This file is indexed.

/usr/share/gap/lib/algebra.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
#############################################################################
##
#W  algebra.gd                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for `FLMLOR's and algebras.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{algebra}">
##  An algebra is a vector space equipped with a bilinear map
##  (multiplication).
##  This chapter describes the functions in &GAP; that deal with 
##  general algebras and associative algebras. 
##  <P/>
##  Algebras in &GAP; are vector spaces in a natural way.
##  So all the functionality for vector spaces
##  (see Chapter&nbsp;<Ref Chap="Vector Spaces"/>)
##  is also applicable to algebras.
##  <#/GAPDoc>
##


#############################################################################
##
#V  InfoAlgebra
##
##  <#GAPDoc Label="InfoAlgebra">
##  <ManSection>
##  <InfoClass Name="InfoAlgebra"/>
##
##  <Description>
##  is the info class for the functions dealing with algebras
##  (see&nbsp;<Ref Sect="Info Functions"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoAlgebra" );


#############################################################################
##
#C  IsFLMLOR( <obj> )
##
##  <#GAPDoc Label="IsFLMLOR">
##  <ManSection>
##  <Filt Name="IsFLMLOR" Arg='obj' Type='Category'/>
##
##  <Description>
##  A FLMLOR (<Q>free left module left operator ring</Q>) in &GAP; is a ring
##  that is also a free left module.
##  <P/>
##  Note that this means that being a FLMLOR is not a property a
##  ring can get,
##  since a ring is usually not represented as an external left set.
##  <P/>
##  Examples are magma rings (e.g. over the integers) or algebras.
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> IsFLMLOR ( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFLMLOR", IsFreeLeftModule and IsLeftOperatorRing );


#############################################################################
##
#C  IsFLMLORWithOne( <obj> )
##
##  <#GAPDoc Label="IsFLMLORWithOne">
##  <ManSection>
##  <Filt Name="IsFLMLORWithOne" Arg='obj' Type='Category'/>
##
##  <Description>
##  A FLMLOR-with-one in &GAP; is a ring-with-one that is also a free left
##  module.
##  <P/>
##  Note that this means that being a FLMLOR-with-one is not a property a
##  ring-with-one can get,
##  since a ring-with-one is usually not represented as an external left set.
##  <P/>
##  Examples are magma rings-with-one or algebras-with-one (but also over the
##  integers).
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> IsFLMLORWithOne ( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFLMLORWithOne",
    IsFreeLeftModule and IsLeftOperatorRingWithOne );


#############################################################################
##
#C  IsAlgebra( <obj> )
##
##  <#GAPDoc Label="IsAlgebra">
##  <ManSection>
##  <Filt Name="IsAlgebra" Arg='obj' Type='Category'/>
##
##  <Description>
##  An algebra in &GAP; is a ring that is also a left vector space.
##  Note that this means that being an algebra is not a property a ring can
##  get, since a ring is usually not represented as an external left set.
##  <Example><![CDATA[
##  gap> A:= MatAlgebra( Rationals, 3 );;
##  gap> IsAlgebra( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsAlgebra", IsLeftVectorSpace and IsLeftOperatorRing );


#############################################################################
##
#C  IsAlgebraWithOne( <obj> )
##
##  <#GAPDoc Label="IsAlgebraWithOne">
##  <ManSection>
##  <Filt Name="IsAlgebraWithOne" Arg='obj' Type='Category'/>
##
##  <Description>
##  An algebra-with-one in &GAP; is a ring-with-one that is also
##  a left vector space.
##  Note that this means that being an algebra-with-one is not a property a
##  ring-with-one can get,
##  since a ring-with-one is usually not represented as an external left set.
##  <Example><![CDATA[
##  gap> A:= MatAlgebra( Rationals, 3 );;
##  gap> IsAlgebraWithOne( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsAlgebraWithOne",
    IsLeftVectorSpace and IsLeftOperatorRingWithOne );


#############################################################################
##
#P  IsLieAlgebra( <A> )
##
##  <#GAPDoc Label="IsLieAlgebra">
##  <ManSection>
##  <Prop Name="IsLieAlgebra" Arg='A'/>
##
##  <Description>
##  An algebra <A>A</A> is called Lie algebra if <M>a * a = 0</M>
##  for all <M>a</M> in <A>A</A>
##  and <M>( a * ( b * c ) ) + ( b * ( c * a ) ) + ( c * ( a * b ) ) = 0</M>
##  for all <M>a, b, c \in </M><A>A</A> (Jacobi identity).
##  <Example><![CDATA[
##  gap> A:= FullMatrixLieAlgebra( Rationals, 3 );;
##  gap> IsLieAlgebra( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsLieAlgebra",
    IsAlgebra and IsZeroSquaredRing and IsJacobianRing );

#############################################################################
##
#P  IsSimpleAlgebra( <A> )
##
##  <#GAPDoc Label="IsSimpleAlgebra">
##  <ManSection>
##  <Prop Name="IsSimpleAlgebra" Arg='A'/>
##
##  <Description>
##  is <K>true</K> if the algebra <A>A</A> is simple,
##  and <K>false</K> otherwise.
##  This  function is only implemented for the cases where <A>A</A> is
##  an associative or a Lie algebra.
##  And for Lie algebras it is only implemented for the
##  case where the ground field is of characteristic zero.
##  <Example><![CDATA[
##  gap> A:= FullMatrixLieAlgebra( Rationals, 3 );;
##  gap> IsSimpleAlgebra( A );
##  false
##  gap> A:= MatAlgebra( Rationals, 3 );;
##  gap> IsSimpleAlgebra( A );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSimpleAlgebra", IsAlgebra );


#############################################################################
##
#A  GeneratorsOfLeftOperatorRing
##
##  <ManSection>
##  <Attr Name="GeneratorsOfLeftOperatorRing" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "GeneratorsOfLeftOperatorRing", IsLeftOperatorRing );


#############################################################################
##
#A  GeneratorsOfLeftOperatorRingWithOne
##
##  <ManSection>
##  <Attr Name="GeneratorsOfLeftOperatorRingWithOne" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "GeneratorsOfLeftOperatorRingWithOne",
    IsLeftOperatorRingWithOne );


#############################################################################
##
#A  GeneratorsOfAlgebra( <A> )
##
##  <#GAPDoc Label="GeneratorsOfAlgebra">
##  <ManSection>
##  <Attr Name="GeneratorsOfAlgebra" Arg='A'/>
##
##  <Description>
##  returns a list of elements that generate <A>A</A> as an algebra.
##  <P/>
##  For a free algebra, each generator can also be accessed using 
##  the <C>.</C> operator (see <Ref Attr="GeneratorsOfDomain"/>).
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
##  gap> A:= AlgebraWithOne( Rationals, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  gap> GeneratorsOfAlgebra( A );
##  [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfAlgebra", GeneratorsOfLeftOperatorRing );
DeclareSynonymAttr( "GeneratorsOfFLMLOR", GeneratorsOfLeftOperatorRing );


#############################################################################
##
#A  GeneratorsOfAlgebraWithOne( <A> )
##
##  <#GAPDoc Label="GeneratorsOfAlgebraWithOne">
##  <ManSection>
##  <Attr Name="GeneratorsOfAlgebraWithOne" Arg='A'/>
##
##  <Description>
##  returns a list of elements of <A>A</A>
##  that generate <A>A</A> as an algebra with one. 
##  <P/>
##  For a free algebra with one, each generator can also be accessed using 
##  the <C>.</C> operator (see <Ref Attr="GeneratorsOfDomain"/>).
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
##  gap> A:= AlgebraWithOne( Rationals, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  gap> GeneratorsOfAlgebraWithOne( A );
##  [ [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfAlgebraWithOne",
    GeneratorsOfLeftOperatorRingWithOne );

DeclareSynonymAttr( "GeneratorsOfFLMLORWithOne",
    GeneratorsOfLeftOperatorRingWithOne );


#############################################################################
##
#A  PowerSubalgebraSeries( <A> )
##
##  <#GAPDoc Label="PowerSubalgebraSeries">
##  <ManSection>
##  <Attr Name="PowerSubalgebraSeries" Arg='A'/>
##
##  <Description>
##  returns a list of subalgebras of <A>A</A>,
##  the first term of which is <A>A</A>;
##  and every next term is the product space of the previous term with itself.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );
##  <algebra-with-one of dimension 4 over Rationals>
##  gap> PowerSubalgebraSeries( A );
##  [ <algebra-with-one of dimension 4 over Rationals> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PowerSubalgebraSeries", IsAlgebra );


#############################################################################
##
#A  AdjointBasis( <B> )
##
##  <#GAPDoc Label="AdjointBasis">
##  <ManSection>
##  <Attr Name="AdjointBasis" Arg='B'/>
##
##  <Description>
##  The <E>adjoint map</E> <M>ad(x)</M> of an element <M>x</M> in an
##  <M>F</M>-algebra <M>A</M>, say, is the left multiplication by <M>x</M>.
##  This map is <M>F</M>-linear and thus, w.r.t. the given basis
##  <A>B</A><M> = (x_1, x_2, \ldots, x_n)</M> of <M>A</M>,
##  <M>ad(x)</M> can be represented by a matrix over <M>F</M>.
##  Let <M>V</M> denote the <M>F</M>-vector space of the matrices
##  corresponding to <M>ad(x)</M>, for <M>x \in A</M>.
##  Then <Ref Attr="AdjointBasis"/> returns the basis of <M>V</M> that
##  consists of the matrices for <M>ad(x_1), \ldots, ad(x_n)</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> AdjointBasis( Basis( A ) );
##  Basis( <vector space over Rationals, with 4 generators>, 
##  [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], 
##    [ [ 0, -1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, -1 ], [ 0, 0, 1, 0 ] ]
##      , 
##    [ [ 0, 0, -1, 0 ], [ 0, 0, 0, 1 ], [ 1, 0, 0, 0 ], [ 0, -1, 0, 0 ] ]
##      , 
##    [ [ 0, 0, 0, -1 ], [ 0, 0, -1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 0 ] 
##       ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AdjointBasis", IsBasis );


