This file is indexed.

/usr/share/freemat/help/text/ode45.mdc is in freemat-help 4.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
ODE45 ODE45 Numerical Solution of ODEs

Usage

 function [t,y] = ode45(f,tspan,y0,options,varargin)
 function SOL   = ode45(f,tspan,y0,options,varargin)

 ode45 is a solver for ordinary differential equations and initial value problems.
 To solve the ODE

      y'(t) =  f(t,y)
      y(0)  =  y0

 over the interval tspan=[t0 t1], you can use ode45. For example, to solve
 the ode

      y'   =  y
      y(0) =  1

 whose exact solution is y(t)=exp(t), over the interval t0=0, t1=3, do

-->       [t,y]=ode45(@(t,y) y,[0 3],1)
Warning: Newly defined variable error shadows a function of the same name.  Use clear error to recover access to the function

k = 
 2 


y = 
    1.0000    1.0030 


t = 

   1.0e-03 * 
         0    3.0000 


k = 
 3 


y = 
    1.0000    1.0030    1.0182 


t = 

   1.0e-02 * 
         0    0.3000    1.8000 


k = 
 4 


y = 
    1.0000    1.0030    1.0182    1.0975 


t = 

   1.0e-02 * 
         0    0.3000    1.8000    9.3000 


k = 
 5 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814 


t = 
         0    0.0030    0.0180    0.0930    0.3930 


k = 
 6 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930 


k = 
 7 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930 


k = 
 8 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 


k = 
 9 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 9

    4.9185 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 9

    1.5930 


k = 
 10 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 10

    4.9185    6.6392 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 10

    1.5930    1.8930 


k = 
 11 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 11

    4.9185    6.6392    8.9620 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 11

    1.5930    1.8930    2.1930 


k = 
 12 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 12

    4.9185    6.6392    8.9620   12.0975 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 12

    1.5930    1.8930    2.1930    2.4930 


k = 
 13 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 13

    4.9185    6.6392    8.9620   12.0975   16.3299 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 13

    1.5930    1.8930    2.1930    2.4930    2.7930 


k = 
 14 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 14

    4.9185    6.6392    8.9620   12.0975   16.3299   20.0854 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 14

    1.5930    1.8930    2.1930    2.4930    2.7930    3.0000 

t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 14

    1.5930    1.8930    2.1930    2.4930    2.7930    3.0000 

y = 
    1.0000 
    1.0030 
    1.0182 
    1.0975 
    1.4814 
    1.9997 
    2.6993 
    3.6437 
    4.9185 
    6.6392 
    8.9620 
   12.0975 
   16.3299 
   20.0854 

 If you want a dense output (i.e., an output that also contains an interpolating
 spline), use instead

-->       SOL=ode45(@(t,y) y,[0 3],1)
Warning: Newly defined variable error shadows a function of the same name.  Use clear error to recover access to the function

k = 
 2 


y = 
    1.0000    1.0030 


t = 

   1.0e-03 * 
         0    3.0000 


k = 
 3 


y = 
    1.0000    1.0030    1.0182 


t = 

   1.0e-02 * 
         0    0.3000    1.8000 


k = 
 4 


y = 
    1.0000    1.0030    1.0182    1.0975 


t = 

   1.0e-02 * 
         0    0.3000    1.8000    9.3000 


k = 
 5 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814 


t = 
         0    0.0030    0.0180    0.0930    0.3930 


k = 
 6 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930 


k = 
 7 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930 


k = 
 8 


y = 
    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 


t = 
         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 


k = 
 9 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 9

    4.9185 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 9

    1.5930 


k = 
 10 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 10

    4.9185    6.6392 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 10

    1.5930    1.8930 


k = 
 11 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 11

    4.9185    6.6392    8.9620 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 11

    1.5930    1.8930    2.1930 


k = 
 12 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 12

    4.9185    6.6392    8.9620   12.0975 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 12

    1.5930    1.8930    2.1930    2.4930 


k = 
 13 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 13

    4.9185    6.6392    8.9620   12.0975   16.3299 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 13

    1.5930    1.8930    2.1930    2.4930    2.7930 


k = 
 14 


y = 

 Columns 1 to 8

    1.0000    1.0030    1.0182    1.0975    1.4814    1.9997    2.6993    3.6437 

 Columns 9 to 14

    4.9185    6.6392    8.9620   12.0975   16.3299   20.0854 


t = 

 Columns 1 to 8

         0    0.0030    0.0180    0.0930    0.3930    0.6930    0.9930    1.2930 

 Columns 9 to 14

    1.5930    1.8930    2.1930    2.4930    2.7930    3.0000 


SOL = 
    x: 1 14 double array
    y: 1 14 double array
    xe: 
    ye: 
    ie: 
    solver: generic_ode_solver
    interpolant: 1 1 functionpointer array
    idata: 1 1 struct array

 You can view the result using

      plot(0:0.01:3,deval(SOL,0:0.01:3))

 You will notice that this function is available for "every" value of t, while

      plot(t,y,'o-')

 is only available at a few points.

 The optional argument 'options' is a structure. It may contain any of the
 following fields:

 'AbsTol'      - Absolute tolerance, default is 1e-6.
 'RelTol'      - Relative tolerance, default is 1e-3.
 'MaxStep'     - Maximum step size, default is (tspan(2)-tspan(1))/10
 'InitialStep' - Initial step size, default is maxstep/100
 'Stepper'     - To override the default Fehlberg integrator
 'Events'      - To provide an event function
 'Projection'  - To provide a projection function

 The varargin is ignored by this function, but is passed to all your callbacks, i.e.,
 f, the event function and the projection function.

 ==Event Function==

 The event function can be used to detect situations where the integrator should stop,
 possibly because the right-hand-side has changed, because of a collision, etc...

 An event function should look like

    function [val,isterminal,direction]=event(t,y,...)

 The return values are:

 val        - the value of the event function.
 isterminal - whether or not this event should cause termination of the integrator.
 direction  - 1=upcrossings only matter, -1=downcrossings only, 0=both.

 == Projection function ==

 For geometric integration, you can provide a projection function which will be
 called after each time step. The projection function has the following signature:

     function yn=project(t,yn,...);

 If the output yn is very different from the input yn, the quality of interpolation
 may decrease.