add-exp '(QUESTION)))

	  ((#\()
	   ;;
	   ;; Start a grouping.
	   ;;
	   (incf group)
	   (push group group-stack)
	   (add-exp `((setf (aref *regex-groups* ,(1- group)) 
			    (list index nil))))
	   (add-exp `(,group)))
	  ((#\))
	   ;;
	   ;; End a grouping
	   ;;
	   (let ((group (pop group-stack)))
	     (add-exp `((setf (cadr (aref *regex-groups* ,(1- group)))
			      index)))
	     (add-exp `(,(- group)))))
	  ((#\[)
	   ;;
	   ;; Start of a range operation.
	   ;; Generate a bit-vector that has one bit per possible character
	   ;; and then on each character or range, set the possible bits.
	   ;;
	   ;; If the first character is carat then invert the set.
	   (let* ((invert (eql (char source (1+ eindex)) #\^))
		  (bitstring (make-array 256 :element-type 'bit
					     :initial-element
					        (if invert 1 0)))
		  (set-char (if invert 0 1)))
	     (if invert (incf eindex))
	     (do ((x (1+ eindex) (1+ x)))
		 ((eql (char source x) #\]) (setf eindex x))
	       (info "Building range with character ~A~%" (char source x))
	       (cond ((and (eql (char source (1+ x)) #\-)
			   (not (eql (char source (+ x 2)) #\])))
		      (if (>= (char-code (char source x))
			     (char-code (char source (+ 2 x))))
			  (error "Invalid range \"~A-~A\".  Ranges must be in acending order"
				 (char source x) (char source (+ 2 x))))
		      (do ((j (char-code (char source x)) (1+ j)))
		       ((> j (char-code (char source (+ 2 x))))
			(incf x 2))
		     (info "Setting bit for char ~A code ~A~%" (code-char j) j)
		     (setf (sbit bitstring j) set-char)))
		     (t
		      (cond ((not (eql (char source x) #\]))
			     (let ((char (char source x)))
			       ;;
			       ;; If the character is quoted then find out what
			       ;; it should have been
			       ;;
			       (if (eql (char source x) #\\ )
				   (let ((length))
				     (multiple-value-setq (char length)
					 (regex-quoted (subseq source x) invert))
				     (incf x length)))
			       (info "Setting bit for char ~A code ~A~%" char (char-code char))
			       (if (not (vectorp char))
				   (setf (sbit bitstring (char-code (char source x))) set-char)
				 (bit-ior bitstring char t))))))))
	     (add-exp `((let ((range ,bitstring))
			  (if (>= index length)
			      (return-from compare nil))
			  (if (= 1 (sbit range (char-code (char string index))))
			      (incf index)
			    (return-from compare nil)))))))
	  ((#\\ )
	   ;;
	   ;; Intreprete the next character as a special, range, octal, group or 
           ;; just the character itself.
	   ;;
	   (let ((length)
		 (value))
	     (multiple-value-setq (value length)
		 (regex-quoted (subseq source (1+ eindex)) nil))
	     (cond ((listp value)
		    (add-exp value))
		   ((characterp value)
		    (add-exp `((if (not (and (< index length)
					     (eql (char string index) 
						  ,value)))
				   (return-from compare nil)
				 (incf index)))))
		   ((vectorp value)
		    (add-exp `((let ((range ,value))
				 (if (>= index length)
				     (return-from compare nil))
				 (if (= 1 (sbit range (char-code (char string index))))
				     (incf index)
				   (return-from compare nil)))))))
	     (incf eindex length)))
	  (t
	   ;;
	   ;; We have a literal character.  
	   ;; Scan to see how many we have and if it is more than one
	   ;; generate a string= verses as single eql.
	   ;;
	   (let* ((lit "")
		  (term (dotimes (litindex (- (length source) eindex) nil)
			  (let ((litchar (char source (+ eindex litindex))))
			    (if (position litchar *regex-special-chars*)
				(return litchar)
			      (progn
				(info "Now adding ~A index ~A to lit~%" litchar 
				      litindex)
				(setf lit (concatenate 'string lit 
						       (string litchar)))))))))
	     (if (= (length lit) 1)
		 (add-exp `((if (not (and (< index length)
					  (eql (char string index) ,current)))
				(return-from compare nil)
			      (incf index))))
	       ;;
	       ;; If we have a multi-character literal then we must
	       ;; check to see if the next character (if there is one)
	       ;; is an astrisk or a plus or a question mark.  If so then we must not use this
	       ;; character in the big literal.
