/usr/share/gap/lib/combinat.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 | #############################################################################
##
#W combinat.gi GAP library Martin Schönert
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains method for combinatorics.
##
#############################################################################
##
#F Factorial( <n> ) . . . . . . . . . . . . . . . . factorial of an integer
##
# can be much further improved, together with Binomial ... (FL)
# but for the moment this is huge improvement over Product([1..n]) for large n
# Factorial(1000000) is no problem now
InstallGlobalFunction(Factorial,function ( n )
local pr;
if n < 0 then Error("<n> must be nonnegative"); fi;
pr := function(l, i, j)
local bound, len, res, l2, k;
bound := 30;
len := j+1-i;
if len < bound then
res := 1;
for k in [i..j] do
res := res*l[k];
od;
return res;
fi;
l2 := QuoInt(len,2);
return pr(l,i,i+l2)*pr(l,i+l2+1,j);
end;
return pr( [1..n], 1, n );
end);
#############################################################################
##
#F Binomial( <n>, <k> ) . . . . . . . . . binomial coefficient of integers
##
InstallGlobalFunction(GaussianCoefficient,function ( n, k, q )
local gc, i, j;
if k < 0 or n<0 or k>n then
return 0;
else
gc:=1;
for i in [1..k] do
gc:=gc*(q^(n-i+1)-1)/(q^i-1);
od;
return gc;
fi;
end);
#############################################################################
##
#F Binomial( <n>, <k> ) . . . . . . . . . binomial coefficient of integers
##
InstallGlobalFunction(Binomial,function ( n, k )
local bin, i, j;
if k < 0 then
bin := 0;
elif k = 0 then
bin := 1;
elif n < 0 then
bin := (-1)^k * Binomial( -n+k-1, k );
elif n < k then
bin := 0;
elif n = k then
bin := 1;
elif n-k < k then
bin := Binomial( n, n-k );
else
bin := 1; j := 1;
# note that all intermediate results are binomial coefficients itself
# hence integers!
# slight improvement by Frank and Max.
for i in [0..k-1] do
bin := bin * (n-i) / j;
j := j + 1;
od;
fi;
return bin;
end);
#############################################################################
##
#F Bell( <n> ) . . . . . . . . . . . . . . . . . value of the Bell sequence
##
InstallGlobalFunction(Bell,function ( n )
local bell, k, i;
bell := [ 1 ];
for i in [1..n-1] do
bell[i+1] := bell[1];
for k in [0..i-1] do
bell[i-k] := bell[i-k] + bell[i-k+1];
od;
od;
return bell[1];
end);
#############################################################################
##
#F Stirling1( <n>, <k> ) . . . . . . . . . Stirling number of the first kind
##
InstallGlobalFunction(Stirling1,function ( n, k )
local sti, i, j;
if n < k then
sti := 0;
elif n = k then
sti := 1;
elif n < 0 and k < 0 then
sti := Stirling2( -k, -n );
elif k <= 0 then
sti := 0;
else
sti := [ 1 ];
for j in [2..n-k+1] do
sti[j] := 0;
od;
for i in [1..k] do
sti[1] := 1;
for j in [2..n-k+1] do
sti[j] := (i+j-2) * sti[j-1] + sti[j];
od;
od;
sti := sti[n-k+1];
fi;
return sti;
end);
#############################################################################
##
#F Stirling2( <n>, <k> ) . . . . . . . . Stirling number of the second kind
##
## Uses $S_2(n,k) = (-1)^k \sum_{i=1}^{k}{(-1)^i {k \choose i} i^k} / k!$.
##
InstallGlobalFunction(Stirling2,function ( n, k )
local sti, bin, fib, i;
if n < k then
sti := 0;
elif n = k then
sti := 1;
elif n < 0 and k < 0 then
sti := Stirling1( -k, -n );
elif k <= 0 then
sti := 0;
else
bin := 1; # (k 0)
sti := 0; # (-1)^0 (k 0) 0^k
fib := 1; # 0!
for i in [1..k] do
bin := (k-i+1)/i * bin; # (k i) = (k-(i-1))/i (k i-1)
sti := bin * i^n - sti; # (-1)^i sum (-1)^j (k j) j^k
fib := fib * i; # i!
od;
sti := sti / fib;
fi;
return sti;
end);
