This file is indexed.

/usr/share/gap/lib/adjoin.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#############################################################################
#W  adjoin.gi                  GAP library                Steve Linton
##
##
##  This file contains the declarations for functions pertaining to 
##  adjoining an identity element to a semigroup. 
##

###########################################################################
##
#M  AdjoinedIdentityFamily( <fam> ) 
##

InstallMethod(AdjoinedIdentityFamily, [IsFamily], 
        function(fam)
    local   afam;
    afam := NewFamily(Concatenation("AdjoinedIdentityFamily(",fam!.NAME,")"),
                    IsMonoidByAdjoiningIdentityElt);
    SetUnderlyingSemigroupFamily(afam, fam);
    return afam;
end);

###########################################################################
##
#M  AdjoinedIdentityDefaultType( <fam> ) 
##

InstallMethod(AdjoinedIdentityDefaultType, [IsFamily],
        function(fam) 
    return NewType(fam, IsMonoidByAdjoiningIdentityEltRep and 
                   IsMonoidByAdjoiningIdentityElt);
end);

###########################################################################
##
#A  MonoidByAdjoiningIdentityElt( <elt> ) 
##
##  the result of this function is the corresponding element in the category
##  MonoidByAdjoiningIdentityElt with IsOne set to false.
##

InstallMethod( MonoidByAdjoiningIdentityElt, [IsMultiplicativeElement and IsAssociativeElement],
        function(se)
    local   fam,  l;
    fam := FamilyObj(se);
    l := [ se ];
    Objectify(AdjoinedIdentityDefaultType(AdjoinedIdentityFamily(fam)),l);
    SetIsOne(l,false);
    return l;
end);

###########################################################################
##
#M  <elt1> \* <elt2> 
##
##  returns <elt2> if <elt1> represents the identity, <elt1> if <elt2> 
##  represents the identity, and otherwise returns the value of 
##  MonoidByAdjoiningIdentityElt for product of the underlying
##  elements.
##

InstallMethod(\*,         IsIdenticalObj,
        [IsMonoidByAdjoiningIdentityElt, IsMonoidByAdjoiningIdentityElt],
        function(me1,me2)
    if me1![1] = fail then
        return me2;
    elif me2![1] = fail then
        return me1;
    else
        return MonoidByAdjoiningIdentityElt(me1![1] * me2![1]);
    fi;
end);

###########################################################################
##
#M  <elt1> \< <elt2> 
##
##  compares underlying elements if they exist, and considers the representative
##  of the identity to be the least element otherwise.
##

InstallMethod(\<,         IsIdenticalObj,
        [IsMonoidByAdjoiningIdentityElt, IsMonoidByAdjoiningIdentityElt],
        function(me1,me2)
    if me1![1] = fail then
        return me2![1] <> fail;
    elif me2![1] = fail then
        return false;
    else
        return me1![1] < me2![1];
    fi;
end);

###########################################################################
##
#M  <elt1> \= <elt2> 
##
##  returns true if both elements represent the identity, false if one does 
##  and the other doesn't, otherwise compares underlying elements.
## 

InstallMethod(\=,         IsIdenticalObj,
        [IsMonoidByAdjoiningIdentityElt, IsMonoidByAdjoiningIdentityElt],
        function(me1,me2)
    if me1![1] = fail then
        return me2![1] = fail;
    elif me2![1] = fail then
        return false;
    else
        return me1![1] = me2![1];
    fi;
end);

###########################################################################
##
#M  One( <elt> )
##
##  returns the One of the element <elt>.
##

InstallMethod(One, [IsMonoidByAdjoiningIdentityElt],
        function(me)
    local   l;
    l := [ fail];
    Objectify(AdjoinedIdentityDefaultType(FamilyObj(me)),l);
    SetIsOne(l, true);
    return l;
end);

###########################################################################
##
#M  MonoidByAdjoiningIdentity( <semigroup> )
##
##  returns the monoid obtained from <semigroup> by adjoining an identity.
##

InstallMethod(MonoidByAdjoiningIdentity, [IsSemigroup and HasGeneratorsOfSemigroup], 
        function( s )	
	local m;
        m:=Monoid(List(GeneratorsOfSemigroup(s), MonoidByAdjoiningIdentityElt));
	SetUnderlyingSemigroupOfMonoidByAdjoiningIdentity(m, s);
      	return m;
end);

###########################################################################
##
#M  UnderlyingSemigroupElementOfMonoidByAdjoiningIdentityElt( <elt> )
##
##  returns the underlying element of the MonoidByAdjoiningIdentityElt <elt>.
##
  
InstallMethod(UnderlyingSemigroupElementOfMonoidByAdjoiningIdentityElt,
        [IsMonoidByAdjoiningIdentityElt],
        x->x![1]); 

InstallMethod(PrintObj, [IsMonoidByAdjoiningIdentityElt],
        function(me)
    if me![1] = fail then
        Print("<adjoined identity>");
        return;
    fi;
    Print("MonoidByAdjoiningIdentityElt(");
    Print(me![1]);
    Print(")");
end);

InstallMethod(ViewObj, [IsMonoidByAdjoiningIdentityElt],
        function(me)
    if me![1] = fail then
        Print("ONE");
        return;
    fi;
    ViewObj(me![1]);
end);

#############################################################################
##
#E  adjoin.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends