/usr/share/gap/grp/simple.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | #############################################################################
##
#W simple.gi GAP Library Alexander Hulpke
##
##
#Y Copyright (C) 2011 The GAP Group
##
## This file contains basic constructions for simple groups of bounded size,
## if necessary by calling the `atlasrep' package.
##
# data for simple groups of order up to 10^18 that are not L_2(q)
# for some of the groups entry #5 indicates the smallest permutation degree
BindGlobal("SIMPLEGPSNONL2",
[[60,"A",5,0,5],[360,"A",6,0,6],[2520,"A",7,0,7],
[5616,"L",3,3,13],[6048,"U",3,3,28],
[7920,"Spor","M(11)",0,11],[20160,"A",8,0,8],
[20160,"L",3,4,21],[25920,"S",4,3,40],
[29120,"Sz",8,0,65],[62400,"U",3,4,65],
[95040,"Spor","M(12)",0,12],[126000,"U",3,5,126],
[175560,"Spor","J(1)",0,266],[181440,"A",9,0,9],
[372000,"L",3,5,31],[443520,"Spor","M(22)",0,22],
[604800,"Spor","J(2)",0,100],[979200,"S",4,4,85],
[1451520,"S",6,2,63],[1814400,"A",10,0,10],
[1876896,"L",3,7,57],[3265920,"U",4,3,280],
[4245696,"G",2,3,351],[4680000,"S",4,5,156],
[5515776,"U",3,8,513],[5663616,"U",3,7,344],
[6065280,"L",4,3,40],[9999360,"L",5,2,31],
[10200960,"Spor","M(23)",0,23],[13685760,"U",5,2,165],
[16482816,"L",3,8,73],[17971200,"Spor","T",0,1600],
[19958400,"A",11,0,11],[32537600,"Sz",32,0,1025],
[42456960,"L",3,9,91],[42573600,"U",3,9,730],
[44352000,"Spor","HS",0,100],[50232960,"Spor","J(3)",0,6156],
[70915680,"U",3,11,1332],[138297600,"S",4,7,400],
[174182400,"O+",8,2,120],[197406720,"O-",8,2,119],
[211341312,"3D",4,2,819],[212427600,"L",3,11,133],
[239500800,"A",12,0,12],[244823040,"Spor","M(24)",0,24],
[251596800,"G",2,4,416],[270178272,"L",3,13,183],
[811273008,"U",3,13,2198],[898128000,"Spor","McL",0,275],
[987033600,"L",4,4,85],[1018368000,"U",4,4,1105],
[1056706560,"S",4,8,585],[1425715200,"L",3,16,273],
[1721606400,"S",4,9,820],[2317678272,"U",3,17,4914],
[3113510400,"A",13,0,13],[4030387200,"Spor","He",0,2058],
[4279234560,"U",3,16,4097],[4585351680,"S",6,3,364],
[4585351680,"O",7,3,351],[5644682640,"L",3,19,381],
[5859000000,"G",2,5,3906],[6950204928,"L",3,17,307],
[7254000000,"L",4,5,156],[9196830720,"U",6,2,672],
[10073444472,"R",27,0,19684],[12860654400,"S",4,11,1464],
[14742000000,"U",4,5,3276],[16938986400,"U",3,19,6860],
[20158709760,"L",6,2,63],[26056457856,"U",3,23,12168],
[34093383680,"Sz",128,0,16385],[43589145600,"A",14,0,14],
[47377612800,"S",8,2,255],[50778000000,"L",3,25,651],
[68518981440,"S",4,13,2380],[78156525216,"L",3,23,553],
[145926144000,"Spor","Ru",0,4060],[152353500000,"U",3,25,15626]
,[166557358800,"U",3,29,24390],[237783237120,"L",5,3,121],
[258190571520,"U",5,3,2440],[282027786768,"L",3,27,757],
[282056445216,"U",3,27,19684],[283991644800,"L",3,31,993],
[366157135872,"U",3,32,32769],
[448345497600,"Spor","Suz",0,1782],
[460815505920,"Spor","ON",0,122760],
[495766656000,"Spor","Co(3)",0,276],[499631102880,"L",3,29,871]
,[653837184000,"A",15,0,15],[664376138496,"G",2,7],
[852032133120,"U",3,31,29792],[1004497044480,"S",4,17,5220],
[1095199948800,"S",4,16,4369],[1098404364288,"L",3,32,1057],
[1165572172800,"U",4,7,17200],[1169948144736,"L",3,37,1407],
[2317591180800,"L",4,7,400],[2660096970720,"U",3,41,68922],
[3057017889600,"S",4,19,7240],[3509983020816,"U",3,37,50654],
[3893910661872,"L",3,43,1893],[4106059776000,"S",6,4,1365],