#############################################################################
##
#A  IndicesOfAdjointBasis( <B> )
##
##  <#GAPDoc Label="IndicesOfAdjointBasis">
##  <ManSection>
##  <Attr Name="IndicesOfAdjointBasis" Arg='B'/>
##
##  <Description>
##  Let <A>A</A> be an algebra and let <A>B</A>
##  be the basis that is output by <C>AdjointBasis( Basis( <A>A</A> ) )</C>. 
##  This function returns a list of indices.
##  If <M>i</M> is an index belonging to this list,
##  then <M>ad x_i</M> is a basis vector of the matrix space
##  spanned by <M>ad A</M>,
##  where <M>x_i</M> is the <M>i</M>-th basis vector of the basis <A>B</A>.
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
##  gap> B:= AdjointBasis( Basis( L ) );;
##  gap> IndicesOfAdjointBasis( B );
##  [ 1, 2, 3, 4, 5, 6, 7, 8 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IndicesOfAdjointBasis", IsBasis );


#############################################################################
##
#A  RadicalOfAlgebra( <A> )
##
##  <#GAPDoc Label="RadicalOfAlgebra">
##  <ManSection>
##  <Attr Name="RadicalOfAlgebra" Arg='A'/>
##
##  <Description>
##  is the maximal nilpotent ideal of <A>A</A>,
##  where <A>A</A> is an associative algebra.
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;
##  gap> A:= AlgebraWithOneByGenerators( Rationals, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  gap> RadicalOfAlgebra( A );
##  <algebra of dimension 2 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RadicalOfAlgebra", IsAlgebra );


#############################################################################
##
#A  DirectSumDecomposition( <L> )
##
##  <#GAPDoc Label="DirectSumDecomposition">
##  <ManSection>
##  <Attr Name="DirectSumDecomposition" Arg='L' Label="for Lie algebras"/>
##
##  <Description>
##  This function calculates a list of ideals of the algebra <A>L</A> such
##  that <A>L</A> is equal to their direct sum.
##  Currently this is only implemented for semisimple associative algebras,
##  and for Lie algebras (semisimple or not).
##  <Example><![CDATA[
##  gap> G:= SymmetricGroup( 4 );;
##  gap> A:= GroupRing( Rationals, G );
##  <algebra-with-one over Rationals, with 2 generators>
##  gap> dd:= DirectSumDecomposition( A );
##  [ <two-sided ideal in 
##        <algebra-with-one of dimension 24 over Rationals>, 
##        (1 generators)>, 
##    <two-sided ideal in 
##        <algebra-with-one of dimension 24 over Rationals>, 
##        (1 generators)>, 
##    <two-sided ideal in 
##        <algebra-with-one of dimension 24 over Rationals>, 
##        (1 generators)>, 
##    <two-sided ideal in 
##        <algebra-with-one of dimension 24 over Rationals>, 
##        (1 generators)>, 
##    <two-sided ideal in 
##        <algebra-with-one of dimension 24 over Rationals>, 
##        (1 generators)> ]
##  gap> List( dd, Dimension );
##  [ 1, 1, 4, 9, 9 ]
##  ]]></Example>
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 5 );;
##  gap> DirectSumDecomposition( L );
##  [ <two-sided ideal in 
##        <two-sided ideal in <Lie algebra of dimension 25 over Rationals>
##              , (dimension 1)>, (dimension 1)>, 
##    <two-sided ideal in 
##        <two-sided ideal in <Lie algebra of dimension 25 over Rationals>
##              , (dimension 24)>, (dimension 24)> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DirectSumDecomposition", IsAlgebra );


#############################################################################
##
#A  TrivialSubalgebra( <A> )
##
##  <#GAPDoc Label="TrivialSubalgebra">
##  <ManSection>
##  <Attr Name="TrivialSubalgebra" Arg='A'/>
##
##  <Description>
##  The zero dimensional subalgebra of the algebra <A>A</A>.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> B:= TrivialSubalgebra( A );
##  <algebra over Rationals>
##  gap> Dimension( B );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubFLMLOR", TrivialSubadditiveMagmaWithZero );
DeclareSynonymAttr( "TrivialSubalgebra", TrivialSubFLMLOR );


#############################################################################
##
#A  NullAlgebra( <R> )  . . . . . . . . . . zero dimensional algebra over <R>
##
##  <#GAPDoc Label="NullAlgebra">
##  <ManSection>
##  <Attr Name="NullAlgebra" Arg='R'/>
##
##  <Description>
##  The zero-dimensional algebra over <A>R</A>.
##  <!-- or store this in the family ?-->
##  <Example><![CDATA[
##  gap> A:= NullAlgebra( Rationals );
##  <algebra over Rationals>
##  gap> Dimension( A );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NullAlgebra", IsRing );


#############################################################################
##
#O  ProductSpace( <U>, <V> )
##
##  <#GAPDoc Label="ProductSpace">
##  <ManSection>
##  <Oper Name="ProductSpace" Arg='U, V'/>
##
##  <Description>
##  is the vector space <M>\langle u * v ; u \in U, v \in V \rangle</M>,
##  where <M>U</M> and <M>V</M> are subspaces of the same algebra.
##  <P/>
##  If <M><A>U</A> = <A>V</A></M> is known to be an algebra
##  then the product space is also an algebra,
##  moreover it is an ideal in <A>U</A>.
##  If <A>U</A> and <A>V</A> are known to be ideals in an algebra <M>A</M>
##  then the product space is known to be an algebra and an ideal
##  in <M>A</M>.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> b:= BasisVectors( Basis( A ) );;
##  gap> B:= Subalgebra( A, [ b[4] ] );
##  <algebra over Rationals, with 1 generators>
##  gap> ProductSpace( A, B );
##  <vector space of dimension 4 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ProductSpace", [ IsFreeLeftModule, IsFreeLeftModule ] );


#############################################################################
##
#O  DirectSumOfAlgebras( <A1>, <A2> )
#O  DirectSumOfAlgebras( <list> )
##
##  <#GAPDoc Label="DirectSumOfAlgebras">
##  <ManSection>
##  <Oper Name="DirectSumOfAlgebras" Arg='A1, A2'
##   Label="for two algebras"/>
##  <Oper Name="DirectSumOfAlgebras" Arg='list'
##   Label="for a list of algebras"/>
##
##  <Description>
##  is the direct sum of the two algebras <A>A1</A> and <A>A2</A>
##  respectively of the algebras in the list <A>list</A>.
##  <P/>
##  If all involved algebras are associative algebras then the result is also
##  known to be associative.
##  If all involved algebras are Lie algebras then the result is also known
##  to be a Lie algebra.
##  <P/>
##  All involved algebras must have the same left acting domain.
##  <P/>
##  The default case is that the result is a structure constants algebra.
##  If all involved algebras are matrix algebras, and either both are Lie
##  algebras or both are associative then the result is again a
##  matrix algebra of the appropriate type.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> DirectSumOfAlgebras( [A, A, A] );
##  <algebra of dimension 12 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DirectSumOfAlgebras", [ IsDenseList ] );


#############################################################################
##
#F  FullMatrixAlgebraCentralizer( <F>, <lst> )
##
##  <#GAPDoc Label="FullMatrixAlgebraCentralizer">
##  <ManSection>
##  <Func Name="FullMatrixAlgebraCentralizer" Arg='F, lst'/>
##
##  <Description>
##  Let <A>lst</A>  be a nonempty list of square matrices of the same
##  dimension <M>n</M>, say, with entries in the field <A>F</A>.
##  <Ref Func="FullMatrixAlgebraCentralizer"/> returns
##  the (pointwise) centralizer of all matrices in <A>lst</A>, inside
##  the full matrix algebra of <M>n \times n</M> matrices over <A>F</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> b:= Basis( A );;
##  gap> mats:= List( BasisVectors( b ), x -> AdjointMatrix( b, x ) );;
##  gap> FullMatrixAlgebraCentralizer( Rationals, mats );
##  <algebra-with-one of dimension 4 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FullMatrixAlgebraCentralizer" );


#############################################################################
##
#O  AsAlgebra( <F>, <A> ) . . . . . . . . . . .  view <A> as algebra over <F>
##
##  <#GAPDoc Label="AsAlgebra">
##  <ManSection>
##  <Oper Name="AsAlgebra" Arg='F, A'/>
##
##  <Description>
##  Returns the algebra over <A>F</A> generated by <A>A</A>.
##  <Example><![CDATA[
##  gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
##  gap> AsAlgebra( Rationals, V );
##  <algebra of dimension 1 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsFLMLOR", [ IsRing, IsCollection ] );

DeclareSynonym( "AsAlgebra", AsFLMLOR );