#############################################################################
##
#F Combinations( <mset> ) . . . . . . set of sorted sublists of a multiset
##
## 'CombinationsA( <mset>, <m>, <n>, <comb>, <i> )' returns the set of all
## combinations of the multiset <mset>, which has size <n>, that begin with
## '<comb>[[1..<i>-1]]'. To do this it finds all elements of <mset> that
## can go at '<comb>[<i>]' and calls itself recursively for each candidate.
## <m>-1 is the position of '<comb>[<i>-1]' in <mset>, so the candidates for
## '<comb>[<i>]' are exactly the elements 'Set( <mset>[[<m>..<n>]] )'.
##
## 'CombinationsK( <mset>, <m>, <n>, <k>, <comb>, <i> )' returns the set of
## all combinations of the multiset <mset>, which has size <n>, that have
## length '<i>+<k>-1', and that begin with '<comb>[[1..<i>-1]]'. To do this
## it finds all elements of <mset> that can go at '<comb>[<i>]' and calls
## itself recursively for each candidate. <m>-1 is the position of
## '<comb>[<i>-1]' in <mset>, so the candidates for '<comb>[<i>]' are
## exactly the elements 'Set( <mset>[<m>..<n>-<k>+1] )'.
##
## 'Combinations' only calls 'CombinationsA' or 'CombinationsK' with initial
## arguments.
##
CombinationsA := function ( mset, m, n, comb, i )
local combs, l;
if m = n+1 then
comb := ShallowCopy(comb);
combs := [ comb ];
else
comb := ShallowCopy(comb);
combs := [ ShallowCopy(comb) ];
for l in [m..n] do
if l = m or mset[l] <> mset[l-1] then
comb[i] := mset[l];
Append( combs, CombinationsA(mset,l+1,n,comb,i+1) );
fi;
od;
fi;
return combs;
end;
MakeReadOnlyGlobal( "CombinationsA" );
CombinationsK := function ( mset, m, n, k, comb, i )
local combs, l;
if k = 0 then
comb := ShallowCopy(comb);
combs := [ comb ];
else
combs := [];
for l in [m..n-k+1] do
if l = m or mset[l] <> mset[l-1] then
comb[i] := mset[l];
Append( combs, CombinationsK(mset,l+1,n,k-1,comb,i+1) );
fi;
od;
fi;
return combs;
end;
MakeReadOnlyGlobal( "CombinationsK" );
InstallGlobalFunction(Combinations,function ( arg )
local combs, mset;
if Length(arg) = 1 then
mset := ShallowCopy(arg[1]); Sort( mset );
combs := CombinationsA( mset, 1, Length(mset), [], 1 );
elif Length(arg) = 2 then
mset := ShallowCopy(arg[1]); Sort( mset );
combs := CombinationsK( mset, 1, Length(mset), arg[2], [], 1 );
else
Error("usage: Combinations( <mset> [, <k>] )");
fi;
return combs;
end);
#############################################################################
##
#F IteratorOfCombinations( <mset>[, <k> ] )
#F EnumeratorOfCombinations( <mset> )
##
InstallGlobalFunction(EnumeratorOfCombinations, function(mset)
local c, max, l, mods, size, els, ElementNumber, NumberElement;
c := Collected(mset);
max := List(c, a-> a[2]);
els := List(c, a-> a[1]);
l := Length(max);
mods := max+1;
size := Product(mods);
# a combination can contain els[i] from 0 to max[i] times (mods[i]
# possibilities), we number the combination that contains a[i] times els[i]
# for all i by n = 1 + sum_i a[i]*m[i] where m[i] = prod_(j<i) mods[i]
ElementNumber := function(enu, n)
local comb, res, i, j;
if n > size then
Error("Index ", n, " not bound.");
fi;
comb := EmptyPlist(l);
n := n-1;
for i in [1..l] do
comb[i] := n mod mods[i];
n := (n - comb[i])/mods[i];
od;
res := [];
for i in [1..l] do
for j in [1..comb[i]] do
Add(res, els[i]);
od;
od;
return res;
end;
NumberElement := function(enu, comb)
local c, d, pos, n, a, i;
if not IsList(comb) then
return fail;
fi;
c := Collected(comb);
d := 0*max;
for a in c do
pos := PositionSorted(els, a[1]);
if not IsBound(els[pos]) or els[pos] <> a[1] or a[2] > max[pos] then
return fail;
else
d[pos] := a[2];
fi;
od;
n := 0;
for i in [l,l-1..1] do
n := n*mods[i] + d[i];
od;
return n+1;
end;
return EnumeratorByFunctions(ListsFamily, rec(
ElementNumber := ElementNumber,
NumberElement := NumberElement,
els := els,
Length := x->size,
max := max));
end);
BindGlobal("NextIterator_Combinations_set", function(it)
local res, comb, k, i, len;
comb := it!.comb;
if comb = fail then
Error("No more elements in iterator.");
fi;
# first create combination to return
res := it!.els{comb};
# now construct indices for next combination
len := it!.len;
k := it!.k;
for i in [1..k] do
if i = k or comb[i]+1 < comb[i+1] then
comb[i] := comb[i] + 1;
comb{[1..i-1]} := [1..i-1];
break;
fi;
od;
# check if done
if k = 0 or comb[k] > len then
it!.comb := fail;
fi;
return res;
end);
# helper function to substitute elements described by r!.comb[j],
# j in [1..i] by smallest possible ones
BindGlobal("Distr_Combinations", function(r, i)
local max, kk, l, comb, j;
max := r!.max;
kk := 0;
l := Length(max);
comb := r!.comb;
for j in [1..i] do
kk := kk + comb[j];
comb[j] := 0;
od;
for i in [1..l] do
if kk <= max[i] then
comb[i] := kk;
break;
else
comb[i] := max[i];
kk := kk - max[i];
fi;
od;
end);
BindGlobal("NextIterator_Combinations_mset", function(it)
local res, comb, l, els, i, j, max;
if it!.comb = fail then
Error("No more elements in iterator.");
fi;
comb := it!.comb;
max := it!.max;
l := Length(comb);
# first create the combination to return, this is the time critical
# code which is more efficient in the proper set case above
res := EmptyPlist(it!.k);
els := it!.els;
for i in [1..l] do
for j in [1..comb[i]] do
Add(res, els[i]);
od;
od;
# now find next combination if there is one;
# for this find smallest element which can be substituted by the next
# larger element and reset the previous ones to the smallest
# possible ones
i := 1;
while i < l and (comb[i] = 0 or comb[i+1] = max[i+1]) do
i := i+1;
od;
if i = l then
it!.comb := fail;
else
comb[i+1] := comb[i+1] + 1;
comb[i] := comb[i] - 1;
Distr_Combinations(it, i);
fi;
return res;
end);
BindGlobal("IsDoneIterator_Combinations", function(it)
return it!.comb = fail;
end);
BindGlobal("ShallowCopy_Combinations", function(it)
return rec(
NextIterator := it!.NextIterator,
IsDoneIterator := it!.IsDoneIterator,
ShallowCopy := it!.ShallowCopy,
els := it!.els,
max := it!.max,
len := it!.len,
k := it!.k,
comb := ShallowCopy(it!.comb));
end);
InstallGlobalFunction(IteratorOfCombinations, function(arg)
local mset, k, c, max, els, len, comb, NextFunc;
mset := arg[1];
len := Length(mset);
if Length(arg) = 1 then
# case of one argument, call 2-arg version for each k and concatenate
return ConcatenationIterators(List([0..len], k->
IteratorOfCombinations(mset, k)));
fi;
k := arg[2];
if k > Length(mset) then
return IteratorList([]);
fi;
c := Collected(mset);
max := List(c, a-> a[2]);
els := List(c, a-> a[1]);
if Maximum(max) = 1 then
# in case of a proper set 'mset' we use 'comb' for indices of
# elements in current combination; this way the generation
# of the actual combinations is a bit more efficient than below in the
# general case of a multiset
comb := [1..k];
NextFunc := NextIterator_Combinations_set;
else
# the general case of a multiset, here 'comb'
# describes the combination which contains comb[i] times els[i] for all i
comb := 0*max;
comb[1] := k;
# initialize first combination
Distr_Combinations(rec(comb := comb,max := max),1);
NextFunc := NextIterator_Combinations_mset;
fi;
return IteratorByFunctions(rec(
NextIterator := NextFunc,
IsDoneIterator := IsDoneIterator_Combinations,
ShallowCopy := ShallowCopy_Combinations,
els := els,
max := max,
len := len,
k := k,
comb := comb));
end);