[4329310519296,"G",2,8],[4952179814400,"O+",8,3,1080],
[7933578895872,"U",3,47,103824],[7980059337600,"L",3,41,1723],
[10151968619520,"O-",8,3,1066],[10461394944000,"A",16,0,16],
[11072935641600,"L",3,49,2451],[11682025843488,"U",3,43],
[20560831566912,"3D",4,3,26572],[20674026236160,"S",4,23,12720]
,[20745981365616,"U",3,53],[22594320403200,"G",2,9],
[23499295948800,"O+",10,2,496],[23800278205248,"L",3,47,2257],
[25015379558400,"O-",10,2,495],[33219371640000,"U",3,49],
[34558531338240,"L",4,8,585],[34693789777920,"U",4,8],
[35115786567680,"Sz",512,0,262145],
[42305421312000,"Spor","Co(2)",0,2300],
[47607300000000,"S",4,25,16276],[48929657263200,"U",3,59],
[50759843097600,"L",4,9,820],[53443952640000,"U",5,4],
[62237108003616,"L",3,53,2863],[63884982751200,"L",3,61,3783],
[64561751654400,"Spor","Fi(22)",0,3510],
[93801727918080,"L",3,64,4161],[101798586432000,"U",4,9],
[102804157834560,"S",4,27,20440],
[135325289783376,"L",3,67,4557],[146787542351760,"L",3,59,3541]
,[163849992929280,"L",7,2,127],[177843714048000,"A",17,0,17]
,[191656636992240,"U",3,61],[210103196385600,"S",4,29,25260],
[215209078277760,"U",3,71],[227787103272960,"U",7,2],
[228501000000000,"S",6,5,3906],[228501000000000,"O",7,5,3906],
[258492255436800,"L",5,4,341],[268768894995072,"L",3,73,5403],
[273030912000000,"Spor","HN",0,1140000],
[281407330713600,"U",3,64],[376611192619200,"G",2,11],
[405978568998816,"U",3,67],[409387254681600,"S",4,31,30784],
[505620881962560,"L",3,79,6321],[645623627090400,"L",3,71,5113]
,[750656410078176,"U",3,83],[806310830350368,"U",3,73],
[1036388695478400,"U",4,11],[1124799322521600,"S",4,32,33825],
[1312032469255200,"U",3,89],[1516868799014400,"U",3,79],
[1852734273062400,"L",3,81,6643],[1852741245568320,"U",3,81],
[2069665112592000,"L",4,11,1464],
[2251961353296816,"L",3,83,6973],
[2402534664555840,"S",4,37,52060],
[2612197345314816,"L",3,97,9507],[3201186852864000,"A",18,0,18]
,[3311126603366400,"F",4,2,69888],
[3609172015066800,"U",3,101],[3914077489672896,"G",2,13],
[3936086241056640,"L",3,89,8011],
[4222165056643872,"L",3,103,10713],[5726791697419872,"U",3,107],
[6641311310615520,"L",3,109,11991],
[6707334818822400,"S",4,41,70644],[7836609208799616,"U",3,97],
[8860792800073536,"U",3,113],[10799893897531200,"S",4,43,81400],
[10827495027060000,"L",3,101,10303],
[12666518353227648,"U",3,103],[12714519233969280,"L",4,13,2380],
[15315521833180800,"L",3,121,14763],
[17180347043675088,"L",3,107,11557],
[19866953531250000,"U",3,125],[19923964701735600,"U",3,109],
[21032402889738240,"L",6,3,364],
[22557001777261056,"L",3,127,16257],[22837472432087040,"U",6,3],
[24017743449686016,"U",3,128],[24815256521932800,"S",10,2,1023],
[25452197883665280,"U",4,13],[26287655087416320,"S",4,47,106080]
,[26582341554402816,"L",3,113,12883],
[28908396044367840,"U",3,131],
[36011213418659840,"Sz",2048,0,4194305],
[39879509765760000,"S",4,49,120100],
[41363788790194272,"U",3,137],[45946617370848480,"U",3,121],
[46448800925370480,"L",3,139,19461],
[49825657439340552,"R",243,0],
[51765179004000000,"Spor","Ly",0,8835156],
[56653740000000000,"L",5,5],[57604365000000000,"U",5,5],
[59600799562500000,"L",3,125],[60822550204416000,"A",19,0],
[65784756654489600,"S",8,3],[65784756654489600,"O",9,3],
[67010895544320000,"O+",8,4],[67536471195648000,"O-",8,4],
[67671071404425216,"U",3,127],[67802350642790400,"3D",4,4],