	       (progn 
		 (if (or (eql term #\*)
                         (eql term #\+)
                         (eql term #\?))
		     (setf lit (subseq lit 0 (1- (length lit)))))
		 (add-exp `((if (< length (+ index ,(length lit)))
				(return-from compare nil))
			    (if (not (string= string ,lit :start1 index
					      :end1 (+ index ,(length lit))))
				(return-from compare nil)
			      (incf index ,(length lit)))))))
	     (incf eindex (1- (length lit))))))))
    ;;
    ;; Plug end of list to return t.  If we made it this far then
    ;; We have matched!
    (add-exp '((setf (cadr (aref *regex-groups* 0))
		     index)))
    (add-exp '((return-from final-return t)))
    ;;
;;;    (print expression)
    ;;
    ;; Now take the expression list and turn it into a lambda expression
    ;; replacing the special flags with lisp code.
    ;; For example:  A BEGIN needs to be replace by an expression that
    ;; saves the current index, then evaluates everything till it gets to
    ;; the END then save the new index if it didn't fail.
    ;; On an ASTRISK I need to take the previous expression and wrap
    ;; it in a do that will evaluate the expression till an error
    ;; occurs and then another do that encompases the remainder of the
    ;; regular expression and iterates decrementing the index by one
    ;; of the matched expression sizes and then returns nil.  After
    ;; the last expression insert a form that does a return t so that
    ;; if the entire nested sub-expression succeeds then the loop
    ;; is broken manually.
    ;; 
    (setf result (copy-tree nil))
    ;;
    ;; Reversing the current expression makes building up the 
    ;; lambda list easier due to the nexting of expressions when 
    ;; and astrisk has been encountered.
    (setf expression (reverse expression))
    (do ((elt 0 (1+ elt)))
	((>= elt (length expression)))
      (let ((piece (nth elt expression)))
	;;
	;; Now check for PLUS, if so then ditto the expression and then let the
	;; ASTRISK below handle the rest.
	;;
	(cond ((eql piece 'PLUS)
	       (cond ((listp (nth (1+ elt) expression))
		      (setf result (append (list (nth (1+ elt) expression))
					   result)))
		     ;;
		     ;; duplicate the entire group
		     ;; NOTE: This hasn't been implemented yet!!
		     (t
		      (error "GROUP repeat hasn't been implemented yet~%")))))
	(cond ((listp piece)		;Just append the list
	       (setf result (append (list piece) result)))
	      ((eql piece 'QUESTION)	; Wrap it in a block that won't fail
	       (cond ((listp (nth (1+ elt) expression))
		      (setf result 
			    (append `((progn (block compare
						    ,(nth (1+ elt) 
							  expression))
					     t))
				    result))
		      (incf elt))
		     ;;
		     ;; This is a QUESTION on an entire group which
		     ;; hasn't been implemented yet!!!
		     ;;
		     (t
		      (error "Optional groups not implemented yet~%"))))
	      ((or (eql piece 'ASTRISK) ; Do the wild thing!
		   (eql piece 'PLUS))
	       (cond ((listp (nth (1+ elt) expression))
		      ;;
		      ;; This is a single character wild card so
		      ;; do the simple form.
		      ;;
		      (setf result 
			    `((let ((oindex index))
				(block compare
				       (do ()
					   (nil)
					 ,(nth (1+ elt) expression)))
				(do ((start index (1- start)))
				    ((< start oindex) nil)
				  (let ((index start))
				    (block compare
					   ,@result))))))
		      (incf elt))
		     (t
		      ;;
		      ;; This is a subgroup repeated so I must build
		      ;; the loop using several values.
		      ;;
		      ))
	       )
	      (t t))))			; Just ignore everything else.
    ;;
    ;; Now wrap the result in a lambda list that can then be 
    ;; invoked or compiled, however the user wishes.
    ;;
    (if anchored
	(setf result
	      `(lambda (string &key (start 0) (end (length string)))
		 (setf *regex-groupings* ,group)
		 (block final-return
			(block compare
			       (let ((index start)
				     (length end))
				 ,@result)))))
      (setf result
	    `(lambda (string &key (start 0) (end (length string)))
	       (setf *regex-groupings* ,group)
	       (block final-return
		      (let ((length end))
			,@fast-first
			(do ((marker start (1+ marker)))
			    ((> marker end) nil)
			  (let ((index marker))
			    (if (block compare
				       ,@result)
				(return t)))))))))))

;; (provide 'nregex)