#############################################################################
##
#F NrCombinations( <mset> ) . . . . number of sorted sublists of a multiset
##
## 'NrCombinations' just calls 'NrCombinationsSetA', 'NrCombinationsMSetA',
## 'NrCombinationsSetK' or 'NrCombinationsMSetK' depending on the arguments.
##
## 'NrCombinationsSetA' and 'NrCombinationsSetK' use well known identities.
##
## 'NrCombinationsMSetA' and 'NrCombinationsMSetK' call 'NrCombinationsX',
## and return either the sum or the last element of this list.
##
## 'NrCombinationsX' returns the list 'nrs', such that 'nrs[l+1]' is the
## number of combinations of length l. It uses a recursion formula, taking
## more and more of the elements of <mset>.
##
BindGlobal( "NrCombinationsX", function ( mset, k )
local nrs, nr, cnt, n, l, i;
# count how often each element appears
cnt := List( Collected( mset ), pair -> pair[2] );
# there is one combination of length 0 and no other combination
# using none of the elements
nrs := ListWithIdenticalEntries( k+1, 0 );
nrs[0+1] := 1;
# take more and more elements
for n in [1..Length(cnt)] do
# loop over the possible lengths of combinations
for l in [k,k-1..0] do
# compute the number of combinations of length <l>
# using only the first <n> elements of <mset>
nr := 0;
for i in [0..Minimum(cnt[n],l)] do
# add the number of combinations of length <l>
# that consist of <l>-<i> of the first <n>-1 elements
# and <i> copies of the <n>th element
nr := nr + nrs[l-i+1];
od;
nrs[l+1] := nr;
od;
od;
# return the numbers
return nrs;
end );
BindGlobal( "NrCombinationsSetA", function ( set, k )
local nr;
nr := 2 ^ Size(set);
return nr;
end );
BindGlobal( "NrCombinationsMSetA", function ( mset, k )
local nr;
nr := Product( Set(mset), i->Number(mset,j->i=j)+1 );
return nr;
end );
BindGlobal( "NrCombinationsSetK", function ( set, k )
local nr;
if k <= Size(set) then
nr := Binomial( Size(set), k );
else
nr := 0;
fi;
return nr;
end );
BindGlobal( "NrCombinationsMSetK", function ( mset, k )
local nr;
if k <= Length(mset) then
nr := NrCombinationsX( mset, k )[k+1];
else
nr := 0;
fi;
return nr;
end );
InstallGlobalFunction(NrCombinations,function ( arg )
local nr, mset;
if Length(arg) = 1 then
mset := ShallowCopy(arg[1]); Sort( mset );
if IsSSortedList( mset ) then
nr := NrCombinationsSetA( mset, Length(mset) );
else
nr := NrCombinationsMSetA( mset, Length(mset) );
fi;
elif Length(arg) = 2 then
mset := ShallowCopy(arg[1]); Sort( mset );
if IsSSortedList( mset ) then
nr := NrCombinationsSetK( mset, arg[2] );
else
nr := NrCombinationsMSetK( mset, arg[2] );
fi;
else
Error("usage: NrCombinations( <mset> [, <k>] )");
fi;
return nr;
end);
#############################################################################
##
#F Arrangements( <mset> ) . . . . set of ordered combinations of a multiset
##
## 'ArrangementsA( <mset>, <m>, <n>, <comb>, <i> )' returns the set of all
## arrangements of the multiset <mset>, which has size <n>, that begin with
## '<comb>[[1..<i>-1]]'. To do this it finds all elements of <mset> that
## can go at '<comb>[<i>]' and calls itself recursively for each candidate.
## <m> is a boolean list of size <n> that contains 'true' for every element
## of <mset> that we have not yet taken, so the candidates for '<comb>[<i>]'
## are exactly the elements '<mset>[<l>]' such that '<m>[<l>]' is 'true'.
## Some care must be taken to take a candidate only once if it appears more
## than once in <mset>.
##
## 'ArrangementsK( <mset>, <m>, <n>, <k>, <comb>, <i> )' returns the set of
## all arrangements of the multiset <mset>, which has size <n>, that have
## length '<i>+<k>-1', and that begin with '<comb>[[1..<i>-1]]'. To do this
## it finds all elements of <mset> that can go at '<comb>[<i>]' and calls
## itself recursively for each candidate. <m> is a boolean list of size <n>
## that contains 'true' for every element of <mset> that we have not yet
## taken, so the candidates for '<comb>[<i>]' are exactly the elements
## '<mset>[<l>]' such that '<m>[<l>]' is 'true'. Some care must be taken to
## take a candidate only once if it appears more than once in <mset>.
##
## 'Arrangements' only calls 'ArrangementsA' or 'ArrangementsK' with initial
## arguments.
##
ArrangementsA := function ( mset, m, n, comb, i )
local combs, l;
if i = n+1 then
comb := ShallowCopy(comb);
combs := [ comb ];
else
comb := ShallowCopy(comb);
combs := [ ShallowCopy(comb) ];
for l in [1..n] do
if m[l] and (l=1 or m[l-1]=false or mset[l]<>mset[l-1]) then
comb[i] := mset[l];
m[l] := false;
Append( combs, ArrangementsA( mset, m, n, comb, i+1 ) );
m[l] := true;
fi;
od;
fi;
return combs;
end;
MakeReadOnlyGlobal( "ArrangementsA" );
ArrangementsK := function ( mset, m, n, k, comb, i )
local combs, l;
if k = 0 then
comb := ShallowCopy(comb);
combs := [ comb ];
else
combs := [];
for l in [1..n] do
if m[l] and (l=1 or m[l-1]=false or mset[l]<>mset[l-1]) then
comb[i] := mset[l];
m[l] := false;
Append( combs, ArrangementsK( mset, m, n, k-1, comb, i+1 ) );
m[l] := true;
fi;
od;
fi;
return combs;
end;
MakeReadOnlyGlobal( "ArrangementsK" );
InstallGlobalFunction(Arrangements,function ( arg )
local combs, mset, m;
if Length(arg) = 1 then
mset := ShallowCopy(arg[1]); Sort( mset );
m := List( mset, i->true );
combs := ArrangementsA( mset, m, Length(mset), [], 1 );
elif Length(arg) = 2 then
mset := ShallowCopy(arg[1]); Sort( mset );
m := List( mset, i->true );
combs := ArrangementsK( mset, m, Length(mset), arg[2], [], 1 );
else
Error("usage: Arrangements( <mset> [, <k>] )");
fi;
return combs;
end);
