This file is indexed.

/usr/share/gap/lib/clas.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#############################################################################
##
#W  clas.gd                     GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

DeclareInfoClass( "InfoClasses" );

#############################################################################
##
#R  IsExternalOrbitByStabilizerRep  . . . . .  external orbit via transversal
##
##  <ManSection>
##  <Filt Name="IsExternalOrbitByStabilizerRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsExternalOrbitByStabilizerRep",
    IsExternalOrbit, [  ] );


#############################################################################
##
#R  IsConjugacyClassGroupRep( <obj> )
#R  IsConjugacyClassPermGroupRep( <obj> )
##
##  <ManSection>
##  <Filt Name="IsConjugacyClassGroupRep" Arg='obj' Type='Representation'/>
##  <Filt Name="IsConjugacyClassPermGroupRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  is a representation of conjugacy classes, a subrepresentation for
##  permutation groups is <C>IsConjugacyClassPermGroupRep</C>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsConjugacyClassGroupRep",
    IsExternalOrbit, [  ] );

DeclareRepresentation( "IsConjugacyClassPermGroupRep",
    IsExternalOrbitByStabilizerRep and IsConjugacyClassGroupRep, [  ] );

#############################################################################
##
#O  ConjugacyClass( <G>, <g> )  . . . . . . . . . conjugacy class constructor
##
##  <#GAPDoc Label="ConjugacyClass">
##  <ManSection>
##  <Oper Name="ConjugacyClass" Arg='G, g'/>
##
##  <Description>
##  creates the conjugacy class in <A>G</A> with representative <A>g</A>.
##  This class is an external set, so functions such as
##  <Ref Func="Representative"/> (which returns <A>g</A>),
##  <Ref Func="ActingDomain"/> (which returns <A>G</A>),
##  <Ref Func="StabilizerOfExternalSet"/> (which returns the centralizer of
##  <A>g</A>) and <Ref Func="AsList"/> work for it.
##  <P/>
##  A conjugacy class is an external orbit (see <Ref Func="ExternalOrbit"/>)
##  of group elements with the group acting by conjugation on it.
##  Thus element tests or operation representatives can be computed.
##  The attribute
##  <Ref Func="Centralizer" Label="for a class of objects in a magma"/>
##  gives the centralizer of the representative (which is the same result as
##  <Ref Func="StabilizerOfExternalSet"/>).
##  (This is a slight abuse of notation: This is <E>not</E> the centralizer
##  of the class as a <E>set</E> which would be the standard behaviour of
##  <Ref Func="Centralizer" Label="for a class of objects in a magma"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ConjugacyClass", [ IsGroup, IsObject ] );


#############################################################################
##
#R  IsRationalClassGroupRep . . . . . . . . . . . . . rational class in group
#R  IsRationalClassPermGroupRep . . . . . . . . rational class in perm. group
##
##  <ManSection>
##  <Filt Name="IsRationalClassGroupRep" Arg='obj' Type='Representation'/>
##  <Filt Name="IsRationalClassPermGroupRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  is a representation of rational classes, a subrepresentation for
##  permutation groups is <C>IsRationalClassPermGroupRep</C>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsRationalClassGroupRep",
    IsComponentObjectRep and IsAttributeStoringRep and IsExternalSet,
    [ "galoisGroup", "power" ] );

DeclareRepresentation( "IsRationalClassPermGroupRep",
    IsRationalClassGroupRep,
    [ "galoisGroup", "power" ] );


#############################################################################
##
#M  IsFinite( <cl> )  . . . . . . . . . . . . . . . . .  for a rational class
##
InstallTrueMethod( IsFinite, IsRationalClassGroupRep and IsDomain );
#T The `*' in the `Size' method (file `clas.gi') indicates that infinite
#T rational classes are not allowed.


