This file is indexed.

/usr/share/gap/lib/algfld.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#############################################################################
##
#W  algfld.gd                   GAP Library                  Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the categories,  attributes, properties and operations
##  for algebraic extensions of fields and their elements

#############################################################################
##
#C  IsAlgebraicElement(<obj>)
##
##  <#GAPDoc Label="IsAlgebraicElement">
##  <ManSection>
##  <Filt Name="IsAlgebraicElement" Arg='obj' Type='Category'/>
##
##  <Description>
##  is the category for elements of an algebraic extension.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicElement", IsScalar and IsZDFRE and 
                    IsAssociativeElement and IsAdditivelyCommutativeElement
                    and IsCommutativeElement);
DeclareCategoryCollections( "IsAlgebraicElement");
DeclareCategoryCollections( "IsAlgebraicElementCollection");
DeclareCategoryCollections( "IsAlgebraicElementCollColl");

#############################################################################
##
#C  IsAlgebraicElementFamily     Category for Families of Algebraic Elements
##
##  <ManSection>
##  <Filt Name="IsAlgebraicElementFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryFamily( "IsAlgebraicElement" );

#############################################################################
##
#C  IsAlgebraicExtension(<obj>)
##
##  <#GAPDoc Label="IsAlgebraicExtension">
##  <ManSection>
##  <Filt Name="IsAlgebraicExtension" Arg='obj' Type='Category'/>
##
##  <Description>
##  is the category of algebraic extensions of fields.
##  <Example><![CDATA[
##  gap> IsAlgebraicExtension(e);
##  true
##  gap> IsAlgebraicExtension(Rationals);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicExtension", IsField );


#############################################################################
##
#A  AlgebraicElementsFamilies    List of AlgElm. families to one poly over
##
##  <ManSection>
##  <Attr Name="AlgebraicElementsFamilies" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "AlgebraicElementsFamilies",
  IsUnivariatePolynomial, "mutable" );

#############################################################################
##
#O  AlgebraicElementsFamily   Create Family of alg elms
##
##  <ManSection>
##  <Oper Name="AlgebraicElementsFamily" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "AlgebraicElementsFamily",
  [IsField,IsUnivariatePolynomial]);

#############################################################################
##
#O  AlgebraicExtension(<K>,<f>)
##
##  <#GAPDoc Label="AlgebraicExtension">
##  <ManSection>
##  <Oper Name="AlgebraicExtension" Arg='K,f'/>
##
##  <Description>
##  constructs an extension <A>L</A> of the field <A>K</A> by one root of the
##  irreducible polynomial <A>f</A>, using Kronecker's construction.
##  <A>L</A> is a field whose <Ref Attr="LeftActingDomain"/> value is
##  <A>K</A>.
##  The  polynomial <A>f</A> is the <Ref Attr="DefiningPolynomial"/> value
##  of <A>L</A> and the attribute
##  <Ref Func="RootOfDefiningPolynomial"/>
##  of <A>L</A> holds a root of <A>f</A> in <A>L</A>.
##  <Example><![CDATA[
##  gap> x:=Indeterminate(Rationals,"x");;
##  gap> p:=x^4+3*x^2+1;;
##  gap> e:=AlgebraicExtension(Rationals,p);
##  <algebraic extension over the Rationals of degree 4>
##  gap> IsField(e);
##  true
##  gap> a:=RootOfDefiningPolynomial(e);
##  a
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AlgebraicExtension",
  [IsField,IsUnivariatePolynomial]);

#############################################################################
##
#F  MaxNumeratorCoeffAlgElm(<a>)
##
##  <ManSection>
##  <Func Name="MaxNumeratorCoeffAlgElm" Arg='a'/>
##
##  <Description>
##  maximal (absolute value, in numerator) 
##  coefficient in the representation of algebraic elm. <A>a</A>
##  </Description>
##  </ManSection>
##
DeclareOperation("MaxNumeratorCoeffAlgElm",[IsScalar]);

#############################################################################
##
#F  DefectApproximation( <K> ) . . . . . . . approximation for defect K, i.e.
#F                                      denominators of integer elements in K
##
##  <ManSection>
##  <Func Name="DefectApproximation" Arg='K'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute("DefectApproximation",IsAlgebraicExtension);

#############################################################################
##
#F  AlgExtEmbeddedPol(<ext>,<pol>)
##
##  <ManSection>
##  <Func Name="AlgExtEmbeddedPol" Arg='ext,pol'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("AlgExtEmbeddedPol");

DeclareGlobalFunction("AlgExtSquareHensel");