[71776114783027200,"G",2,16],[72053161633775616,"L",3,128],
[80974721219670000,"U",3,149],[86725110978620400,"L",3,131],
[87412594259315520,"S",4,53],[90089701905420000,"L",3,151],
[90745943887872000,"Spor","Th",0,143127000],
[123043374372144096,"L",3,157],[124091269852276608,"L",3,137],
[139346506548429600,"U",3,139],[166097514629752272,"L",3,163],
[167795197370551296,"G",2,17],[201648518295622272,"U",3,167],
[221797724414797440,"L",3,169],[242924016786074400,"L",3,149],
[255484940347310400,"S",4,59],[267444174893824656,"U",3,173],
[270269262714825600,"U",3,151],[273457218604953600,"S",6,7],
[273457218604953600,"O",7,7],[351309192845176800,"U",3,179],
[356575576421678400,"S",4,61],[369130313886677616,"U",3,157],
[383967100578952800,"L",3,181],[498292774007829408,"U",3,163],
[590382996204625920,"U",3,191],[604945295112210528,"L",3,167],
[641690334200143872,"L",3,193],[665393448951722400,"U",3,169],
[712975930219192320,"L",4,17],[756131656307437872,"U",3,197],
[796793353927300800,"G",2,19],[802332214764045216,"L",3,173],
[819770591880266400,"L",3,199],[911215823217986880,"S",4,67]]
);
# call atlasrep, possibly with extra parameters, but only if atlasrep is available
BindGlobal("DoAtlasrepGroup",function(params)
local g;
if LoadPackage("atlasrep")<>true then
Error("`atlasrep' package must be available to construct group ",params[1]);
fi;
g:=CallFuncList(ValueGlobal("AtlasGroup"),params);
SetName(g,params[1]);
if not '.' in params[1] then
SetIsSimpleGroup(g,true);
fi;
return g;
end);
InstallGlobalFunction(SimpleGroup,function(arg)
local brg,str,p,a,param,g,s,small,plus,sets;
if IsRecord(arg[1]) then
p:=arg[1];
if p.series="Spor" then
brg:=p.parameter;
else
brg:=Concatenation([p.series],p.parameter);
fi;
else
brg:=arg;
fi;
str:=brg[1];
# Case x(y gets replaced by x,y for x,y digits
p:=Position(str,'(');
if p>1 and p<Length(str) and str[p-1] in CHARS_DIGITS and str[p+1] in CHARS_DIGITS
then
str:=Concatenation(str{[1..p-1]},",",str{[p+1..Length(str)]});
fi;
# blanks,parentheses,_,^,' do not contribute to parsing
a:=" ()_^'";
str:=UppercaseString(Filtered(str,x->not x in a));
# are there parameters in the string?
# skip leading numbers for indicating 2/3 twist
if Length(str)>1 then
p:=PositionProperty(str{[2..Length(str)]},
x->x in CHARS_DIGITS or x in "+-");
if p<>fail then p:=p+1;fi;
else
p:=PositionProperty(str{[1..Length(str)]},
x->x in CHARS_DIGITS or x in "+-");
fi;
param:=[];
if p<>fail then
a:=str{[p..Length(str)]};
str:=str{[1..p-1]};
# special case `O+' or `O-'
if '+' in a or '-' in a then
p:=Position(a,'+');
if p<>fail then
plus:=1;
else
p:=Position(a,'-');
plus:=-1;
fi;
if Length(a)=1 then
# deal with "O+" class
Add(a,'1');
fi;
if a[p+1]='1' then
# gave O(+1,8,2) or so
plus:=fail;
fi;
if plus<>fail then
if p=1 then
# leading +-, possibly with comma
a:=a{[2..Length(a)]};
if Length(a)>1 and a[1]=',' then
a:=a{[2..Length(a)]};
fi;
else
# internal +-
a[p]:=',';
fi;
fi;
else
plus:=fail;
fi;
#Error(plus,a);
p:=Position(a,',');
while p<>fail do
s:=a{[1..p-1]};
if s[1]='+' then
s:=s{[2..Length(s)]};
fi;
Add(param,Int(s));
a:=a{[p+1..Length(a)]};
p:=Position(a,',');
od;
if a[1]='+' then
a:=a{[2..Length(a)]};
fi;
Add(param,Int(a));
#Error();
if plus<>fail then
param:=Concatenation([plus],param);
fi;
fi;
param:=Concatenation(param,brg{[2..Length(brg)]});
if ForAny(param,x->not IsInt(x)) then
Error("parameters must be integral");
fi;