#############################################################################
##
#F NrArrangements( <mset> ) . number of ordered combinations of a multiset
##
## 'NrArrangements' just calls 'NrArrangementsSetA', 'NrArrangementsMSetA',
## 'NrArrangementsSetK' or 'NrArrangementsMSetK' depending on the arguments.
##
## 'NrArrangementsSetA' and 'NrArrangementsSetK' use well known identities.
##
## 'NrArrangementsMSetA' and 'NrArrangementsMSetK' call 'NrArrangementsX',
## and return either the sum or the last element of this list.
##
## 'NrArrangementsX' returns the list 'nrs', such that 'nrs[l+1]' is the
## number of arrangements of length l. It uses a recursion formula, taking
## more and more of the elements of <mset>.
##
BindGlobal( "NrArrangementsX", function ( mset, k )
local nrs, nr, cnt, bin, n, l, i;
# count how often each element appears
cnt := List( Collected( mset ), pair -> pair[2] );
# there is one arrangement of length 0 and no other arrangement
# using none of the elements
nrs := ListWithIdenticalEntries( k+1, 0 );
nrs[0+1] := 1;
# take more and more elements
for n in [1..Length(cnt)] do
# loop over the possible lengths of arrangements
for l in [k,k-1..0] do
# compute the number of arrangements of length <l>
# using only the first <n> elements of <mset>
nr := 0;
bin := 1;
for i in [0..Minimum(cnt[n],l)] do
# add the number of arrangements of length <l>
# that consist of <l>-<i> of the first <n>-1 elements
# and <i> copies of the <n>th element
nr := nr + bin * nrs[l-i+1];
bin := bin * (l-i) / (i+1);
od;
nrs[l+1] := nr;
od;
od;
# return the numbers
return nrs;
end );
BindGlobal( "NrArrangementsSetA", function ( set, k )
local nr, i;
nr := 0;
for i in [0..Size(set)] do
nr := nr + Product([Size(set)-i+1..Size(set)]);
od;
return nr;
end );
BindGlobal( "NrArrangementsMSetA", function ( mset, k )
local nr;
nr := Sum( NrArrangementsX( mset, k ) );
return nr;
end );
BindGlobal( "NrArrangementsSetK", function ( set, k )
local nr;
if k <= Size(set) then
nr := Product([Size(set)-k+1..Size(set)]);
else
nr := 0;
fi;
return nr;
end );
BindGlobal( "NrArrangementsMSetK", function ( mset, k )
local nr;
if k <= Length(mset) then
nr := NrArrangementsX( mset, k )[k+1];
else
nr := 0;
fi;
return nr;
end );
InstallGlobalFunction(NrArrangements,function ( arg )
local nr, mset;
if Length(arg) = 1 then
mset := ShallowCopy(arg[1]); Sort( mset );
if IsSSortedList( mset ) then
nr := NrArrangementsSetA( mset, Length(mset) );
else
nr := NrArrangementsMSetA( mset, Length(mset) );
fi;
elif Length(arg) = 2 then
if not (IsInt(arg[2]) and arg[2] >= 0) then
Error("<k> must be a nonnegative integer");
fi;
mset := ShallowCopy(arg[1]); Sort( mset );
if IsSSortedList( mset ) then
nr := NrArrangementsSetK( mset, arg[2] );
else
nr := NrArrangementsMSetK( mset, arg[2] );
fi;
else
Error("usage: NrArrangements( <mset> [, <k>] )");
fi;
return nr;
end);
#############################################################################
##
#F UnorderedTuples( <set>, <k> ) . . . . set of unordered tuples from a set
##
## 'UnorderedTuplesK( <set>, <n>, <m>, <k>, <tup>, <i> )' returns the set of
## all unordered tuples of the set <set>, which has size <n>, that have
## length '<i>+<k>-1', and that begin with '<tup>[[1..<i>-1]]'. To do this
## it finds all elements of <set> that can go at '<tup>[<i>]' and calls
## itself recursively for each candidate. <m> is the position of
## '<tup>[<i>-1]' in <set>, so the candidates for '<tup>[<i>]' are exactly
## the elements '<set>[[<m>..<n>]]', since we require that unordered tuples
## be sorted.
##
## 'UnorderedTuples' only calls 'UnorderedTuplesK' with initial arguments.
##
UnorderedTuplesK := function ( set, n, m, k, tup, i )
local tups, l;
if k = 0 then
tup := ShallowCopy(tup);
tups := [ tup ];
else
tups := [];
for l in [m..n] do
tup[i] := set[l];
Append( tups, UnorderedTuplesK( set, n, l, k-1, tup, i+1 ) );
od;
fi;
return tups;
end;
MakeReadOnlyGlobal( "UnorderedTuplesK" );
InstallGlobalFunction(UnorderedTuples,function ( set, k )
set := Set(set);
return UnorderedTuplesK( set, Size(set), 1, k, [], 1 );
end);
#############################################################################
##
#F NrUnorderedTuples( <set>, <k> ) . . number unordered of tuples from a set
##
InstallGlobalFunction(NrUnorderedTuples,function ( set, k )
return Binomial( Size(Set(set))+k-1, k );
end);
#############################################################################
##
#F IteratorOfCartesianProduct( list1, list2, ... )
#F IteratorOfCartesianProduct( list )
##
## All elements of the cartesian product of lists
## <list1>, <list2>, ... are returned in the lexicographic order.
##
BindGlobal( "IsDoneIterator_Cartesian", iter -> ( iter!.next = false ) );
BindGlobal( "NextIterator_Cartesian",
function( iter )
local succ, n, sets, res, i, k;
succ := iter!.next;
n := iter!.n;
sets := iter!.sets;
res := [];
i := n;
while i > 0 do
res[i] := sets[i][succ[i]];
i := i-1;
od;
if succ = iter!.sizes then
iter!.next := false;
else
succ[n] := succ[n] + 1;
for k in [n,n-1..2] do
if succ[k] > iter!.sizes[k] then
succ[k] := 1;
succ[k-1] := succ[k-1] + 1;
else
break;
fi;
od;
fi;
return res;
end);
BindGlobal( "ShallowCopy_Cartesian",
iter -> rec(
sizes := iter!.sizes,
n := iter!.n,
next := ShallowCopy( iter!.next ) ) );
BindGlobal( "IteratorOfCartesianProduct2",
function( listsets )
local s, n, x;
if not ForAll( listsets, IsCollection ) and ForAll( listsets, IsFinite ) then
Error( "Each arguments must be a finite collection" );
fi;
s := List( listsets, Set );
n := Length( s );
# from now s is a list of n finite sets
return IteratorByFunctions(
rec( IsDoneIterator := IsDoneIterator_Cartesian,
NextIterator := NextIterator_Cartesian,
ShallowCopy := ShallowCopy_Cartesian,
sets := s, # list of sets
sizes := List( s, Size ), # sizes of sets
n := n, # number of sets
nextelts := List( s, x -> x[1] ), # list of 1st elements
next := 0 * [ 1 .. n ] + 1 ) ); # list of 1's
end);
InstallGlobalFunction( "IteratorOfCartesianProduct",
function( arg )
# this mimics usage of functions Cartesian and Cartesian2
if Length( arg ) = 1 then
return IteratorOfCartesianProduct2( arg[1] );
else
return IteratorOfCartesianProduct2( arg );
fi;
return;
end);
BindGlobal( "NumberElement_Cartesian",
function(enum, x)
local n, mults, colls, sum, pos, i;
n:=enum!.n;
mults:=enum!.mults;
colls:=enum!.colls;
if Length(x)<>n then
return fail;
fi;
sum:=0;
for i in [1..n-1] do
pos:=Position(colls[i], x[i]);
if pos=fail then
return fail;
else
pos:=pos-1;
fi;
sum:=sum+pos*mults[i];
od;
pos:=Position(colls[n], x[n]);
if pos=fail then
return fail;
fi;
return sum+pos;
end);
BindGlobal( "ElementNumber_Cartesian",
function(enum, x)
local n, mults, out, i, colls;
if x>Length(enum) then
return fail;
fi;
x:=x-1;
n:=enum!.n;
mults:=enum!.mults;
colls:=enum!.colls;
out:=EmptyPlist(n);
for i in [1..n-1] do
out[i]:=QuoInt(x, mults[i]);
x:=x-out[i]*mults[i];
out[i]:=colls[i][out[i]+1];
od;
out[n]:=colls[n][x+1];
return out;
end);
BindGlobal( "EnumeratorOfCartesianProduct2",
function(colls)
local new_colls, mults, k, out, i, j;
if (not ForAll(colls, IsFinite)) or not (ForAll(colls, IsCollection) or
ForAll(colls, IsEnumeratorByFunctions)) then
Error("usage: each argument must be a finite collection or enumerator,");
return;
fi;
new_colls:=[];
for i in [1..Length(colls)] do
if IsDomain(colls[i]) then
new_colls[i]:=Enumerator(colls[i]);
else
new_colls[i]:=colls[i];
fi;
od;
mults:=List(new_colls, Length);
for i in [1..Length(new_colls)-1] do
k:=1;
for j in [i+1..Length(new_colls)] do
k:=k*Length(new_colls[j]);
od;
mults[i]:=k;
od;
mults[Length(new_colls)]:=0;
out:=EnumeratorByFunctions(ListsFamily,
rec( NumberElement := NumberElement_Cartesian,
ElementNumber := ElementNumber_Cartesian,
mults:=mults,
n:=Length(colls),
colls:=new_colls,
Length:=enum-> Maximum([mults[1],1])*Length(new_colls[1])));
SetIsFinite(out, true);
return out;
end);
InstallGlobalFunction( "EnumeratorOfCartesianProduct",
function( arg )
# this mimics usage of functions Cartesian and Cartesian2
if IsEmpty(arg) or ForAny(arg, IsEmpty) then
return EmptyPlist(0);
elif Length( arg ) = 1 then
return EnumeratorOfCartesianProduct2( arg[1] );
else
return EnumeratorOfCartesianProduct2( arg );
fi;
return;
end);
#############################################################################
##
#F Tuples( <set>, <k> ) . . . . . . . . . set of ordered tuples from a set
##
## 'TuplesK( <set>, <k>, <tup>, <i> )' returns the set of all tuples of the
## set <set> that have length '<i>+<k>-1', and that begin with
## '<tup>[[1..<i>-1]]'. To do this it loops over all elements of <set>,
## puts them at '<tup>[<i>]' and calls itself recursively.
##
## 'Tuples' only calls 'TuplesK' with initial arguments.
##
TuplesK := function ( set, k, tup, i )
local tups, l;
if k = 0 then
tup := ShallowCopy(tup);
tups := [ tup ];
else
tups := [];
for l in set do
tup[i] := l;
Append( tups, TuplesK( set, k-1, tup, i+1 ) );
od;
fi;
return tups;
end;
MakeReadOnlyGlobal( "TuplesK" );
InstallGlobalFunction(Tuples,function ( set, k )
set := Set(set);
return TuplesK( set, k, [], 1 );
end);
#############################################################################
##
#F EnumeratorOfTuples( <set>, <k> )
##
InstallGlobalFunction( EnumeratorOfTuples, function( set, k )
local enum;
# Handle some trivial cases first.
if k = 0 then
return Immutable( [ [] ] );
elif IsEmpty( set ) then
return Immutable( [] );
fi;
# Construct the object.
enum:= EnumeratorByFunctions( CollectionsFamily( FamilyObj( set ) ), rec(
# Add the functions.
ElementNumber:= function( enum, n )
local nn, t, i;
nn:= n-1;
t:= [];
for i in [ 1 .. enum!.k ] do
t[i]:= RemInt( nn, Length( enum!.set ) ) + 1;
nn:= QuoInt( nn, Length( enum!.set ) );
od;
if nn <> 0 then
Error( "<enum>[", n, "] must have an assigned value" );
fi;
nn:= enum!.set{ Reversed( t ) };
MakeImmutable( nn );
return nn;
end,
NumberElement:= function( enum, elm )
local n, i;
if not IsList( elm ) then
return fail;
fi;
elm:= List( elm, x -> Position( enum!.set, x ) );
if fail in elm or Length( elm ) <> enum!.k then
return fail;
fi;
n:= 0;
for i in [ 1 .. enum!.k ] do
n:= Length( enum!.set ) * n + elm[i] - 1;
od;
return n+1;
end,
Length:= enum -> Length( enum!.set )^enum!.k,
PrintObj:= function( enum )
Print( "EnumeratorOfTuples( ", enum!.set, ", ", enum!.k, " )" );
end,
# Add the data.
set:= Set( set ),
k:= k ) );
# We know that this enumerator is strictly sorted.
SetIsSSortedList( enum, true );
# Return the result.
return enum;
end );
#############################################################################
##
#F IteratorOfTuples( <set>, <n> )
##
## All ordered tuples of length <n> of the set <set>
## are returned in lexicographic order.
##
BindGlobal( "IsDoneIterator_Tuples", iter -> ( iter!.next = false ) );
BindGlobal( "NextIterator_Tuples", function( iter )
local t, m, n, succ, k;
t := iter!.next;
m := iter!.m;
n := iter!.n;
if t = iter!.last then
succ := false;
else
succ := ShallowCopy( t );
succ[n] := succ[n] + 1;
for k in [n,n-1..2] do
if succ[k] > m then
succ[k] := succ[k] - m;
succ[k-1] := succ[k-1] + 1;
else
break;
fi;
od;
fi;
iter!.next:= succ;
return iter!.set{t};
end );
BindGlobal( "ShallowCopy_Tuples",
iter -> rec( m := iter!.m,
n := iter!.n,
last := iter!.last,
set := iter!.set,
next := ShallowCopy( iter!.next ) ) );
InstallGlobalFunction( "IteratorOfTuples",
function( s, n )
if not ( n=0 or IsPosInt( n ) ) then
Error( "The second argument <n> must be a non-negative integer" );
fi;
if not ( IsCollection( s ) and IsFinite( s ) or IsEmpty( s ) and n=0 ) then
if s = [] then
return IteratorByFunctions(
rec( IsDoneIterator := ReturnTrue,
NextIterator := NextIterator_Tuples,
ShallowCopy := ShallowCopy_Tuples,
next := false) );
else
Error( "The first argument <s> must be a finite collection or empty" );
fi;
fi;
s := Set(s);
# from now on s is a finite set and n is its Cartesian power to be enumerated
return IteratorByFunctions(
rec( IsDoneIterator := IsDoneIterator_Tuples,
NextIterator := NextIterator_Tuples,
ShallowCopy := ShallowCopy_Tuples,
set := s,
m := Size(s),
last := 0 * [1..n] + ~!.m,
n := n,
next := 0 * [ 1 .. n ] + 1 ) );
end );
#############################################################################
##
#F NrTuples( <set>, <k> ) . . . . . . . number of ordered tuples from a set
##
InstallGlobalFunction(NrTuples,function ( set, k )
return Size(Set(set)) ^ k;
end);
#############################################################################
##
#F PermutationsList( <mset> ) . . . . . . set of permutations of a multiset
##
## 'PermutationsListK( <mset>, <m>, <n>, <k>, <perm>, <i> )' returns the set
## of all permutations of the multiset <mset>, which has size <n>, that
## begin with '<perm>[[1..<i>-1]]'. To do this it finds all elements of
## <mset> that can go at '<perm>[<i>]' and calls itself recursively for each
## candidate. <m> is a boolean list of size <n> that contains 'true' for
## every element of <mset> that we have not yet taken, so the candidates for
## '<perm>[<i>]' are exactly the elements '<mset>[<l>]' such that
## '<m>[<l>]' is 'true'. Some care must be taken to take a candidate only
## once if it apears more than once in <mset>.
##
## 'Permutations' only calls 'PermutationsListK' with initial arguments.
##
PermutationsListK := function ( mset, m, n, k, perm, i )
local perms, l;
if k = 0 then
perm := ShallowCopy(perm);
perms := [ perm ];
else
perms := [];
for l in [1..n] do
if m[l] and (l=1 or m[l-1]=false or mset[l]<>mset[l-1]) then
perm[i] := mset[l];
m[l] := false;
Append( perms, PermutationsListK(mset,m,n,k-1,perm,i+1) );
m[l] := true;
fi;
od;
fi;
return perms;
end;
MakeReadOnlyGlobal( "PermutationsListK" );
InstallGlobalFunction(PermutationsList,function ( mset )
local m;
mset := ShallowCopy(mset); Sort( mset );
m := List( mset, i->true );
return PermutationsListK(mset,m,Length(mset),Length(mset),[],1);
end);
#############################################################################
##
#F NrPermutationsList( <mset> ) . . . number of permutations of a multiset
##
## 'NrPermutationsList' uses the well known multinomial coefficient formula.
##
InstallGlobalFunction(NrPermutationsList,function ( mset )
local nr, m;
nr := Factorial( Length(mset) );
for m in Set(mset) do
nr := nr / Factorial( Number( mset, i->i = m ) );
od;
return nr;
end);
#############################################################################
##
#F Derangements( <list> ) . . . . set of fixpointfree permutations of a list
##
## 'DerangementsK( <mset>, <m>, <n>, <list>, <k>, <perm>, <i> )' returns the
## set of all permutations of the multiset <mset>, which has size <n>, that
## have no element at the same position as <list>, and that begin with
## '<perm>[[1..<i>-1]]'. To do this it finds all elements of <mset> that
## can go at '<perm>[<i>]' and calls itself recursively for each candidate.
## <m> is a boolean list of size <n> that contains 'true' for every element
## that we have not yet taken, so the candidates for '<perm>[<i>]' are the
## elements '<mset>[<l>]' such that '<m>[<l>]' is 'true'. Some care must be
## taken to take a candidate only once if it append more than once in
## <mset>.
##
DerangementsK := function ( mset, m, n, list, k, perm, i )
local perms, l;
if k = 0 then
perm := ShallowCopy(perm);
perms := [ perm ];
else
perms := [];
for l in [1..n] do
if m[l] and (l=1 or m[l-1]=false or mset[l]<>mset[l-1])
and mset[l] <> list[i] then
perm[i] := mset[l];
m[l] := false;
Append( perms, DerangementsK(mset,m,n,list,k-1,perm,i+1) );
m[l] := true;
fi;
od;
fi;
return perms;
end;
MakeReadOnlyGlobal( "DerangementsK" );
InstallGlobalFunction(Derangements,function ( list )
local mset, m;
mset := ShallowCopy(list); Sort( mset );
m := List( mset, i->true );
return DerangementsK(mset,m,Length(mset),list,Length(mset),[],1);
end);
#############################################################################
##
#F NrDerangements( <list> ) . number of fixpointfree permutations of a list
##
## 'NrDerangements' uses well known identities if <mset> is a proper set.
## If <mset> is a multiset it uses 'NrDerangementsK', which works just like
## 'DerangementsK'.
##
NrDerangementsK := function ( mset, m, n, list, k, i )
local perms, l;
if k = 0 then
perms := 1;
else
perms := 0;
for l in [1..n] do
if m[l] and (l=1 or m[l-1]=false or mset[l]<>mset[l-1])
and mset[l] <> list[i] then
m[l] := false;
perms := perms + NrDerangementsK(mset,m,n,list,k-1,i+1);
m[l] := true;
fi;
od;
fi;
return perms;
end;
MakeReadOnlyGlobal( "NrDerangementsK" );
InstallGlobalFunction(NrDerangements,function ( list )
local nr, mset, m, i;
mset := ShallowCopy(list); Sort( mset );
if IsSSortedList(mset) then
if Size(mset) = 0 then
nr := 1;
elif Size(mset) = 1 then
nr := 0;
else
m := - Factorial(Size(mset));
nr := 0;
for i in [2..Size(mset)] do
m := - m / i;
nr := nr + m;
od;
fi;
else
m := List( mset, i->true );
nr := NrDerangementsK(mset,m,Length(mset),list,Length(mset),1);
fi;
return nr;
end);
#############################################################################
##
#F Permanent( <mat> ) . . . . . . . . . . . . . . . . permanent of a matrix
##
Permanent2 := function ( mat, m, n, r, v, i, sum )
local p, k;
if i = n+1 then
p := v;
for k in sum do p := p * k; od;
else
p := Permanent2( mat, m, n, r, v, i+1, sum )
+ Permanent2( mat, m, n, r+1, v*(r-m)/(n-r), i+1, sum+mat[i] );
fi;
return p;
end;
MakeReadOnlyGlobal( "Permanent2" );
InstallGlobalFunction(Permanent,function ( mat )
local m, n;
m := Length(mat);
n := Length(mat[1]);
while n<m do
Error("Matrix may not have fewer columns than rows");
od;
mat := TransposedMat(mat);
return Permanent2( mat, m, n, 0, (-1)^m*Binomial(n,m), 1, 0*mat[1] );
end);
#############################################################################
##
#F PartitionsSet( <set> ) . . . . . . . . . . . set of partitions of a set
##
## 'PartitionsSetA( <set>, <n>, <m>, <o>, <part>, <i>, <j> )' returns the
## set of all partitions of the set <set>, which has size <n>, that begin
## with '<part>[[1..<i>-1]]' and where the <i>-th set begins with
## '<part>[<i>][[1..<j>]]'. To do so it does two things. It finds all
## elements of <mset> that can go at '<part>[<i>][<j>+1]' and calls itself
## recursively for each candidate. And it considers the set '<part>[<i>]'
## to be complete and starts a new set '<part>[<i>+1]', which must start
## with the smallest element of <mset> not yet taken, because we require the
## returned partitions to be sorted lexicographically. <mset> is a boolean
## list that contains 'true' for every element of <mset> not yet taken. <o>
## is the position of '<part>[<i>][<j>]' in <mset>, so the candidates for
## '<part>[<i>][<j>+1]' are those elements '<mset>[<l>]' for which '<o> <
## <l>' and '<m>[<l>]' is 'true'.
##
## 'PartitionsSetK( <set>, <n>, <m>, <o>, <k>, <part>, <i>, <j> )' returns
## the set of all partitions of the set <set>, which has size <n>, that have
## '<k>+<i>-1' subsets, and that begin with '<part>[[1..<i>-1]]' and where
## the <i>-th set begins with '<part>[<i>][[1..<j>]]'. To do so it does two
## things. It finds all elements of <mset> that can go at
## '<part>[<i>][<j>+1]' and calls itself recursively for each candidate.
## And, if <k> is larger than 1, it considers the set '<part>[<i>]' to be
## complete and starts a new set '<part>[<i>+1]', which must start with the
## smallest element of <mset> not yet taken, because we require the returned
## partitions to be sorted lexicographically. <mset> is a boolean list that
## contains 'true' for every element of <mset> not yet taken. <o> is the
## position of '<part>[<i>][<j>]' in <mset>, so the candidates for
## '<part>[<i>][<j>+1]' are those elements '<mset>[<l>]' for which '<o> <
## <l>' and '<m>[<l>]' is 'true'.
##
## 'PartitionsSet' only calls 'PartitionsSetA' or 'PartitionsSetK' with
## initial arguments.
##
PartitionsSetA := function ( set, n, m, o, part, i, j )
local parts, npart, l;
l := Position(m,true);
if l = fail then
part := List(part,ShallowCopy);
parts := [ part ];
else
npart := ShallowCopy(part);
m[l] := false;
npart[i+1] := [ set[l] ];
parts := PartitionsSetA(set,n,m,l+1,npart,i+1,1);
m[l] := true;
part := ShallowCopy(part);
part[i] := ShallowCopy(part[i]);
for l in [o..n] do
if m[l] then
m[l] := false;
part[i][j+1] := set[l];
Append( parts, PartitionsSetA(set,n,m,l+1,part,i,j+1));
m[l] := true;
fi;
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "PartitionsSetA" );
PartitionsSetK := function ( set, n, m, o, k, part, i, j )
local parts, npart, l;
l := Position(m,true);
parts := [];
if k = 1 then
part := List(part,ShallowCopy);
for l in [k..n] do
if m[l] then
Add( part[i], set[l] );
fi;
od;
parts := [ part ];
elif l <> fail then
npart := ShallowCopy(part);
m[l] := false;
npart[i+1] := [ set[l] ];
parts := PartitionsSetK(set,n,m,l+1,k-1,npart,i+1,1);
m[l] := true;
part := ShallowCopy(part);
part[i] := ShallowCopy(part[i]);
for l in [o..n] do
if m[l] then
m[l] := false;
part[i][j+1] := set[l];
Append( parts, PartitionsSetK(set,n,m,l+1,k,part,i,j+1));
m[l] := true;
fi;
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "PartitionsSetK" );
InstallGlobalFunction(PartitionsSet,function ( arg )
local parts, set, m;
if Length(arg) = 1 then
set := arg[1];
if not IsSSortedList(arg[1]) then
Error("PartitionsSet: <set> must be a set");
fi;
if set = [] then
parts := [ [ ] ];
else
m := List( set, i->true );
m[1] := false;
parts := PartitionsSetA(set,Length(set),m,2,[[set[1]]],1,1);
fi;
elif Length(arg) = 2 then
set := arg[1];
if not IsSSortedList(set) then
Error("PartitionsSet: <set> must be a set");
fi;
if set = [] then
if arg[2] = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
m := List( set, i->true );
m[1] := false;
parts := PartitionsSetK(
set, Length(set), m, 2, arg[2], [[set[1]]], 1, 1 );
fi;
else
Error("usage: PartitionsSet( <n> [, <k>] )");
fi;
return parts;
end);
#############################################################################
##
#F NrPartitionsSet( <set> ) . . . . . . . . . number of partitions of a set
##
InstallGlobalFunction(NrPartitionsSet,function ( arg )
local nr, set;
if Length(arg) = 1 then
set := arg[1];
if not IsSSortedList(arg[1]) then
Error("NrPartitionsSet: <set> must be a set");
fi;
nr := Bell( Size(set) );
elif Length(arg) = 2 then
set := arg[1];
if not IsSSortedList(set) then
Error("NrPartitionsSet: <set> must be a set");
fi;
nr := Stirling2( Size(set), arg[2] );
else
Error("usage: NrPartitionsSet( <n> [, <k>] )");
fi;
return nr;
end);
#############################################################################
##
#F Partitions( <n> ) . . . . . . . . . . . . set of partitions of an integer
##
## 'PartitionsA( <n>, <m>, <part>, <i> )' returns the set of all partitions
## of '<n> + Sum(<part>[[1..<i>-1]])' that begin with '<part>[[1..<i>-1]]'.
## To do so it finds all values that can go at '<part>[<i>]' and calls
## itself recursively for each candidate. <m> is '<part>[<i>-1]', so the
## candidates for '<part>[<i>]' are '[1..Minimum(<m>,<n>)]', since we
## require that partitions are nonincreasing.
##
## There is one hack that needs some comments. Each call to 'PartitionsA'
## contributes one partition without going into recursion, namely the
## 'Concatenation( <part>[[1..<i>-1]], [1,1,...,1] )'. Of all partitions
## returned by 'PartitionsA' this is the smallest, i.e., it will be the
## first one in the result set. Therefor it is put into the result set
## before anything else is done. However it is not immediately padded with
## 1, this is the last thing 'PartitionsA' does befor returning. In the
## meantime the list is used as a temporary that is passed to recursive
## invocations. Note that the fact that each call contributes one partition
## without going into recursion means that the number of recursive calls to
## 'PartitionsA' (and the number of calls to 'ShallowCopy') is equal to
## 'NrPartitions(<n>)'.
##
## 'PartitionsK( <n>, <m>, <k>, <part>, <i> )' returns the set of all
## partitions of '<n> + Sum(<part>[[1..<i>-1]])' that have length
## '<k>+<i>-1' and that begin with '<part>[[1..<i>-1]]'. To do so it finds
## all values that can go at '<part>[<i>]' and calls itself recursively for
## each candidate. <m> is '<part>[<i>-1]', so the candidates for
## '<part>[<i>]' must be less than or equal to <m>, since we require that
## partitions are nonincreasing. Also '<part>[<i>]' must be \<=
## '<n>+1-<k>', since we need at least <k>-1 ones to fill the <k>-1
## positions of <part> remaining after filling '<part>[<i>]'. On the other
## hand '<part>[<i>]' must be >= '<n>/<k>', because otherwise we can not
## fill the <k>-1 remaining positions nonincreasingly. It is not difficult
## to show that for each candidate satisfying these properties there is
## indeed a partition, i.e., we never run into a dead end.
##
## 'Partitions' only calls 'PartitionsA' or 'PartitionsK' with initial
## arguments.
##
PartitionsA := function ( n, m, part, i )
local parts, l;
if n = 0 then
part := ShallowCopy(part);
parts := [ part ];
elif n <= m then
part := ShallowCopy(part);
parts := [ part ];
for l in [2..n] do
part[i] := l;
Append( parts, PartitionsA( n-l, l, part, i+1 ) );
od;
for l in [i..i+n-1] do
part[l] := 1;
od;
else
part := ShallowCopy(part);
parts := [ part ];
for l in [2..m] do
part[i] := l;
Append( parts, PartitionsA( n-l, l, part, i+1 ) );
od;
for l in [i..i+n-1] do
part[l] := 1;
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "PartitionsA" );
PartitionsK := function ( n, m, k, part, i )
local parts, l;
if k = 1 then
part := ShallowCopy(part);
part[i] := n;
parts := [ part ];
elif n+1-k < m then
parts := [];
for l in [QuoInt(n+k-1,k)..n+1-k] do
part[i] := l;
Append( parts, PartitionsK( n-l, l, k-1, part, i+1 ) );
od;
else
parts := [];
for l in [QuoInt(n+k-1,k)..m] do
part[i] := l;
Append( parts, PartitionsK( n-l, l, k-1, part, i+1 ) );
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "PartitionsK" );