#############################################################################
##
#O  AsAlgebraWithOne( <F>, <A> )  . . . view <A> as algebra-with-one over <F>
##
##  <#GAPDoc Label="AsAlgebraWithOne">
##  <ManSection>
##  <Oper Name="AsAlgebraWithOne" Arg='F, A'/>
##
##  <Description>
##  If the algebra <A>A</A> has an identity, then it can be viewed as an
##  algebra with one over <A>F</A>.
##  This function returns this algebra with one.
##  <Example><![CDATA[
##  gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
##  gap> A:= AsAlgebra( Rationals, V );;
##  gap> AsAlgebraWithOne( Rationals, A );
##  <algebra-with-one over Rationals, with 1 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsFLMLORWithOne", [ IsRing, IsCollection ] );

DeclareSynonym( "AsAlgebraWithOne", AsFLMLORWithOne );


#############################################################################
##
#O  AsSubalgebra( <A>, <B> )  . . . . . . . . . view <B> as subalgebra of <A>
##
##  <#GAPDoc Label="AsSubalgebra">
##  <ManSection>
##  <Oper Name="AsSubalgebra" Arg='A, B'/>
##
##  <Description>
##  If all elements of the algebra <A>B</A> happen to be contained in the
##  algebra <A>A</A>,
##  then <A>B</A> can be viewed as a subalgebra of <A>A</A>.
##  This  function returns this subalgebra.
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
##  gap> B:= AsAlgebra( Rationals, V );;
##  gap> BA:= AsSubalgebra( A, B );
##  <algebra of dimension 1 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsSubFLMLOR", [ IsFLMLOR, IsFLMLOR ] );

DeclareSynonym( "AsSubalgebra", AsSubFLMLOR );


#############################################################################
##
#O  AsSubalgebraWithOne( <A>, <B> ) . . view <B> as subalgebra-wth-one of <A>
##
##  <#GAPDoc Label="AsSubalgebraWithOne">
##  <ManSection>
##  <Oper Name="AsSubalgebraWithOne" Arg='A, B'/>
##
##  <Description>
##  If <A>B</A> is an algebra with one, all elements of which happen to be
##  contained in the algebra with one <A>A</A>, then <A>B</A> can be viewed
##  as a subalgebra with one of <A>A</A>.
##  This function returns this subalgebra with one.
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;
##  gap> B:= AsAlgebra( Rationals, V );;
##  gap> C:= AsAlgebraWithOne( Rationals, B );;
##  gap> AC:= AsSubalgebraWithOne( A, C );
##  <algebra-with-one over Rationals, with 1 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsSubFLMLORWithOne", [ IsFLMLOR, IsFLMLOR ] );

DeclareSynonym( "AsSubalgebraWithOne", AsSubFLMLORWithOne );


#############################################################################
##
##  <#GAPDoc Label="[2]{algebra}">
##  For an introduction into structure constants and how they are handled
##  by &GAP;, we refer to Section <Ref Sect="Algebras" BookName="tut"/>
##  of the user's tutorial.
##  <#/GAPDoc>
##


#############################################################################
##
#F  EmptySCTable( <dim>, <zero>[, <flag>] )
##
##  <#GAPDoc Label="EmptySCTable">
##  <ManSection>
##  <Func Name="EmptySCTable" Arg='dim, zero[, flag]'/>
##
##  <Description>
##  <Ref Func="EmptySCTable"/> returns a structure constants table for an
##  algebra of dimension <A>dim</A>, describing trivial multiplication.
##  <A>zero</A> must be the zero of the coefficients domain.
##  If the multiplication is known to be (anti)commutative then
##  this can be indicated by the optional third argument <A>flag</A>,
##  which must be one of the strings <C>"symmetric"</C>,
##  <C>"antisymmetric"</C>.
##  <P/>
##  For filling up the structure constants table,
##  see <Ref Func="SetEntrySCTable"/>.
##  <Example><![CDATA[
##  gap> EmptySCTable( 2, Zero( GF(5) ), "antisymmetric" );
##  [ [ [ [  ], [  ] ], [ [  ], [  ] ] ], 
##    [ [ [  ], [  ] ], [ [  ], [  ] ] ], -1, 0*Z(5) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "EmptySCTable" );


#############################################################################
##
#F  SetEntrySCTable( <T>, <i>, <j>, <list> )
##
##  <#GAPDoc Label="SetEntrySCTable">
##  <ManSection>
##  <Func Name="SetEntrySCTable" Arg='T, i, j, list'/>
##
##  <Description>
##  sets the entry of the structure constants table <A>T</A> that describes
##  the product of the <A>i</A>-th basis element with the <A>j</A>-th
##  basis element to the value given by the list <A>list</A>.
##  <P/>
##  If <A>T</A> is known to be antisymmetric or symmetric then also the value
##  <C><A>T</A>[<A>j</A>][<A>i</A>]</C> is set.
##  <P/>
##  <A>list</A> must be of the form
##  <M>[ c_{ij}^{{k_1}}, k_1, c_{ij}^{{k_2}}, k_2, \ldots ]</M>.
##  <P/>
##  The entries at the odd positions of <A>list</A> must be compatible with
##  the zero element stored in <A>T</A>.
##  For convenience, these entries may also be rational numbers that are
##  automatically replaced by the corresponding elements in the appropriate
##  prime field in finite characteristic if necessary.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );
##  gap> T;
##  [ [ [ [ 1, 2 ], [ 1/2, 2/3 ] ], [ [  ], [  ] ] ], 
##    [ [ [  ], [  ] ], [ [  ], [  ] ] ], 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SetEntrySCTable" );


#############################################################################
##
#F  ReducedSCTable( <T>, <one> )
##
##  <ManSection>
##  <Func Name="ReducedSCTable" Arg='T, one'/>
##
##  <Description>
##  returns an immutable structure constants table obtained by reducing the
##  (rational) coefficients of the structure constants table <A>T</A> by
##  multiplication with <A>one</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ReducedSCTable" );


#############################################################################
##
#F  GapInputSCTable( <T>, <varname> )
##
##  <#GAPDoc Label="GapInputSCTable">
##  <ManSection>
##  <Func Name="GapInputSCTable" Arg='T, varname'/>
##
##  <Description>
##  is a string that describes the structure constants table <A>T</A>
##  in terms of <Ref Func="EmptySCTable"/> and <Ref Func="SetEntrySCTable"/>.
##  The assignments are made to the variable <A>varname</A>.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );
##  gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );
##  gap> GapInputSCTable( T, "T" );
##  "T:= EmptySCTable( 2, 0 );\nSetEntrySCTable( T, 1, 2, [1,2] );\nSetEnt\
##  rySCTable( T, 2, 1, [1,2] );\n"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GapInputSCTable" );


#############################################################################
##
#F  IdentityFromSCTable( <T> )
##
##  <#GAPDoc Label="IdentityFromSCTable">
##  <ManSection>
##  <Func Name="IdentityFromSCTable" Arg='T'/>
##
##  <Description>
##  Let <A>T</A> be a structure constants table of an algebra <M>A</M>
##  of dimension <M>n</M>.
##  <C>IdentityFromSCTable( <A>T</A> )</C> is either <K>fail</K> or
##  the vector of length <M>n</M> that contains the coefficients of the
##  multiplicative identity of <M>A</M>
##  with respect to the basis that belongs to <A>T</A>.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
##  gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;
##  gap> IdentityFromSCTable( T );
##  [ 1, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IdentityFromSCTable" );


#############################################################################
##
#F  QuotientFromSCTable( <T>, <num>, <den> )
##
##  <#GAPDoc Label="QuotientFromSCTable">
##  <ManSection>
##  <Func Name="QuotientFromSCTable" Arg='T, num, den'/>
##
##  <Description>
##  Let <A>T</A> be a structure constants table of an algebra <M>A</M>
##  of dimension <M>n</M>.
##  <C>QuotientFromSCTable( <A>T</A> )</C> is either <K>fail</K> or
##  the vector of length <M>n</M> that contains the coefficients of the
##  quotient of <A>num</A> and <A>den</A> with respect to the basis
##  that belongs to <A>T</A>.
##  <P/>
##  We solve the equation system <A>num</A><M> = x *</M> <A>den</A>.
##  If no solution exists, <K>fail</K> is returned.
##  <P/>
##  In terms of the basis <M>B</M> with vectors <M>b_1, \ldots, b_n</M>
##  this means
##  for <M><A>num</A> = \sum_{{i = 1}}^n a_i b_i</M>,
##      <M><A>den</A> = \sum_{{i = 1}}^n c_i b_i</M>,
##      <M>x = \sum_{{i = 1}}^n x_i b_i</M> that
##  <M>a_k = \sum_{{i,j}} c_i x_j c_{ijk}</M> for all <M>k</M>.
##  Here <M>c_{ijk}</M> denotes the structure constants
##  with respect to <M>B</M>.
##  This means that (as a vector) <M>a = x M</M> with
##  <M>M_{jk} = \sum_{{i = 1}}^n c_{ijk} c_i</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;
##  gap> SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
##  gap> QuotientFromSCTable( T, [0,1], [1,0] );
##  [ 0, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "QuotientFromSCTable" );