# replace Lie names with classical/discoverer equivalents if possible
# now parse the name. Is it sporadic, alternating, suzuki, or ree?
if Length(param)<=1 then
if str="A" or str="ALT" then
if Length(param)=1 and param[1]>4 then
g:=AlternatingGroup(param[1]);
SetName(g,Concatenation("A",String(param[1])));
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Alternating groups");
fi;
elif (str="M" and Length(param)=0) or str="FG" then
Error("Monster not yet supported");
elif (str="B" or str="BM") and Length(param)=0 then
return DoAtlasrepGroup(["B"]);
elif str="M" or str="MATHIEU" then
if Length(param)=1 and param[1] in [11,12,22,23,24] then
g:=MathieuGroup(param[1]);
SetName(g,Concatenation("M",String(param[1])));
return g;
else
Error("Illegal Parameter for Mathieu groups");
fi;
elif str="J" or str="JANKO" then
if Length(param)=1 and param[1] in [1..4] then
if param[1]=1 then
g:=PrimitiveGroup(266,1);
elif param[1]=2 then
g:=PrimitiveGroup(100,1);
else
g:=[,,"J3","J4"];
g:=DoAtlasrepGroup([g[param[1]]]);
fi;
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Janko groups");
fi;
elif str="CO" or str="." or str="CONWAY" then
if Length(param)=1 and param[1] in [1..3] then
if param[1]=3 then
g:=PrimitiveGroup(276,3);
elif param[1]=2 then
g:=PrimitiveGroup(2300,1);
else
g:=DoAtlasrepGroup(["Co1"]);
fi;
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Conway groups");
fi;
elif str="FI" or str="FISCHER" then
if Length(param)=1 and param[1] in [22,23,24] then
s:=Concatenation("Fi",String(param[1]));
if param[1] = 24 then Append(s,"'"); fi;
g:=DoAtlasrepGroup([s]);
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Fischer groups");
fi;
elif str="SUZ" or str="SZ" or str="SUZUKI" then
if Length(param)=0 and str="SUZ" then
g:=PrimitiveGroup(1782,1);
SetIsSimpleGroup(g,true);
return g;
elif Length(param)=1 and param[1]>7 and
Set(Factors(param[1]))=[2] and IsOddInt(LogInt(param[1],2)) then
g:=SuzukiGroup(IsPermGroup,param[1]);
SetName(g,Concatenation("Sz(",String(param),")"));
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Suzuki groups");
fi;
elif str="R" or str="REE" or str="2G" then
if Length(param)=1 and param[1]>26 and
Set(Factors(param[1]))=[3] and IsOddInt(LogInt(param[1],3)) then
g:=ReeGroup(IsMatrixGroup,param[1]);
SetName(g,Concatenation("Ree(",String(param[1]),")"));
SetIsSimpleGroup(g,true);
return g;
else
Error("Illegal Parameter for Ree groups");
fi;
elif str="ON" then
return DoAtlasrepGroup(["ON"]);
elif str="HE" then
return PrimitiveGroup(2058,1);
SetIsSimpleGroup(g,true);
return g;
elif str="HS" then
return PrimitiveGroup(100,3);
SetIsSimpleGroup(g,true);
return g;
elif str="HN" then
return DoAtlasrepGroup(["HN"]);
elif str="LY" then
return DoAtlasrepGroup(["Ly"]);
elif str="MC" or str="MCL" then
return PrimitiveGroup(275,1);
SetIsSimpleGroup(g,true);
return g;
elif str="TH" then
return DoAtlasrepGroup(["Th"]);
elif str="RU" then
return DoAtlasrepGroup(["Ru"]);
elif str="B" then
return DoAtlasrepGroup(["B"]);
elif str="T" then
g:=PrimitiveGroup(1600,20);
s:=Size(g);
g:=Group(GeneratorsOfGroup(g));
SetSize(g,s);
SetName(g,"2F(4,2)'");
SetIsSimpleGroup(g,true);
return g;
fi;
fi;
# now the name is ``classical''. and the second parameter a prime power
if not IsPrimePowerInt(param[Maximum(2,Length(param))]) then
Error("field order must be a prime power");
fi;
small:=false;
s:=fail;
if str="L" or str="SL" or str="PSL" then
g:=PSL(param[1],param[2]);
s:=Concatenation("PSL(",String(param[1]),",",String(param[2]),")");
elif str="U" or str="SU" or str="PSU" then
g:=PSU(param[1],param[2]);
s:=Concatenation("PSU(",String(param[1]),",",String(param[2]),")");
small:=true;
elif str="S" or str="SP" or str="PSP" then
g:=PSp(param[1],param[2]);
s:=Concatenation("PSp(",String(param[1]),",",String(param[2]),")");
small:=true;
elif str="O" or str="SO" or str="PSO" then
if Length(param)=2 and IsOddInt(param[1]) then
g:=SO(param[1],param[2]);
g:=Action(g,NormedRowVectors(GF(param[2])^param[1]),OnLines);
s:=DerivedSubgroup(g);
if s<>g and IsBound(g!.actionHomomorphism) then
s!.actionHomomorphism:=ActionHomomorphism(
PreImage(g!.actionHomomorphism,s),
HomeEnumerator(UnderlyingExternalSet(g!.actionHomomorphism)),
OnLines,"surjective");
fi;
g:=s;
s:=Concatenation("O(",String(param[1]),",",String(param[2]),")");
small:=true;
elif Length(param)=3 and param[1]=1 and IsEvenInt(param[2]) then
g:=SO(1,param[2],param[3]);
g:=Action(g,NormedRowVectors(GF(param[3])^param[2]),OnLines);
g:=DerivedSubgroup(g);
s:=Concatenation("O+(",String(param[2]),",",String(param[3]),")");
small:=true;
elif Length(param)=3 and param[1]=-1 and IsEvenInt(param[2]) then
g:=SO(-1,param[2],param[3]);
g:=Action(g,NormedRowVectors(GF(param[3])^param[2]),OnLines);
g:=DerivedSubgroup(g);
s:=Concatenation("O-(",String(param[2]),",",String(param[3]),")");
small:=true;
else
Error("wrong dimension/parity for O");
fi;
elif str="E" then
if Length(param)<2 or not param[1] in [6,7,8] then
Error("E(n,q) needs n=6,7,8");
fi;
s:=Concatenation("E",String(param[1]),"(",String(param[2]),")");
g:=DoAtlasrepGroup([s]);
elif str="F" then
if Length(param)>1 and param[1]<>4 then
Error("F(n,q) needs n=4");
fi;
a:=param[Length(param)];
if a=2 then
g:=DoAtlasrepGroup(["F4(2)"]);
else
Error("Can't do yet");
fi;
s:=Concatenation("F_4(",String(a),")");
elif str="G" then
if Length(param)>1 and param[1]<>2 then
Error("G(n,q) needs n=2");
fi;
a:=param[Length(param)];
if a=2 then return SimpleGroup("U",3,3);
elif a=3 then
g:=PrimitiveGroup(351,7);
elif a=4 then
g:=PrimitiveGroup(416,7);
elif a=5 then
g:=DoAtlasrepGroup(["G2(5)"]);
else
Error("Can't do yet");
fi;
s:=Concatenation("G_2(",String(a),")");
elif str="3D" then
if Length(param)>1 and param[1]<>4 then
Error("3D(n,q) needs n=4");
fi;
a:=param[Length(param)];
if a=2 then
g:=PrimitiveGroup(819,5);
elif a=3 then
g:=DoAtlasrepGroup(["3D4(3)"]);
else
Error("Can't do yet");
fi;
s:=Concatenation("3D4(",String(a),")");
elif str="2E" then
if Length(param)>1 and param[1]<>6 then
Error("3D(n,q) needs n=4");
fi;
a:=param[Length(param)];
s:=Concatenation("2E6(",String(a),")");
g:=DoAtlasrepGroup([s]);
else
Error("Can't handle type ",str);
fi;
if small then
a:=ShallowCopy(Orbits(g,MovedPoints(g)));
if Length(a)>1 then
SortParallel(List(a,Length),a);
if IsBound(g!.actionHomomorphism) then
# pull back
p:=UnderlyingExternalSet(g!.actionHomomorphism);
a:=Action(Source(g!.actionHomomorphism),HomeEnumerator(p){a[1]},
FunctionAction(p));
else
a:=Action(g,a[1]);
fi;
SetSize(a,Size(g));
g:=a;
fi;
a:=Blocks(g,MovedPoints(g));
if Length(a)>1 then
if IsBound(g!.actionHomomorphism) then
# pull back
p:=UnderlyingExternalSet(g!.actionHomomorphism);
sets:=Set(List(a,x->HomeEnumerator(p){x}));
p:=FunctionAction(p);
a:=Action(Source(g!.actionHomomorphism),sets,
function(set,g)
return Set(List(set,x->p(x,g)));
end);
else
a:=Action(g,a,OnSets);
fi;
SetSize(a,Size(g));
g:=a;
fi;
fi;
if s<>fail and not HasName(g) then
SetName(g,s);
fi;
SetIsSimpleGroup(g,true);
return g;
end);
BindGlobal("SizeL2Q",q->q*(q-1)*(q+1)*Gcd(2,q)/2);
# deal with irregular order for L2(2^a)
# return [usedegree, nexta, stackvalue]
BindGlobal("NextL2Q",function(a,stack)
local NextL2PrimePowerInt;
NextL2PrimePowerInt:=function(a)
repeat
a:=a+1;
# L2(q) for q=4,5,9 duplicates others
until IsPrimePowerInt(a) and not a in [4,5,9];
return a;
end;
a:=NextL2PrimePowerInt(a);
if stack<>fail then
if SizeL2Q(stack)<SizeL2Q(a) then
return [stack,a-1,fail];
else
return [a,a,stack];
fi;
elif IsEvenInt(a) and SizeL2Q(a)>SizeL2Q(NextL2PrimePowerInt(a)) then
stack:=a;
a:=NextL2PrimePowerInt(a);
return [a,a,stack];
else
return [a,a,fail];
fi;