#############################################################################
##
#O  RationalClass( <G>, <g> ) . . . . . . . . . .  rational class constructor
##
##  <#GAPDoc Label="RationalClass">
##  <ManSection>
##  <Oper Name="RationalClass" Arg='G, g'/>
##
##  <Description>
##  creates the rational class in <A>G</A> with representative <A>g</A>.
##  A rational class consists of all elements that are conjugate to
##  <A>g</A> or to an <M>i</M>-th power of <A>g</A> where <M>i</M> is coprime
##  to the order of <M>g</M>.
##  Thus a rational class can be interpreted as a conjugacy class of cyclic
##  subgroups.
##  A rational class is an external set (<Ref Func="IsExternalSet"/>) of
##  group elements with the group acting by conjugation on it, but not an
##  external orbit.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RationalClass", [ IsGroup, IsObject ] );

#############################################################################
##
#O  DecomposedRationalClass( <c> )
##
##  <ManSection>
##  <Oper Name="DecomposedRationalClass" Arg='c'/>
##
##  <Description>
##  For a rational class <A>c</A> this attribute contains a list of the ordinary
##  classes contained therein.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "DecomposedRationalClass",IsRationalClassGroupRep );

#############################################################################
##
#A  GaloisGroup( <ratcl> )
##
##  <#GAPDoc Label="GaloisGroup:clas">
##  <ManSection>
##  <Attr Name="GaloisGroup" Arg='ratcl'
##   Label="of rational class of a group"/>
##
##  <Description>
##  Suppose that <A>ratcl</A> is a rational class of a group <M>G</M> with
##  representative <M>g</M>.
##  The exponents <M>i</M> for which <M>g^i</M> lies already in the ordinary
##  conjugacy class of <M>g</M>, form a subgroup of the
##  <E>prime residue class group</E> <M>P_n</M>
##  (see <Ref Func="PrimitiveRootMod"/>),
##  the so-called <E>Galois group</E>  of the rational class.
##  The prime residue class group <M>P_n</M> is obtained in
##  &GAP; as <C>Units( Integers mod <A>n</A> )</C>,
##  the unit group of a residue class ring.
##  The Galois group of a rational class <A>ratcl</A> is stored in the
##  attribute <Ref Func="GaloisGroup" Label="of rational class of a group"/>
##  as a subgroup of this group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GaloisGroup", IsRationalClassGroupRep );


#############################################################################
##
#F  ConjugacyClassesByRandomSearch( <G> )
##
##  <#GAPDoc Label="ConjugacyClassesByRandomSearch">
##  <ManSection>
##  <Func Name="ConjugacyClassesByRandomSearch" Arg='G'/>
##
##  <Description>
##  computes the classes of the group <A>G</A> by random search.
##  This works very efficiently for almost simple groups.
##  <P/>
##  This function is also accessible via the option <C>random</C> to
##  the function <Ref Func="ConjugacyClass"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConjugacyClassesByRandomSearch" );

#############################################################################
##
#F  ConjugacyClassesByOrbits( <G> )
##
##  <#GAPDoc Label="ConjugacyClassesByOrbits">
##  <ManSection>
##  <Func Name="ConjugacyClassesByOrbits" Arg='G'/>
##
##  <Description>
##  computes the classes of the group <A>G</A> as orbits of <A>G</A> on its
##  elements.
##  This can be quick but unsurprisingly may also take a lot of memory if
##  <A>G</A> becomes larger.
##  All the classes will store their element list and
##  thus a membership test will be quick as well.
##  <P/>
##  This function is also accessible via the option <C>action</C> to
##  the function <Ref Func="ConjugacyClass"/>.
##  <P/>
##  Typically, for small groups (roughly of order up to <M>10^3</M>)
##  the computation of classes as orbits under the action is fastest;
##  memory restrictions (and the increasing cost of eliminating duplicates)
##  make this less efficient for larger groups.
##  <P/>
##  Calculation by random search has the smallest memory requirement, but in
##  generally performs worse, the more classes are there.
##  <P/>
##  The following example shows the effect of this for a small group
##  with many classes:
##  <P/>
##  <!-- this example is time and load-status dependent. No point in testing -->
##  <Log><![CDATA[
##  gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;
##  110
##  gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;
##  300
##  gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;
##  30
##  ]]></Log>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConjugacyClassesByOrbits" );

# This function computes the classes by orbits if the group is small and the
# `noaction' option is not set, otherwise it returns `fail'.
DeclareGlobalFunction( "ConjugacyClassesForSmallGroup" );

DeclareGlobalFunction( "GroupByPrimeResidues" );

DeclareGlobalFunction( "ConjugacyClassesTry" );
DeclareGlobalFunction( "RationalClassesTry" );
DeclareGlobalFunction( "RationalClassesInEANS" );

DeclareGlobalFunction( "SubspaceVectorSpaceGroup" );
DeclareGlobalFunction( "CentralStepConjugatingElement" );
DeclareGlobalFunction( "KernelHcommaC" );
DeclareGlobalFunction( "OrderModK" );
DeclareGlobalFunction( "CentralStepRatClPGroup" );
DeclareGlobalFunction( "CentralStepClEANS" );
DeclareGlobalFunction( "CorrectConjugacyClass" );
DeclareGlobalFunction( "GeneralStepClEANS" );

#############################################################################
##
#F  ClassesSolvableGroup(<G>, <mode>[, <opt>])  . . . . .
##
##  <#GAPDoc Label="ClassesSolvableGroup">
##  <ManSection>
##  <Func Name="ClassesSolvableGroup" Arg='G, mode[, opt]'/>
##
##  <Description>
##  computes conjugacy classes and centralizers in solvable groups. <A>G</A> is
##  the acting group. <A>mode</A> indicates the type of the calculation:
##  <P/>
##  0 Conjugacy classes
##  <P/>
##  4 Conjugacy test for the two elements in <A>opt</A><C>.candidates</C>
##  <P/>
##  In mode 0 the function returns a list of records containing components
##  <A>representative</A> and <A>centralizer</A>.
##  In mode 4 it returns a conjugating element.
##  <P/>
##  The optional record <A>opt</A> may contain the following components
##  that will affect the algorithm's behaviour:
##  <P/>
##  <List>
##  <Mark><C>pcgs</C></Mark>
##  <Item>
##  is a pcgs that will be used for the calculation.
##  The attribute <Ref Func="EANormalSeriesByPcgs"/> must return an
##  appropriate series of normal subgroups with elementary abelian factors
##  among them. The algorithm will step down this series.
##  In the case of
##  the calculation of rational classes, it must be a pcgs refining a
##  central series.
##  </Item>
##  <Mark><C>candidates</C></Mark>
##  <Item>
##  is a list of elements for which canonical representatives
##  are to be computed or for which a conjugacy test is performed. They must
##  be given in mode 4. In mode 0 a list of classes corresponding to
##  <C>candidates</C> is returned (which may contain duplicates). The
##  <C>representative</C>s chosen are canonical with respect to <C>pcgs</C>.
##  The records returned also contain components <C>operator</C>
##  such that
##  <C>candidate ^ operator = representative</C>.
##  </Item>
##  <Mark><C>consider</C></Mark>
##  <Item>
##  is a function <C>consider( fhome, rep, cenp, K, L )</C>. Here
##  <C>fhome</C> is a home pcgs for the factor group <M>F</M> in which the
##  calculation currently takes place,
##  <C>rep</C> is an element of the factor and <C>cenp</C> is a
##  pcgs for the centralizer of <C>rep</C> modulo <C>K</C>.
##  In mode 0, when lifting from <M>F</M>/<C>K</C> to <M>F</M>/<C>L</C>
##  (note: for efficiency reasons, <M>F</M> can be different from <A>G</A> or
##  <C>L</C> might be not trivial) this function is called
##  before performing the actual lifting and only those representatives for
##  which it returns <K>true</K> are passed to the next level.
##  This permits for example the calculation of only those classes
##  with small centralizers or classes of restricted orders.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ClassesSolvableGroup" );