#############################################################################
##
#F  TestJacobi( <T> )
##
##  <#GAPDoc Label="TestJacobi">
##  <ManSection>
##  <Func Name="TestJacobi" Arg='T'/>
##
##  <Description>
##  tests whether the structure constants table <A>T</A> satisfies the Jacobi
##  identity
##  <M>v_i * (v_j * v_k) + v_j * (v_k * v_i) + v_k * (v_i * v_j) = 0</M>
##  for all basis vectors <M>v_i</M> of the underlying algebra,
##  where <M>i \leq j \leq k</M>.
##  (Thus antisymmetry is assumed.)
##  <P/>
##  The function returns <K>true</K> if the Jacobi identity is satisfied,
##  and a failing triple <M>[ i, j, k ]</M> otherwise.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0, "antisymmetric" );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;
##  gap> TestJacobi( T );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TestJacobi" );


#############################################################################
##
#O  ClosureLeftOperatorRing( <A>, <a> )
#O  ClosureLeftOperatorRing( <A>, <S> )
##
##  <ManSection>
##  <Oper Name="ClosureLeftOperatorRing" Arg='A, a'/>
##  <Oper Name="ClosureLeftOperatorRing" Arg='A, S'/>
##
##  <Description>
##  For a left operator ring <A>A</A> and either an element <A>a</A> of its
##  elements family or a left operator ring <A>S</A>
##  (over the same left acting domain),
##  <Ref Oper="ClosureLeftOperatorRing"/> returns the left operator ring
##  generated by both arguments.
##  </Description>
##  </ManSection>
##
DeclareOperation( "ClosureLeftOperatorRing",
    [ IsLeftOperatorRing, IsObject ] );

DeclareSynonym( "ClosureAlgebra", ClosureLeftOperatorRing );


#############################################################################
##
#F  MutableBasisOfClosureUnderAction( <F>, <Agens>, <from>, <init>, <opr>,
#F                                    <zero>, <maxdim> )
##
##  <#GAPDoc Label="MutableBasisOfClosureUnderAction">
##  <ManSection>
##  <Func Name="MutableBasisOfClosureUnderAction"
##   Arg='F, Agens, from, init, opr, zero, maxdim'/>
##
##  <Description>
##  Let <A>F</A> be a ring, <A>Agens</A> a list of generators for an
##  <A>F</A>-algebra <M>A</M>, and <A>from</A> one of <C>"left"</C>,
##  <C>"right"</C>, <C>"both"</C>; this means that elements
##  of <M>A</M> act via multiplication from the respective side(s).
##  <A>init</A> must be a list of initial generating vectors,
##  and <A>opr</A> the operation (a function of two arguments).
##  <P/>
##  <Ref Func="MutableBasisOfClosureUnderAction"/> returns a mutable basis of
##  the <A>F</A>-free left module generated by the vectors in <A>init</A>
##  and their images under the action of <A>Agens</A>
##  from the respective side(s).
##  <P/>
##  <A>zero</A> is the zero element of the desired module.
##  <A>maxdim</A> is an upper bound for the dimension of the closure;
##  if no such upper bound is known then the value of <A>maxdim</A>
##  must be <Ref Var="infinity"/>.
##  <P/>
##  <Ref Func="MutableBasisOfClosureUnderAction"/> can be used to compute
##  a basis of an <E>associative</E> algebra generated by the elements in
##  <A>Agens</A>.
##  In this  case <A>from</A> may be <C>"left"</C> or <C>"right"</C>,
##  <A>opr</A> is the multiplication <C>*</C>,
##  and <A>init</A> is a list containing either the identity of the algebra
##  or a list of algebra generators.
##  (Note that if the algebra has an identity then it is in general not
##  sufficient to take algebra-with-one generators as <A>init</A>,
##  whereas of course <A>Agens</A> need not contain the identity.)
##  <P/>
##  (Note that bases of <E>not</E> necessarily associative algebras can be
##  computed using <Ref Func="MutableBasisOfNonassociativeAlgebra"/>.)
##  <P/>
##  Other applications of <Ref Func="MutableBasisOfClosureUnderAction"/> are
##  the computations of bases for (left/ right/ two-sided) ideals <M>I</M> in
##  an <E>associative</E> algebra <M>A</M> from ideal generators of <M>I</M>;
##  in these cases <A>Agens</A> is a list of algebra generators of <M>A</M>,
##  <A>from</A> denotes the appropriate side(s),
##  <A>init</A> is a list of ideal generators of <M>I</M>,
##  and <A>opr</A> is again <C>*</C>.
##  <P/>
##  (Note that bases of ideals in <E>not</E> necessarily associative algebras
##  can be computed using
##  <Ref Func="MutableBasisOfIdealInNonassociativeAlgebra"/>.)
##  <P/>
##  Finally, bases of right <M>A</M>-modules also can be computed using
##  <Ref Func="MutableBasisOfClosureUnderAction"/>.
##  The only difference to the ideal case is that <A>init</A> is now a list
##  of right module generators,
##  and <A>opr</A> is the operation of the module.
##  <P/>
##  <!--  (Remark:
##        It would be possible to use vector space generators of the algebra
##        <M>A</M> if they are known; but in the associative case,
##        it is cheaper to multiply only with generators
##        until the vector space becomes stable.) -->
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> g:= GeneratorsOfAlgebra( A );;
##  gap> B:= MutableBasisOfClosureUnderAction( Rationals, 
##  >                                g, "left", [ g[1] ], \*, Zero(A), 4 );
##  <mutable basis over Rationals, 4 vectors>
##  gap> BasisVectors( B );
##  [ e, i, j, k ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MutableBasisOfClosureUnderAction" );


#############################################################################
##
#F  MutableBasisOfNonassociativeAlgebra( <F>, <Agens>, <zero>, <maxdim> )
##
##  <#GAPDoc Label="MutableBasisOfNonassociativeAlgebra">
##  <ManSection>
##  <Func Name="MutableBasisOfNonassociativeAlgebra"
##   Arg='F, Agens, zero, maxdim'/>
##
##  <Description>
##  is a mutable basis of the (not necessarily associative) <A>F</A>-algebra
##  that is generated by <A>Agens</A>, has zero element <A>zero</A>,
##  and has dimension at most <A>maxdim</A>.
##  If no finite bound for the dimension is known then <Ref Var="infinity"/> must be
##  the value of <A>maxdim</A>.
##  <P/>
##  The difference to <Ref Func="MutableBasisOfClosureUnderAction"/> is that
##  in general it is not sufficient to multiply just with algebra generators.
##  (For special cases of nonassociative algebras, especially for Lie
##  algebras, multiplying with algebra generators suffices.)
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 4 );;
##  gap> m1:= Random( L );;
##  gap> m2:= Random( L );;
##  gap> MutableBasisOfNonassociativeAlgebra( Rationals, [ m1, m2 ], 
##  > Zero( L ), 16 );
##  <mutable basis over Rationals, 16 vectors>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MutableBasisOfNonassociativeAlgebra" );


#############################################################################
##
#F  MutableBasisOfIdealInNonassociativeAlgebra( <F>, <Vgens>, <Igens>,
#F                                              <zero>, <from>, <maxdim> )
##
##  <#GAPDoc Label="MutableBasisOfIdealInNonassociativeAlgebra">
##  <ManSection>
##  <Func Name="MutableBasisOfIdealInNonassociativeAlgebra"
##   Arg='F, Vgens, Igens, zero, from, maxdim'/>
##
##  <Description>
##  is a mutable basis of the ideal generated by <A>Igens</A> under the
##  action of the (not necessarily associative) <A>F</A>-algebra with
##  vector space generators <A>Vgens</A>.
##  The zero element of the ideal is <A>zero</A>,
##  <A>from</A> is one of <C>"left"</C>, <C>"right"</C>, <C>"both"</C>
##  (with the same meaning as in
##  <Ref Func="MutableBasisOfClosureUnderAction"/>),
##  and <A>maxdim</A> is a known upper bound on the dimension of the ideal;
##  if no finite bound for the dimension is known then <Ref Var="infinity"/> must be
##  the value of <A>maxdim</A>.
##  <P/>
##  The difference to <Ref Func="MutableBasisOfClosureUnderAction"/> is that
##  in general it is not sufficient to multiply just with algebra generators.
##  (For special cases of nonassociative algebras, especially for Lie
##  algebras, multiplying with algebra generators suffices.)
##  <Example><![CDATA[
##  gap> mats:= [  [[ 1, 0 ], [ 0, -1 ]], [[0,1],[0,0]] ];;
##  gap> A:= Algebra( Rationals, mats );;
##  gap> basA:= BasisVectors( Basis( A ) );;
##  gap> B:= MutableBasisOfIdealInNonassociativeAlgebra( Rationals, basA,
##  > [ mats[2] ], 0*mats[1], "both", infinity );
##  <mutable basis over Rationals, 1 vectors>
##  gap> BasisVectors( B );
##  [ [ [ 0, 1 ], [ 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MutableBasisOfIdealInNonassociativeAlgebra" );


#############################################################################
##
##  Domain constructors
##

#############################################################################
##
#O  AlgebraByGenerators( <F>, <gens>[, <zero>] )  . <F>-algebra by generators
##
##  <ManSection>
##  <Oper Name="AlgebraByGenerators" Arg='F, gens[, zero]'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "FLMLORByGenerators",
    [ IsRing, IsCollection ] );

DeclareSynonym( "AlgebraByGenerators", FLMLORByGenerators );


#############################################################################
##
#F  Algebra( <F>, <gens>[, <zero>][, "basis"] )
##
##  <#GAPDoc Label="Algebra">
##  <ManSection>
##  <Func Name="Algebra" Arg='F, gens[, zero][, "basis"]'/>
##
##  <Description>
##  <C>Algebra( <A>F</A>, <A>gens</A> )</C> is the algebra over the division
##  ring <A>F</A>, generated by the vectors in the list <A>gens</A>.
##  <P/>
##  If there are three arguments, a division ring <A>F</A> and a list
##  <A>gens</A> and an element <A>zero</A>,
##  then <C>Algebra( <A>F</A>, <A>gens</A>, <A>zero</A> )</C> is the
##  <A>F</A>-algebra generated by <A>gens</A>, with zero element <A>zero</A>.
##  <P/>
##  If the last argument is the string <C>"basis"</C> then the vectors in
##  <A>gens</A> are known to form a basis of the algebra
##  (as an <A>F</A>-vector space).
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
##  gap> A:= Algebra( Rationals, [ m ] );
##  <algebra over Rationals, with 1 generators>
##  gap> Dimension( A );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FLMLOR" );

DeclareSynonym( "Algebra", FLMLOR );


#############################################################################
##
#F  Subalgebra( <A>, <gens>[, "basis"] )
##
##  <#GAPDoc Label="Subalgebra">
##  <ManSection>
##  <Func Name="Subalgebra" Arg='A, gens[, "basis"]'/>
##
##  <Description>
##  is the <M>F</M>-algebra generated by <A>gens</A>,
##  with parent algebra <A>A</A>,
##  where <M>F</M> is the left acting domain of <A>A</A>.
##  <P/>
##  <E>Note</E> that being a subalgebra of <A>A</A> means to be an algebra,
##  to be contained in <A>A</A>,
##  <E>and</E> to have the same left acting domain as <A>A</A>.
##  <P/>
##  An optional argument <C>"basis"</C> may be added if it is known that
##  the generators already form a basis of the algebra.
##  Then it is <E>not</E> checked whether <A>gens</A> really are linearly
##  independent and whether all elements in <A>gens</A> lie in <A>A</A>.
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
##  gap> A:= Algebra( Rationals, [ m ] );
##  <algebra over Rationals, with 1 generators>
##  gap> B:= Subalgebra( A, [ m^2 ] );
##  <algebra over Rationals, with 1 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubFLMLOR" );

DeclareSynonym( "Subalgebra", SubFLMLOR );


#############################################################################
##
#F  SubalgebraNC( <A>, <gens>[, "basis"] )
##
##  <#GAPDoc Label="SubalgebraNC">
##  <ManSection>
##  <Func Name="SubalgebraNC" Arg='A, gens[, "basis"]'/>
##
##  <Description>
##  <Ref Func="SubalgebraNC"/> does the same as
##  <Ref Func="Subalgebra"/>, except that it does not check
##  whether all elements in <A>gens</A> lie in <A>A</A>.
##  <Example><![CDATA[
##  gap> m:= RandomMat( 3, 3 );;
##  gap> A:= Algebra( Rationals, [ m ] );
##  <algebra over Rationals, with 1 generators>
##  gap> SubalgebraNC( A, [ IdentityMat( 3, 3 ) ], "basis" );
##  <algebra of dimension 1 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubFLMLORNC" );

DeclareSynonym( "SubalgebraNC", SubFLMLORNC );


#############################################################################
##
#O  AlgebraWithOneByGenerators( <F>, <gens>[, <zero>] )
##
##  <ManSection>
##  <Oper Name="AlgebraWithOneByGenerators" Arg='F, gens[, zero]'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "FLMLORWithOneByGenerators", [ IsRing, IsCollection ] );

DeclareSynonym( "AlgebraWithOneByGenerators", FLMLORWithOneByGenerators );


#############################################################################
##
#F  AlgebraWithOne( <F>, <gens>[, <zero>][, "basis"] )
##
##  <#GAPDoc Label="AlgebraWithOne">
##  <ManSection>
##  <Func Name="AlgebraWithOne" Arg='F, gens[, zero][, "basis"]'/>
##
##  <Description>
##  <C>AlgebraWithOne( <A>F</A>, <A>gens</A> )</C> is the algebra-with-one
##  over the division ring <A>F</A>,
##  generated by the vectors in the list <A>gens</A>.
##  <P/>
##  If there are three arguments, a division ring <A>F</A>
##  and a list <A>gens</A> and an element <A>zero</A>,
##  then <C>AlgebraWithOne( <A>F</A>, <A>gens</A>, <A>zero</A> )</C> is the
##  <A>F</A>-algebra-with-one generated by <A>gens</A>,
##  with zero element <A>zero</A>.
##  <P/>
##  If the last argument is the string <C>"basis"</C> then the vectors in
##  <A>gens</A> are known to form a basis of the algebra
##  (as an <A>F</A>-vector space).
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
##  gap> A:= AlgebraWithOne( Rationals, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  gap> Dimension( A );
##  3
##  gap> One(A);
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FLMLORWithOne" );

DeclareSynonym( "AlgebraWithOne", FLMLORWithOne );


#############################################################################
##
#F  SubalgebraWithOne( <A>, <gens>[, "basis"] )
##
##  <#GAPDoc Label="SubalgebraWithOne">
##  <ManSection>
##  <Func Name="SubalgebraWithOne" Arg='A, gens[, "basis"]'/>
##
##  <Description>
##  is the algebra-with-one generated by <A>gens</A>,
##  with parent algebra <A>A</A>.
##  <P/>
##  The optional third argument, the string <C>"basis"</C>, may be added if
##  it is known that the elements from <A>gens</A> are linearly independent.
##  Then it is <E>not</E> checked whether <A>gens</A> really are linearly
##  independent and whether all elements in <A>gens</A> lie in <A>A</A>.
##  <Example><![CDATA[
##  gap> m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;
##  gap> A:= AlgebraWithOne( Rationals, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  gap> B1:= SubalgebraWithOne( A, [ m ] );;
##  gap> B2:= Subalgebra( A, [ m ] );;
##  gap> Dimension( B1 );
##  3
##  gap> Dimension( B2 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubFLMLORWithOne" );

DeclareSynonym( "SubalgebraWithOne", SubFLMLORWithOne );


#############################################################################
##
#F  SubalgebraWithOneNC( <A>, <gens>[, "basis"] )
##
##  <#GAPDoc Label="SubalgebraWithOneNC">
##  <ManSection>
##  <Func Name="SubalgebraWithOneNC" Arg='A, gens[, "basis"]'/>
##
##  <Description>
##  <Ref Func="SubalgebraWithOneNC"/> does the same as
##  <Ref Func="SubalgebraWithOne"/>, except that it does not check
##  whether all elements in <A>gens</A> lie in <A>A</A>.
##  <Example><![CDATA[
##  gap> m:= RandomMat( 3, 3 );; A:= Algebra( Rationals, [ m ] );;
##  gap> SubalgebraWithOneNC( A, [ m ] );
##  <algebra-with-one over Rationals, with 1 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubFLMLORWithOneNC" );

DeclareSynonym( "SubalgebraWithOneNC", SubFLMLORWithOneNC );


#############################################################################
##
#F  LieAlgebra( <L> )
#F  LieAlgebra( <F>, <gens>[, <zero>][, "basis"] )
##
##  <#GAPDoc Label="LieAlgebra">
##  <ManSection>
##  <Func Name="LieAlgebra" Arg='L' Label="for an associative algebra"/>
##  <Func Name="LieAlgebra" Arg='F, gens[, zero][, "basis"]'
##   Label="for field and generators"/>
##
##  <Description>
##  For an associative algebra <A>L</A>, <C>LieAlgebra( <A>L</A> )</C> is the
##  Lie algebra isomorphic to <A>L</A> as a vector space
##  but with the Lie bracket as product.
##  <P/>
##  <C>LieAlgebra( <A>F</A>, <A>gens</A> )</C> is the Lie algebra over the
##  division ring <A>F</A>, generated <E>as Lie algebra</E>
##  by the Lie objects corresponding to the vectors in the list <A>gens</A>.
##  <P/>
##  <E>Note</E> that the algebra returned by
##  <Ref Func="LieAlgebra" Label="for field and generators"/>
##  does not contain the vectors in <A>gens</A>.
##  The elements in <A>gens</A> are wrapped up as Lie objects
##  (see <Ref Sect="Lie Objects"/>).
##  This allows one to create Lie algebras from ring elements with respect to
##  the Lie bracket as product.  But of course the product in the Lie
##  algebra is the usual <C>*</C>.
##  <P/>
##  If there are three arguments, a division ring <A>F</A> and a list
##  <A>gens</A> and an element <A>zero</A>,
##  then <C>LieAlgebra( <A>F</A>, <A>gens</A>, <A>zero</A> )</C> is the
##  corresponding <A>F</A>-Lie algebra with zero element the Lie object
##  corresponding to <A>zero</A>.
##  <P/>
##  If the last argument is the string <C>"basis"</C> then the vectors in
##  <A>gens</A> are known to form a basis of the algebra
##  (as an <A>F</A>-vector space).
##  <P/>
##  <E>Note</E> that even if each element in <A>gens</A> is already
##  a Lie element, i.e., is of the form <C>LieElement( <A>elm</A> )</C>
##  for an object <A>elm</A>,
##  the elements of the result lie in the Lie family of the family that
##  contains <A>gens</A> as a subset.
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( GF( 7 ), 4 );;
##  gap> L:= LieAlgebra( A );
##  <Lie algebra of dimension 16 over GF(7)>
##  gap> mats:= [ [ [ 1, 0 ], [ 0, -1 ] ], [ [ 0, 1 ], [ 0, 0 ] ], 
##  >             [ [ 0, 0 ], [ 1, 0] ] ];;
##  gap> L:= LieAlgebra( Rationals, mats );
##  <Lie algebra over Rationals, with 3 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LieAlgebra" );


#############################################################################
##
#A  LieAlgebraByDomain( <A> )
##
##  <ManSection>
##  <Attr Name="LieAlgebraByDomain" Arg='A'/>
##
##  <Description>
##  is a Lie algebra isomorphic to the algebra <A>A</A> as a vector space,
##  but with the Lie bracket as product.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "LieAlgebraByDomain", IsAlgebra );


#############################################################################
##
#O  AsLieAlgebra( <F>, <A> ) . . . . . . . . view <A> as Lie algebra over <F>
##
##  <ManSection>
##  <Oper Name="AsLieAlgebra" Arg='F, A'/>
##
##  <Description>
##  Note that the multiplication in <A>A</A> is the same as in the result.
##  </Description>
##  </ManSection>
##
DeclareOperation( "AsLieAlgebra", [ IsDivisionRing, IsCollection ] );


#############################################################################
##
#F  FreeAlgebra( <R>, <rank>[, <name>] )
#F  FreeAlgebra( <R>, <name1>, <name2>, ... )
##
##  <#GAPDoc Label="FreeAlgebra">
##  <ManSection>
##  <Func Name="FreeAlgebra" Arg='R, rank[, name]'
##   Label="for ring, rank (and name)"/>
##  <Func Name="FreeAlgebra" Arg='R, name1, name2, ...'
##   Label="for ring and several names"/>
##
##  <Description>
##  is a free (nonassociative) algebra of rank <A>rank</A>
##  over the division ring <A>R</A>.
##  Here <A>name</A>, and <A>name1</A>, <A>name2</A>, ... are optional strings
##  that can be used to provide names for the generators.
##  <Example><![CDATA[
##  gap> A:= FreeAlgebra( Rationals, "a", "b" );
##  <algebra over Rationals, with 2 generators>
##  gap> g:= GeneratorsOfAlgebra( A );
##  [ (1)*a, (1)*b ]
##  gap> (g[1]*g[2])*((g[2]*g[1])*g[1]);
##  (1)*((a*b)*((b*a)*a))
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeAlgebra" );


#############################################################################
##
#F  FreeAlgebraWithOne( <R>, <rank>[, <name>] )
#F  FreeAlgebraWithOne( <R>, <name1>, <name2>, ... )
##
##  <#GAPDoc Label="FreeAlgebraWithOne">
##  <ManSection>
##  <Func Name="FreeAlgebraWithOne" Arg='R, rank[, name]'
##   Label="for ring, rank (and name)"/>
##  <Func Name="FreeAlgebraWithOne" Arg='R, name1, name2, ...'
##   Label="for ring and several names"/>
##
##  <Description>
##  is a free (nonassociative) algebra-with-one of rank <A>rank</A>
##  over the division ring <A>R</A>.
##  Here <A>name</A>, and <A>name1</A>, <A>name2</A>, ... are optional strings
##  that can be used to provide names for the generators.
##  <Example><![CDATA[
##  gap> A:= FreeAlgebraWithOne( Rationals, 4, "q" );
##  <algebra-with-one over Rationals, with 4 generators>
##  gap> GeneratorsOfAlgebra( A );
##  [ (1)*<identity ...>, (1)*q.1, (1)*q.2, (1)*q.3, (1)*q.4 ]
##  gap> One( A );
##  (1)*<identity ...>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeAlgebraWithOne" );


#############################################################################
##
#F  FreeAssociativeAlgebra( <R>, <rank>[, <name>] )
#F  FreeAssociativeAlgebra( <R>, <name1>, <name2>, ... )
##
##  <#GAPDoc Label="FreeAssociativeAlgebra">
##  <ManSection>
##  <Func Name="FreeAssociativeAlgebra" Arg='R, rank[, name]'
##   Label="for ring, rank (and name)"/>
##  <Func Name="FreeAssociativeAlgebra" Arg='R, name1, name2, ...'
##   Label="for ring and several names"/>
##
##  <Description>
##  is a free associative algebra of rank <A>rank</A> over the
##  division ring <A>R</A>.
##  Here <A>name</A>, and <A>name1</A>, <A>name2</A>, ... are optional strings
##  that can be used to provide names for the generators.
##  <Example><![CDATA[
##  gap> A:= FreeAssociativeAlgebra( GF( 5 ), 4, "a" );
##  <algebra over GF(5), with 4 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeAssociativeAlgebra" );


#############################################################################
##
#F  FreeAssociativeAlgebraWithOne( <R>, <rank>[, <name>] )
#F  FreeAssociativeAlgebraWithOne( <R>, <name1>, <name2>, ... )
##
##  <#GAPDoc Label="FreeAssociativeAlgebraWithOne">
##  <ManSection>
##  <Func Name="FreeAssociativeAlgebraWithOne" Arg='R, rank[, name]'
##   Label="for ring, rank (and name)"/>
##  <Func Name="FreeAssociativeAlgebraWithOne" Arg='R, name1, name2, ...'
##   Label="for ring and several names"/>
##
##  <Description>
##  is a free associative algebra-with-one of rank <A>rank</A> over the
##  division ring <A>R</A>.
##  Here <A>name</A>, and <A>name1</A>, <A>name2</A>, ... are optional strings
##  that can be used to provide names for the generators.
##  <Example><![CDATA[
##  gap> A:= FreeAssociativeAlgebraWithOne( Rationals, "a", "b", "c" );
##  <algebra-with-one over Rationals, with 3 generators>
##  gap> GeneratorsOfAlgebra( A );
##  [ (1)*<identity ...>, (1)*a, (1)*b, (1)*c ]
##  gap> One( A );
##  (1)*<identity ...>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeAssociativeAlgebraWithOne" );


#############################################################################
##
#F  AlgebraByStructureConstants( <R>, <sctable>[, <nameinfo>] )
##
##  <#GAPDoc Label="AlgebraByStructureConstants">
##  <ManSection>
##  <Func Name="AlgebraByStructureConstants" Arg='R, sctable[, nameinfo]'/>
##
##  <Description>
##  returns a free left module <M>A</M> over the division ring <A>R</A>,
##  with multiplication defined by the structure constants table
##  <A>sctable</A>.
##  The optional argument <A>nameinfo</A> can be used to prescribe names for
##  the elements of the canonical basis of <M>A</M>;
##  it can be either a string <A>name</A>
##  (then <A>name</A><C>1</C>, <A>name</A><C>2</C> etc. are chosen)
##  or a list of strings which are then chosen.
##  The vectors of the canonical basis of <M>A</M> correspond to the vectors
##  of the basis given by <A>sctable</A>.
##  <P/>
##  <!-- The algebra generators of <M>A</M> are linearly independent
##    abstract vector space generators
##    <M>x_1, x_2, \ldots, x_n</M> which are multiplied according to the
##    formula <M> x_i x_j = \sum_{k=1}^n c_{ijk} x_k</M>
##    where <C><M>c_{ijk}</M> = <A>sctable</A>[i][j][1][i_k]</C>
##    and <C><A>sctable</A>[i][j][2][i_k] = k</C>. -->
##  It is <E>not</E> checked whether the coefficients in <A>sctable</A>
##  are really elements in <A>R</A>.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );
##  gap> A:= AlgebraByStructureConstants( Rationals, T );
##  <algebra of dimension 2 over Rationals>
##  gap> b:= BasisVectors( Basis( A ) );;
##  gap> b[1]^2;
##  (1/2)*v.1+(2/3)*v.2
##  gap> b[1]*b[2];
##  0*v.1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AlgebraByStructureConstants" );


#############################################################################
##
#F  LieAlgebraByStructureConstants( <R>, <sctable>[, <nameinfo>] )
##
##  <#GAPDoc Label="LieAlgebraByStructureConstants">
##  <ManSection>
##  <Func Name="LieAlgebraByStructureConstants"
##   Arg='R, sct[, nameinfo]'/>
##
##  <Description>
##  <Ref Func="LieAlgebraByStructureConstants"/> does the same as
##  <Ref Func="AlgebraByStructureConstants"/>, and has the same meaning
##  of arguments, except that the result is assumed to be a Lie algebra.
##  Note that the function does not check whether
##  <A>sct</A> satisfies the Jacobi identity.
##  (So if one creates a Lie algebra this way with a table that does not
##  satisfy the Jacobi identity, errors may occur later on.)
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0, "antisymmetric" );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1/2, 1 ] );
##  gap> L:= LieAlgebraByStructureConstants( Rationals, T );
##  <Lie algebra of dimension 2 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LieAlgebraByStructureConstants" );

#############################################################################
##
#F  RestrictedLieAlgebraByStructureConstants( <R>, <sct>[, <nameinfo>], pmapping )
##
##  <#GAPDoc Label="RestrictedLieAlgebraByStructureConstants">
##  <ManSection>
##  <Func Name="RestrictedLieAlgebraByStructureConstants"
##   Arg='R, sct[, nameinfo], pmapping'/>
##
##  <Description>
##  <Ref Func="RestrictedLieAlgebraByStructureConstants"/> does the same as
##  <Ref Func="LieAlgebraByStructureConstants"/>, and has the same meaning of
##  all arguments, except that the result is assumed to be a restricted Lie 
##  algebra (see <Ref Label="Restricted Lie algebras"/>) with the <M>p</M>-map 
##  given by the additional argument <A>pmapping</A>. This last argument is a
##  list of the length equal to the dimension of the algebra; its <M>i</M>-th 
##  entry specifies the <M>p</M>-th power of the <M>i</M>-th basis vector
##  in the same format <C>[ coeff1, position1, coeff2, position2, ... ]</C> as 
##  <Ref Func="SetEntrySCTable"/> uses to specify entries of the structure 
##  constants table.
##  <P/>
##  Note that the function does not check whether
##  <A>sct</A> satisfies the Jacobi identity, of whether <A>pmapping</A>
##  specifies a legitimate <M>p</M>-mapping.
##  <P/>
##  The following example creates a commutative restricted Lie algebra of dimension
##  3, in which the <M>p</M>-th power of the <M>i</M>-th basis element is 
##  the <M>i+1</M>-th basis element (except for the 3rd basis element which
##  goes to zero).
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 3, Zero(GF(5)), "antisymmetric" );;
##  gap> L:= RestrictedLieAlgebraByStructureConstants( 
##  >                                     GF(5), T, [[1,2],[1,3],[]] );
##  <Lie algebra of dimension 3 over GF(5)>
##  gap> List(Basis(L),PthPowerImage);
##  [ v.2, v.3, 0*v.1 ]
##  gap> PthPowerImage(L.1+L.2);
##  v.2+v.3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RestrictedLieAlgebraByStructureConstants" );


#############################################################################
##
#C  IsQuaternion( <obj> )
#C  IsQuaternionCollection(<obj>)
#C  IsQuaternionCollColl(<obj>)
##
##  <#GAPDoc Label="IsQuaternion">
##  <ManSection>
##  <Filt Name="IsQuaternion" Arg='obj' Type='Category'/>
##  <Filt Name="IsQuaternionCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsQuaternionCollColl" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Filt="IsQuaternion"/> is the category of elements in an algebra
##  constructed by <Ref Func="QuaternionAlgebra"/>.
##  A collection of quaternions lies in the category
##  <Ref Filt="IsQuaternionCollection"/>.
##  Finally, a collection of quaternion collections
##  (e.g., a matrix of quaternions) lies in the category
##  <Ref Filt="IsQuaternionCollColl"/>.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> b:= BasisVectors( Basis( A ) );
##  [ e, i, j, k ]
##  gap> IsQuaternion( b[1] );
##  true
##  gap> IsQuaternionCollColl( [ [ b[1], b[2] ], [ b[3], b[4] ] ] );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsQuaternion", IsScalar and IsAssociative );
DeclareCategoryCollections( "IsQuaternion" );
DeclareCategoryCollections( "IsQuaternionCollection" );


#############################################################################
##
#F  QuaternionAlgebra( <F>[, <a>, <b>] )
##
##  <#GAPDoc Label="QuaternionAlgebra">
##  <ManSection>
##  <Func Name="QuaternionAlgebra" Arg='F[, a, b]'/>
##
##  <Returns>
##  a quaternion algebra over <A>F</A>,
##  with parameters <A>a</A> and <A>b</A>.
##  </Returns>
##  <Description>
##  Let <A>F</A> be a field or a list of field elements,
##  let <M>F</M> be the field generated by <A>F</A>,
##  and let <A>a</A> and <A>b</A> two elements in <M>F</M>.
##  <Ref Func="QuaternionAlgebra"/> returns a quaternion algebra over
##  <M>F</M>, with parameters <A>a</A> and <A>b</A>,
##  i.e., a four-dimensional associative <M>F</M>-algebra with basis
##  <M>(e,i,j,k)</M> and multiplication defined by
##  <M>e e = e</M>, <M>e i = i e = i</M>, <M>e j = j e = j</M>,
##  <M>e k = k e = k</M>, <M>i i = <A>a</A> e</M>, <M>i j = - j i = k</M>,
##  <M>i k = - k i = <A>a</A> j</M>, <M>j j = <A>b</A> e</M>,
##  <M>j k = - k j = <A>b</A> i</M>, <M>k k = - <A>a</A> <A>b</A> e</M>.
##  The default value for both <A>a</A> and <A>b</A> is
##  <M>-1 \in F</M>.
##  <P/>
##  The <Ref Attr="GeneratorsOfAlgebra"/> and <Ref Attr="CanonicalBasis"/>
##  value of an algebra constructed with <Ref Func="QuaternionAlgebra"/>
##  is the list <M>[ e, i, j, k ]</M>.
##  <P/>
##  Two quaternion algebras with the same parameters <A>a</A>, <A>b</A>
##  lie in the same family, so it makes sense to consider their intersection
##  or to ask whether they are contained in each other.
##  (This is due to the fact that the results of
##  <Ref Func="QuaternionAlgebra"/> are cached,
##  in the global variable <C>QuaternionAlgebraData</C>.)
##  <P/>
##  The embedding of the field <Ref Var="GaussianRationals"/> into
##  a quaternion algebra <M>A</M> over <Ref Var="Rationals"/>
##  is not uniquely determined.
##  One can specify one embedding as a vector space homomorphism
##  that maps <C>1</C> to the first algebra generator of <M>A</M>,
##  and <C>E(4)</C> to one of the others.
##  <Example><![CDATA[
##  gap> QuaternionAlgebra( Rationals );
##  <algebra-with-one of dimension 4 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "QuaternionAlgebra" );


#############################################################################
##
#V  QuaternionAlgebraData
##
##  <ManSection>
##  <Var Name="QuaternionAlgebraData"/>
##
##  <Description>
##  is a list of quadruples of the form
##  <C>[ <A>a</A>, <A>b</A>, <A>fam</A>, <A>A</A> ]</C>
##  where <A>a</A> and <A>b</A> are the parameters for the call of
##  <Ref Func="QuaternionAlgebra"/>,
##  <A>fam</A> is the family of the desired algebra,
##  and <A>A</A> is a quaternion algebra in this family.
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "QuaternionAlgebraData" );


#############################################################################
##
#F  ComplexificationQuat( <vector> )
#F  ComplexificationQuat( <matrix> )
##
##  <#GAPDoc Label="ComplexificationQuat">
##  <ManSection>
##  <Func Name="ComplexificationQuat" Arg='vector' Label="for a vector"/>
##  <Func Name="ComplexificationQuat" Arg='matrix' Label="for a matrix"/>
##
##  <Description>
##  Let <M>A = e F \oplus i F \oplus j F \oplus k F</M> be
##  a quaternion algebra over the field <M>F</M> of cyclotomics,
##  with basis <M>(e,i,j,k)</M>.
##  <P/>
##  If <M>v = v_1 + v_2 j</M> is a row vector over <M>A</M>
##  with <M>v_1 = e w_1 + i w_2</M>
##  and <M>v_2 = e w_3 + i w_4</M> then
##  <Ref Func="ComplexificationQuat" Label="for a vector"/>
##  called with argument <M>v</M> returns the
##  concatenation of <M>w_1 + </M><C>E(4)</C><M> w_2</M> and
##  <M>w_3 + </M><C>E(4)</C><M> w_4</M>.
##  <P/>
##  If <M>M = M_1 + M_2 j</M> is a matrix over <M>A</M>
##  with <M>M_1 = e N_1 + i N_2</M>
##  and <M>M_2 = e N_3 + i N_4</M> then
##  <Ref Func="ComplexificationQuat" Label="for a matrix"/>
##  called with argument <M>M</M> returns the
##  block matrix <M>A</M> over <M>e F \oplus i F</M> such that
##  <M>A(1,1) = N_1 + </M><C>E(4)</C><M> N_2</M>,
##  <M>A(2,2) = N_1 - </M><C>E(4)</C><M> N_2</M>,
##  <M>A(1,2) = N_3 + </M><C>E(4)</C><M> N_4</M>, and
##  <M>A(2,1) = - N_3 + </M><C>E(4)</C><M> N_4</M>.
##  <P/>
##  Then <C>ComplexificationQuat(<A>v</A>) * ComplexificationQuat(<A>M</A>)=
##        ComplexificationQuat(<A>v</A> * <A>M</A>)</C>, since
##  <Display Mode="M">
##  v M = v_1 M_1 + v_2 j M_1 + v_1 M_2 j + v_2 j M_2 j
##      =   ( v_1 M_1 - v_2 \overline{{M_2}} )
##        + ( v_1 M_2 + v_2 \overline{{M_1}} ) j.
##  </Display>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ComplexificationQuat" );


#############################################################################
##
#F  OctaveAlgebra( <F> )
##
##  <#GAPDoc Label="OctaveAlgebra">
##  <ManSection>
##  <Func Name="OctaveAlgebra" Arg='F'/>
##
##  <Description>
##  The algebra of octonions over <A>F</A>.
##  <Example><![CDATA[
##  gap> OctaveAlgebra( Rationals );
##  <algebra of dimension 8 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OctaveAlgebra" );