end);
BindGlobal("NextIterator_SimGp",function(it)
local a,l,pos,g,b;
if it!.done then return fail;fi;
a:=it!.b;
if a>1259903 then
# 1259903 is the last prime power whose L2 order is <10^18
Error("List of simple groups is only available up to order 10^18");
fi;
l:=SizeL2Q(a);
pos:=it!.pos;
if l<SIMPLEGPSNONL2[pos][1] and not it!.nopsl2 then
# next is a L2
g:=SimpleGroup("L",2,a);
a:=NextL2Q(it!.a,it!.stack);
it!.a:=a[2];
it!.b:=a[1];
it!.stack:=a[3];
else
# next is from the list
a:=SIMPLEGPSNONL2[pos];
it!.pos:=pos+1;
if a[2]="Spor" then
g:=SimpleGroup(a[3]);
else
if a[4]=0 then
b:=a{[2,3]}; # 0 is filler
else
b:=a{[2..4]};
fi;
g:=CallFuncList(SimpleGroup,b);
fi;
# safety check
if Size(g)<>a[1] then
Error("order inconsistency");
fi;
fi;
#Print("pos=",it!.pos," b=",it!.b,"\n");
it!.done:=SIMPLEGPSNONL2[it!.pos][1]>it!.ende
and (SizeL2Q(it!.b)>it!.ende or it!.nopsl2);
return g;
end);
BindGlobal("IsDoneIterator_SimGp",function(it)
return it!.done;
end);
InstallGlobalFunction(SimpleGroupsIterator,function(arg)
local a,b,stack,ende,start,pos,nopsl2;
ende:=infinity;
if Length(arg)=0 then
start:=60;
else
start:=Maximum(60,arg[1]);
if Length(arg)>1 then
ende:=arg[2];
fi;
fi;
nopsl2:=ValueOption("NOPSL2")=true or ValueOption("nopsl2")=true;
# find relevant L2 order
a:=RootInt(start,3)-1;
stack:=fail;
repeat
a:=NextL2Q(a,stack);
b:=a[1];
stack:=a[3];
a:=a[2];
until SizeL2Q(b)>=start;
pos:=First([1..Length(SIMPLEGPSNONL2)],x->SIMPLEGPSNONL2[x][1]>=start);
return IteratorByFunctions(rec(
IsDoneIterator:=IsDoneIterator_SimGp,
NextIterator:=NextIterator_SimGp,
ShallowCopy:=ShallowCopy,
a:=a,
b:=b,
ende:=ende,
stack:=stack,
pos:=pos,
nopsl2:=nopsl2,
# if nopsl2 then the l2size is irrelevant
done:=(SizeL2Q(b)>ende or nopsl2) and SIMPLEGPSNONL2[pos][1]>ende
));
end);
InstallGlobalFunction(ClassicalIsomorphismTypeFiniteSimpleGroup,function(G)
local t,r;
if IsGroup(G) then
t:=IsomorphismTypeInfoFiniteSimpleGroup(G);
else
t:=G;
fi;
r:=rec();
if t.series in ["Z","A"] then
r.series:=t.series;
r.parameter:=[t.parameter];
elif t.series in ["L","E"] then
r.series:=t.series;
r.parameter:=t.parameter;
elif t.series="Spor" then
r.series:=t.series;
# stupid naming of J2
if Length(t.name)>5 and t.name{[1..5]}="HJ = " then
r.parameter:=["J2"];
else
r.parameter:=[t.name];
fi;
elif t.series="B" then
r.series:="O";
r.parameter:=[t.parameter[1]*2+1,t.parameter[2]];
elif t.series="C" then
r.series:="S";
r.parameter:=[t.parameter[1]*2,t.parameter[2]];
elif t.series="D" then
r.series:="O+";
r.parameter:=[t.parameter[1]*2,t.parameter[2]];
elif t.series="F" then
r.series:="F";
r.parameter:=[4,t.parameter];
elif t.series="G" then
r.series:="G";
r.parameter:=[2,t.parameter];
elif t.series="2A" then
r.series:="U";
r.parameter:=[t.parameter[1]+1,t.parameter[2]];
elif t.series="2B" then
r.series:="Sz";
r.parameter:=[t.parameter];
elif t.series="2D" then
r.series:="O-";
r.parameter:=[t.parameter[1]*2,t.parameter[2]];
elif t.series="3D" then
r.series:="3D";
r.parameter:=[4,t.parameter];
elif t.series="2E" then
r.series:="2E";
r.parameter:=[6,t.parameter];
elif t.series="2F" then
if t.parameter=2 then
r.series:="Spor";
r.parameter:="T";
else
r.series:="2F";
r.parameter:=[t.parameter];
fi;
elif t.series="2G" then
r.series:="2G";
r.parameter:=[t.parameter];
fi;
return r;
end);
InstallMethod(DataAboutSimpleGroup,true,[IsGroup],0,
function(G)
local id;
id:=IsomorphismTypeInfoFiniteSimpleGroup(G);
return DataAboutSimpleGroup(id);
end);
InstallOtherMethod(DataAboutSimpleGroup,true,[IsRecord],0,
function(id)
local nam,e,EFactors,par,expo,prime,result,aut,i;
#note: Extensions are up to isomorphism, not with embedding questions. Thus
#no distinction of ' extensions!
# possible automorphism extensions for Chevalley groups
EFactors:=function(d,f,g)
local dd,df,dg,r,myprod,gal,i,s,j,ddn;