#############################################################################
##
#F  RationalClassesSolvableGroup(<G>, <mode> [,<opt>])  . . . . .
##
##  <ManSection>
##  <Func Name="RationalClassesSolvableGroup" Arg='G, mode [,opt]'/>
##
##  <Description>
##  computes rational classes and centralizers in solvable groups. <A>G</A> is
##  the acting group. <A>mode</A> indicates the type of the calculation:
##  <P/>
##  1 Rational classes of a <M>p</M>-group (mode 3 is used internally as well)
##  <P/>
##  In mode 0 the function returns a list of records containing components
##  <A>representative</A> and <A>centralizer</A>. In mode 1 the records in addition
##  contain the component <A>galoisGroup</A>.
##  <P/>
##  The optional record <A>opt</A> may contain the following components that will
##  affect the algorithms behaviour:
##  <P/>
##  <List>
##  <Mark><C>pcgs</C></Mark>
##  <Item>
##  s a pcgs that will be used for the calculation. In the case of
##  the calculation of rational classes, it must be a pcgs refining a
##  central series. The attribute <C>CentralNormalSeriesByPcgs</C> must return an
##  appropriate series of normal subgroups with elementary abelian factors
##  among them. The algorithm will step down this series.
##  </Item>
##  <Mark><C>candidates</C></Mark>
##  <Item>
##  s a list of elements for which canonical representatives
##  are to be computed or for which a conjugacy test is performed. They must
##  be given in mode 4. In modes 0 and 1 a list of classes corresponding to
##  <A>candidates</A> is returned (which may contain duplicates). The
##  <A>representative</A>s chosen are canonical with respect to <A>pcgs</A>. The
##  records returned also contain components <A>operator</A> and (in mode 1)
##  <A>exponent</A> such that
##  (<A>candidate</A> <C>^</C> <A>operator</A>) <C>^</C> <A>exponent</A>=<A>representative</A>.
##  </Item>
##  <Mark>%<C>consider</C></Mark>
##  <Item>
##  s a function <A>consider</A>(<A>rep</A>,<A>cen</A>,<A>K</A>,<A>L</A>). Here <A>rep</A> is
##  <!-- %an element of <A>G</A> and <A>cen</A>/<A>K</A> is the centralizer of <A>rep</A><A>K</A> modulo -->
##  <!-- %<A>K</A>. In mode 0 when lifting from <A>G</A>/<A>K</A> to <A>G</A>/<A>L</A> this function is -->
##  <!-- %called before performing the actual lifting and only those -->
##  <!-- %representatives for which it returns <K>true</K> are passed to the next -->
##  <!-- %level. This permits the calculation of only those classes with say small -->
##  %centralizers or classes of restricted orders.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "RationalClassesSolvableGroup" );


#############################################################################
##
#F  CentralizerSizeLimitConsiderFunction(<sz>)
##
##  <#GAPDoc Label="CentralizerSizeLimitConsiderFunction">
##  <ManSection>
##  <Func Name="CentralizerSizeLimitConsiderFunction" Arg='sz'/>
##
##  <Description>
##  returns a function (with arguments <C>fhome</C>, <C>rep</C>, <C>cen</C>,
##  <C>K</C>, <C>L</C>)
##  that can be used in <Ref Func="ClassesSolvableGroup"/> as the
##  <C>consider</C> component of the options record.
##  It will restrict the lifting to those classes,
##  for which the size of the centralizer (in the factor) is at most
##  <A>sz</A>.
##  <P/>
##  See also <Ref Func="SubgroupsSolvableGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareGlobalFunction( "CentralizerSizeLimitConsiderFunction" );

DeclareGlobalFunction( "CompleteGaloisGroupPElement" );
DeclareGlobalFunction( "RatClasPElmArrangeClasses" );
DeclareGlobalFunction( "SortRationalClasses" );
DeclareGlobalFunction( "FusionRationalClassesPSubgroup" );
DeclareGlobalFunction( "RationalClassesPElements" );
DeclareGlobalFunction( "RationalClassesPermGroup" );


#############################################################################
##
#E