#############################################################################
##
#F  FullMatrixFLMLOR( <R>, <n> )
#F  FullMatrixAlgebra( <R>, <n> )
#F  MatrixAlgebra( <R>, <n> )
#F  MatAlgebra( <R>, <n> )
##
##  <#GAPDoc Label="FullMatrixAlgebra">
##  <ManSection>
##  <Func Name="FullMatrixAlgebra" Arg='R, n'/>
##  <Func Name="MatrixAlgebra" Arg='R, n'/>
##  <Func Name="MatAlgebra" Arg='R, n'/>
##
##  <Description>
##  is the full matrix algebra of <M><A>n</A> \times <A>n</A></M> matrices
##  over the ring <A>R</A>,
##  for a nonnegative integer <A>n</A>.
##  <Example><![CDATA[
##  gap> A:=FullMatrixAlgebra( Rationals, 20 );
##  ( Rationals^[ 20, 20 ] )
##  gap> Dimension( A );
##  400
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FullMatrixFLMLOR" );

DeclareSynonym( "FullMatrixAlgebra", FullMatrixFLMLOR );
DeclareSynonym( "MatrixAlgebra", FullMatrixFLMLOR );
DeclareSynonym( "MatAlgebra", FullMatrixFLMLOR );


#############################################################################
##
#F  FullMatrixLieAlgebra( <R>, <n> )
#F  MatrixLieAlgebra( <R>, <n> )
#F  MatLieAlgebra( <R>, <n> )
##
##  <#GAPDoc Label="FullMatrixLieAlgebra">
##  <ManSection>
##  <Func Name="FullMatrixLieAlgebra" Arg='R, n'/>
##  <Func Name="MatrixLieAlgebra" Arg='R, n'/>
##  <Func Name="MatLieAlgebra" Arg='R, n'/>
##
##  <Description>
##  is the full matrix Lie algebra of <M><A>n</A> \times <A>n</A></M>
##  matrices over the ring <A>R</A>,
##  for a nonnegative integer <A>n</A>.
##  <Example><![CDATA[
##  gap> FullMatrixLieAlgebra( GF(9), 10 );
##  <Lie algebra over GF(3^2), with 19 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FullMatrixLieFLMLOR" );

DeclareSynonym( "FullMatrixLieAlgebra", FullMatrixLieFLMLOR );
DeclareSynonym( "MatrixLieAlgebra", FullMatrixLieFLMLOR );
DeclareSynonym( "MatLieAlgebra", FullMatrixLieFLMLOR );


#############################################################################
##
#C  IsMatrixFLMLOR( <obj> ) . . . . . .  test if an object is a matrix FLMLOR
##
##  <ManSection>
##  <Filt Name="IsMatrixFLMLOR" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareSynonym( "IsMatrixFLMLOR", IsFLMLOR and IsRingElementCollCollColl );


#############################################################################
##
#M  IsFiniteDimensional( <A> )  . . . . matrix FLMLORs are finite dimensional
##
InstallTrueMethod( IsFiniteDimensional, IsMatrixFLMLOR );


#############################################################################
##
#A  CentralIdempotentsOfAlgebra( <A> )
##
##  <#GAPDoc Label="CentralIdempotentsOfAlgebra">
##  <ManSection>
##  <Attr Name="CentralIdempotentsOfAlgebra" Arg='A'/>
##
##  <Description>
##  For an associative algebra <A>A</A>, this function returns
##  a list of central primitive idempotents such that their sum is
##  the identity element of <A>A</A>.
##  Therefore <A>A</A> is required to have an identity.
##  <P/>
##  (This is a synonym of <C>CentralIdempotentsOfSemiring</C>.)
##  <!-- add crossref. as soon as this is available -->
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> B:= DirectSumOfAlgebras( [A, A, A] );
##  <algebra of dimension 12 over Rationals>
##  gap> CentralIdempotentsOfAlgebra( B );
##  [ v.9, v.5, v.1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "CentralIdempotentsOfAlgebra",
    CentralIdempotentsOfSemiring );


#############################################################################
##
#A  LeviMalcevDecomposition( <L> )
##
##  <#GAPDoc Label="LeviMalcevDecomposition">
##  <ManSection>
##  <Attr Name="LeviMalcevDecomposition" Arg='L' Label="for Lie algebras"/>
##
##  <Description>
##  A Levi-Malcev subalgebra of the algebra <A>L</A> is a semisimple
##  subalgebra complementary to the radical of <A>L</A>.
##  This function returns a list with two components.
##  The first component is a Levi-Malcev subalgebra, the second the radical.
##  This function is implemented for associative and Lie algebras. 
##  <Example><![CDATA[
##  gap> m:= [ [ 1, 2, 0 ], [ 0, 1, 3 ], [ 0, 0, 1] ];;
##  gap> A:= Algebra( Rationals, [ m ] );;
##  gap> LeviMalcevDecomposition( A );
##  [ <algebra of dimension 1 over Rationals>, 
##    <algebra of dimension 2 over Rationals> ]
##  ]]></Example>
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 5 );;
##  gap> LeviMalcevDecomposition( L );
##  [ <Lie algebra of dimension 24 over Rationals>, 
##    <two-sided ideal in <Lie algebra of dimension 25 over Rationals>, 
##        (dimension 1)> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LeviMalcevDecomposition", IsAlgebra );


#############################################################################
##
#F  CentralizerInFiniteDimensionalAlgebra( <A>, <S>, <issubset> )
##
##  <ManSection>
##  <Func Name="CentralizerInFiniteDimensionalAlgebra" Arg='A, S, issubset'/>
##
##  <Description>
##  is the centralizer of the list <A>S</A> in the algebra <A>A</A>,
##  that is, the set
##  <M>\{ a \in A; a s = s a \forall s \in S \}</M>.
##  <P/>
##  <A>issubset</A> must be either <K>true</K> or <K>false</K>,
##  where the former means that
##  <A>S</A> is known to be contained in <A>A</A>.
##  If <A>S</A> is not known to be contained in <A>A</A> then the centralizer
##  of <A>S</A> in the closure of <A>A</A> and <A>S</A> is computed,
##  the result is the intersection of this with <A>A</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CentralizerInFiniteDimensionalAlgebra" );


#############################################################################
##
#O  IsNilpotentElement( <L>, <x> )
##
##  <#GAPDoc Label="IsNilpotentElement">
##  <ManSection>
##  <Oper Name="IsNilpotentElement" Arg='L, x'/>
##
##  <Description>
##  <A>x</A> is nilpotent in <A>L</A> if its adjoint matrix is
##  a nilpotent matrix.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> IsNilpotentElement( L, Basis( L )[1] );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsNilpotentElement", [ IsAlgebra, IsRingElement ] );
DeclareSynonym( "IsLieNilpotentElement", IsNilpotentElement);


#############################################################################
##
#A  Grading( <A> )
##
##  <#GAPDoc Label="Grading">
##  <ManSection>
##  <Attr Name="Grading" Arg='A'/>
##
##  <Description>
##  Let <M>G</M> be an Abelian group and <M>A</M> an algebra.
##  Then <M>A</M> is said to be graded over <M>G</M> if for every
##  <M>g \in G</M> there is a subspace <M>A_g</M> of <M>A</M> such that
##  <M>A_g \cdot A_h \subset A_{{g+h}}</M> for <M>g, h \in G</M>. 
##  In &GAP;&nbsp;4 a <E>grading</E> of an algebra is a record containing the
##  following components.
##  <List>
##  <Mark><C>source</C></Mark>
##  <Item>
##    the Abelian group over which the algebra is graded.
##  </Item>
##  <Mark><C>hom_components</C></Mark>
##  <Item>
##    a function assigning to each element from the
##    source a subspace of the algebra.
##  </Item>
##  <Mark><C>min_degree</C></Mark>
##  <Item>
##    in the case where the algebra is graded over the integers
##    this is the minimum number for which <C>hom_components</C> returns
##    a nonzero subspace.
##  </Item>
##  <Mark><C>max_degree</C></Mark>
##  <Item>
##    is analogous to <C>min_degree</C>.
##  </Item>
##  </List>
##  We note that there are no methods to compute a grading of an 
##  arbitrary algebra; however some algebras get a natural grading when
##  they are constructed (see <Ref Func="JenningsLieAlgebra"/>, 
##  <Ref Func="NilpotentQuotientOfFpLieAlgebra"/>).
##  <P/>
##  We note also that these components may be not enough to handle 
##  the grading efficiently, and another record component may be needed.
##  For instance in a Lie algebra <M>L</M> constructed by 
##  <Ref Func="JenningsLieAlgebra"/>, the length of the of the range
##  <C>[ Grading(L)!.min_degree .. Grading(L)!.max_degree ]</C> may be 
##  non-polynomial in the dimension of <M>L</M>.
##  To handle efficiently this situation, an optional component can be 
##  used:
##  <List>
##  <Mark><C>non_zero_hom_components</C></Mark>
##  <Item>
##    the subset of <C>source</C> for which <C>hom_components</C> returns
##    a nonzero subspace.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> G:= SmallGroup(3^6, 100 );
##  <pc group of size 729 with 6 generators>
##  gap> L:= JenningsLieAlgebra( G );
##  <Lie algebra of dimension 6 over GF(3)>
##  gap> g:= Grading( L );
##  rec( hom_components := function( d ) ... end, max_degree := 9, 
##    min_degree := 1, source := Integers )
##  gap> g.hom_components( 3 );
##  <vector space over GF(3), with 1 generators>
##  gap> g.hom_components( 14 );
##  <vector space over GF(3), with 0 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Grading", IsAlgebra );


#############################################################################
##
#E