if g>2 then
# do a few basic cases first ...
if d=1 and f=1 and g=6 then
# subgroup classes S_3
dd:=[ [ 1, "1" ], [ 2, "2" ], [ 3, "3" ], [ 6, "3.2" ] ];
return dd;
elif d=4 and f=1 and g=6 then
# subgroup classes S_4
dd:=[ [ 1, "1" ], [ 2, "2_1" ],[ 2, "2_2" ], [ 3, "3" ],
[ 4, "4" ], [ 4, "(2^2)_{111}" ], [4,"(2^2)_{122}"],
[ 6, "3.2" ], [ 8, "D8" ], [ 12, "A4" ],
[ 24, "S4" ] ];
return dd;
else
Error("mixed triality not yet done");
fi;
fi;
if f>1 then
dd:=PrimitiveElement(GF(prime^f))^((prime^f-1)/d);
dd:=List([0..d-1],x->dd^x); # Powers;
gal:=GaloisGroup(GF(prime^f));
gal:=SmallGeneratingSet(gal);
if Length(gal)>1 then Error("not small generators");fi;
gal:=gal[1];
gal:=List([0..f-1],x->Permutation(gal^x,dd));
fi;
myprod:=function(c1,c2)
local d2,g1,f1;
d2:=c2[1];
if c1[3]>0 and d2>0 then
d2:=((d2+1)^gal[c1[3]+1])-1;
fi;
if c1[2]=1 then
# g-action
d2:=-d2 mod d;
fi;
if g=1 then
g1:=0;
else
g1:=(c1[2]+c2[2]) mod g;
fi;
if f=1 then
f1:=0;
else
f1:=(c1[3]+c2[3]) mod f;
fi;
f1:=[(c1[1]+d2) mod d,g1,f1];
#Print(c1,"*",c2,"=",f1,"\n");
return f1;
end;
r:=[];
if Number([d,g,f],i->i>1)>1 then
# form group
dd:=Cartesian([0..d-1],[0..g-1],[0..f-1]);
dd:=List(dd,x->List(dd,y->Position(dd,myprod(y,x))));
dd:=List(dd,PermList);
dd:=Group(dd);
if Size(dd)<>d*f*g then Error("wrong automorphism order");fi;
dd:=List(ConjugacyClassesSubgroups(dd),Representative);
ddn:=[];
for i in dd do
if IsCyclic(i) then
Add(ddn,String(Size(i)));
else
r:="";
s:=Reversed(ElementaryAbelianSeriesLargeSteps(i));
for j in [2..Length(s)] do
if Length(r)>0 then
Add(r,'.');
fi;
j:=AbelianInvariants(s[j]/s[j-1]);
Append(r,String(j[1]));
if Length(j)>1 then
Add(r,'^');
Append(r,String(Length(j)));
fi;
od;
Add(ddn,r);
fi;
od;
r:=[];
for i in [1..Length(dd)] do
if Number(ddn,x->x=ddn[i])=1 then
Add(r,[Size(dd[i]),ddn[i]]);
else
Add(r,[Size(dd[i]),Concatenation(ddn[i],"_",
String(Number(ddn{[1..i]},x->x=ddn[i])))]);
fi;
od;
return r;
fi;
if d>1 then
dd:=DivisorsInt(d);
r:=List(dd,i->[i,String(i)]);
fi;
if f>1 then
df:=DivisorsInt(f);
r:=List(df,i->[i,String(i)]);
fi;
if g>1 then
dg:=DivisorsInt(g);
r:=List(dg,i->[i,String(i)]);
fi;
return Filtered(r,i->i[1]>1);
end;
# fix O5 to SP4
if id.series="B" and id.parameter[1]=2 then
id:=rec(name:=id.name,series:="C",parameter:=id.parameter);
fi;
if IsBound(id.parameter) then
par:=id.parameter;
if IsList(par) then
prime:=Factors(par[2])[1];
expo:=LogInt(par[2],prime);
else
prime:=Factors(par)[1];
expo:=LogInt(par,prime);
fi;
fi;
e:=[];
if id.series="Spor" then
nam:=id.name;
# deal wirth stupid names in identification
if nam in ["M(11)","M(12)","M(22)","M(23)","M(24)","J(1)","J(3)",
"J(4)","Co(3)","Co(2)","Fi(22)","Fi(23)"] then
nam:=Filtered(nam,x->x<>'(' and x<>')');
elif nam="HJ = J(2) = F(5-)" then
nam:="J2";
elif nam="He = F(7)" then
nam:="He";
elif nam="Fi(24) = F(3+)" then
nam:="F3+";
elif nam="Mc" then
nam:="McL";
elif nam="HN = F(5) = F = F(5+)" then
nam:="HN";
elif nam="Th = F(3) = E = F(3/3)" then
nam:="Th";
elif nam="Co(1) = F(2-)" then
nam:="Co1";
elif nam="B = F(2+)" then
nam:="B";
elif nam="M = F(1)" then
nam:="M";
fi;
if nam in ["M12","M22","HJ","Suz","HS","McL","He","Fi22","F3+",
"HN","ON","J3"] then
e:=[[2,"2"]];
fi;
elif id.series="A" then
nam:=Concatenation("A",String(par));
if par=6 then
e:=[[2,"2_1"],[2,"2_2"],[2,"2_3"],[4,"2^2"]];
else
e:=[[2,"2"]];
fi;
elif id.series="L" then
nam:=Concatenation("L",String(par[1]),"(",String(par[2]),")");
if par[1]=2 then
e:=EFactors(Gcd(2,par[2]-1),expo,1);
else
e:=EFactors(Gcd(par[1],par[2]-1),expo,2);
fi;
elif id.series="2A" then
nam:=Concatenation("U",String(par[1]+1),"(",String(par[2]),")");
e:=EFactors(Gcd(par[1]+1,par[2]+1),2*expo,1);
elif id.series="B" then
nam:=Concatenation("O",String(2*par[1]+1),"(",String(par[2]),")");
if par[1]=2 and par[2]=3 then
nam:="U4(2)"; # library name
fi;
if par[1]=2 and prime=2 then
e:=EFactors(Gcd(2,par[2]-1),expo,2);
else
e:=EFactors(Gcd(2,par[2]-1),expo,1);
fi;
elif id.series="2B" then
nam:=Concatenation("Sz(",String(par),")");
e:=EFactors(1,expo,1);
elif id.series="C" then
nam:=Concatenation("S",String(par[1]*2),"(",String(par[2]),")");
if par[1]=2 and prime=2 then
e:=EFactors(Gcd(2,par[2]-1),expo,2);
else
e:=EFactors(Gcd(2,par[2]-1),expo,1);
fi;
elif id.series="D" then
nam:=Concatenation("O",String(par[1]*2),"+(",String(par[2]),")");
if par[1]=4 then
e:=EFactors(Gcd(2,par[2]-1)^2,expo,6);
elif IsEvenInt(par[1]) then
e:=EFactors(Gcd(2,par[2]-1)^2,expo,2);
else
e:=EFactors(Gcd(4,par[2]^par[1]-1),expo,2);
fi;
elif id.series="2D" then
nam:=Concatenation("O",String(par[1]*2),"-(",String(par[2]),")");
e:=EFactors(Gcd(4,par[2]^par[1]+1),expo/2,1);
elif id.series="F" then
nam:=Concatenation("F4(",String(par),")");
if prime=2 then
e:=EFactors(1,expo,2);
else
e:=EFactors(1,expo,1);
fi;
elif id.series="G" then
nam:=Concatenation("G2(",String(par),")");
if prime=3 then
e:=EFactors(1,expo,2);
else
e:=EFactors(1,expo,1);
fi;
elif id.series="3D" then
nam:=Concatenation("3D4(",String(par),")");
e:=EFactors(1,3*expo,1);
elif id.series="2G" then
nam:=Concatenation("R(",String(par),")");
e:=EFactors(1,expo,1);
elif id.series="2F" and id.parameter=2 then
# special case for tits' group before sorting out further 2F4's
nam:="2F4(2)'";
e:=[[2,"2"]];
else
Info(InfoWarning,1,"simple group tom nonidentified/not yet done");
nam:=fail;
e:=fail;
fi;
# kill trivial extension if given
e:=Filtered(e,x->x[1]>1);
# get size of full outer automorphisms
aut:=[1,nam];
for i in e do
if i[1]>aut[1] then
aut:=i;
fi;
od;
result:=rec(idSimple:=id,
tomName:=nam,
allExtensions:=e,
fullAutGroup:=aut,
classicalId:=ClassicalIsomorphismTypeFiniteSimpleGroup(id));
return result;
end);
InstallGlobalFunction(SufficientlySmallDegreeSimpleGroupOrder,function(n)
local a;
if n<168 then return 5;fi;
a:=Filtered(SIMPLEGPSNONL2,x->x[1]=n);
# we have degree data up to order 2^55
if n<=10^55 and Length(a)=0 then
# L2 case
return 2*RootInt(n,3);
elif ForAll(a,x->Length(x)>4) then
return Maximum(List(a,x->x[5]));
fi;
# we don't know a smallest degree
a:=2^Number(Factors(n),x->x=2);
return n/a; # 2-Sylow index
end);
InstallGlobalFunction("EpimorphismFromClassical",function(G)
local H,d,id,hom,field,C,dom,orbs;
if not IsSimpleGroup(G) then
H:=PerfectResiduum(G);
else
H:=G;
fi;
d:=DataAboutSimpleGroup(H);
id:=d.idSimple;
if not id.series in ["L","2A","C"] then
return fail;
fi;
# TODO: Recognize subgroups of almost
if G<>H then
return fail;
fi;
field:=id.parameter[2];
if id.series="2A" then
field:=field^2;
fi;
# the source group we are expecting
if id.series="L" then
C:=SL(id.parameter[1],id.parameter[2]);
elif id.series="C" then
C:=SP(2*id.parameter[1],id.parameter[2]);
elif id.series="2A" then
C:=SU(id.parameter[1]+1,id.parameter[2]);
else
Error("not yet done");
fi;
# was the fgroup created as ``P...''?
if IsBound(G!.actionHomomorphism) then
hom:=G!.actionHomomorphism;
if IsMatrixGroup(Source(hom)) and Image(hom)=G and Size(Source(hom))/Size(G)<field then
# test that the source is really the group we want
if Source(hom)=C then
return hom;
#else
# Print("different source -- ID\n");
fi;
fi;
fi;
# build isom
dom:=NormedRowVectors(DefaultFieldOfMatrixGroup(C)^DimensionOfMatrixGroup(C));
hom:=ActionHomomorphism(C,dom,OnLines,"surjective");
orbs:=Orbits(Image(hom),MovedPoints(Image(hom)));
if Length(orbs)>1 then
# reduce domain
orbs:=ShallowCopy(orbs);
Sort(orbs,function(a,b) return Length(a)<Length(b);end);
dom:=dom{Set(orbs[1])};
hom:=ActionHomomorphism(C,dom,OnLines,"surjective");
fi;
if Size(Image(hom))<>Size(G) then
Error("inconsistent image");
fi;
if Image(hom)=G then
d:=IdentityMapping(G);
else
# Image(hom) is the better group to search in, e.g. classes.
d:=Image(hom);
d!.actionHomomorphism:=hom;
return fail;
Error("QQQ");
d:=IsomorphismGroups(G,Image(hom));
fi;
if d=fail then
Error("inconsistent image 2");
fi;
return hom*InverseGeneralMapping(d);
end);
|