# The following used to be `Partitions' but was renamed, because
# the new `Partitions' is much faster and produces less garbage, see
# below.
InstallGlobalFunction(PartitionsRecursively,function ( arg )
local parts;
if Length(arg) = 1 then
parts := PartitionsA( arg[1], arg[1], [], 1 );
elif Length(arg) = 2 then
if arg[1] = 0 then
if arg[2] = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
if arg[2] = 0 then
parts := [ ];
else
parts := PartitionsK( arg[1], arg[1], arg[2], [], 1 );
fi;
fi;
else
Error("usage: Partitions( <n> [, <k>] )");
fi;
return parts;
end);
BindGlobal( "GPartitionsEasy", function(n)
# Returns a list of all Partitions of n, sorted lexicographically.
# Algorithm/Proof: Let P_n be the set of partitions of n.
# Let B_n^k be the set of partitions of n with all parts less or equal to k.
# Then P_n := Union_{k=1}^n [k] + B_{n-k}^k, where "[k]+" means, that
# a part k is added. Note that the union is a disjoint union.
# The algorithm first enumerates B_{n-k}^k for k=1,2,...,n-1 and then
# puts everything together by adding the greatest part.
# The GAP list B has as its j'th entry B[j] := B_{n-j}^j for j=1,...,n-1.
# Note the greatest part of all partitions in all of B is less than or
# equal to QuoInt(n,2).
# The first stage of the algorithm consists of a loop, where k runs
# from 1 to QuoInt(n,2) and for each k all partitions are added to all
# B[j] with greatest part k. Because we run j in descending direction,
# we already have B[j+k] (partitions of n-j-k) ready up to greatest part k
# when we handle for B[j] (partitions of n-j) the partitions with greatest
# part k.
# In the second stage we only have to add the correct greatest part to get
# a partition of n.
# Note that `GPartitions' improves this by including the work for the
# second step in the first one, such that less garbage objects are generated.
# n must be a natural number >= 1.
local B,j,k,l,p,res;
B := List([1..n-1],x->[]);
for k in [1..QuoInt(n,2)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [k];
Append(l,p); # This prolonges the bag without creating garbage!
Add(B[j],l);
od;
od;
od;
res := []; # here we collect the result
for k in [1..n-1] do # handle partitions with greatest part k
for p in B[k] do # use B[k] = B_{n-k}^k
l := [k]; # add a part k
Append(l,p);
Add(res,l); # collect
od;
od;
Add(res,[n]); # one more case
return res;
end );
BindGlobal( "GPartitions", function(n)
# Returns a list of all Partitions of n, sorted lexicographically.
# Algorithm/Proof: See first the comment of `GPartitionsEasy'.
# This function does exactly the same as `GPartitionsEasy' by the same
# algorithm, but it produces nearly no garbage, because in contrast
# to `GPartitionsEasy' the greatest part added in the second stage is
# already added in the first stage.
# n must be a natural number >= 1.
local B,j,k,l,p;
B := List([1..n],x->[]);
for k in [1..QuoInt(n,2)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[n-k,k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [j]; # This is the greatest part for stage 2
Append(l,p); # This prolonges the bag without creating garbage!
l[2] := k; # here used to be the greatest part for stage 2, now k
Add(B[j],l);
od;
od;
od;
B[n][1] := [n]; # one more case
return Concatenation(B);
end );
BindGlobal( "GPartitionsNrPartsHelper", function(n,m,ones)
# Helper function for GPartitionsNrParts (see below) for the case
# m > n. This is used only internally if m > QuoInt(n,2), because then
# the standard routine does not work. Here we just calculate all partitions
# of n and append a part m to it. We use exactly the algorithm in
# `GPartitions'.
local B,j,k,p,res;
B := List([1..n-1],x->[]);
for k in [1..QuoInt(n,2)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],ones[m]+ones[k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
Add(B[j],p + ones[k]);
od;
od;
od;
res := []; # here we collect the result
for k in [1..n-1] do # handle partitions with greatest part k
for p in B[k] do # use B[k] = B_{n-k}^k
AddRowVector(p,ones[k]);
Add(res,p); # collect
od;
od;
Add(res,ones[m]+ones[n]); # one more case
return res;
end );
BindGlobal( "GPartitionsNrParts", function(n,m)
# This function enumerates the set of all partitions of <n> into exactly
# <m> parts.
# We call a partition "admissible", if
# 0) the sum s of its entries is <= n
# 1) it has less or equal to m parts
# 2) let g be its greatest part and k the number of parts,
# (m-k)*g+s <= n
# [this means that it may eventually lead to a partition of n with
# exactly m parts]
# We proceed in steps. In the first step we write down all admissible
# partitions with exactly 1 part, sorted by their greatest part.
# In the t-th step (t from 2 to m-2) we use the partitions from step
# t-1 to enumerate all admissible partitions with exactly t parts
# sorted by their greatest part. In step m we add exactly the difference
# of n and the sum of the entries to get a partition of n.
#
# We use the following Lemma: Leaving out the greatest part is a
# surjective mapping of the set of admissible partitions with k parts
# to the set of admissible partitions of k-1 parts. Therefore we get
# every admissible partition with k parts from a partition with k-1
# parts by adding a part which is greater or equal the greatest part.
#
# Note that all our partitions are vectors of length m and until the
# last step we store n-(the sum) in the first entry.
#
local B,BB,i,j,k,p,pos,pp,prototype,t;
# some special cases:
if n <= 0 or m < 1 then
return [];
elif m = 1 then
return [[n]];
fi;
# from now on we have m >= 2
prototype := [1..m]*0;
# Note that there are no admissible partitions of s<n with greatest part
# greater than QuoInt(n,2) and no one-part-admissible partitions with
# greatest part greater than QuoInt(n,m):
# Therefore this is step 1:
B := [];
for i in [1..QuoInt(n,m)] do
B[i] := [ShallowCopy(prototype)];
B[i][1][1] := n-i; # remember: here is the sum of the parts
B[i][1][m] := i;
od;
for i in [QuoInt(n,m)+1..QuoInt(n,2)] do
B[i] := [];
od;
# Now to steps 2 to m-1:
for t in [2..m-1] do
BB := List([1..QuoInt(n,2)],i->[]);
pos := m+1-t; # here we add a number, this is also number of parts to add
for j in [1..QuoInt(n,2)] do
# run through B[j] and add greatest part:
for p in B[j] do
# add all possible greatest parts:
for k in [j+1..QuoInt(p[1],pos)] do
pp := ShallowCopy(p);
pp[pos] := k;
pp[1] := pp[1]-k;
Add(BB[k],pp);
od;
p[pos] := j;
p[1] := p[1]-j;
Add(BB[j],p);
od;
od;
B := BB;
od;
# In step m we only collect everything (the first entry is already OK!):
BB := List([1..n-m+1],i->[]);
for j in [1..Length(B)] do
for p in B[j] do
Add(BB[p[1]],p);
od;
od;
return Concatenation(BB);
end );
# The following replaces what is now `PartitionsRecursively':
# It now calls `GPartitions' and friends, which is much faster
# and more environment-friendly because it produces less garbage.
# Thanks to Götz Pfeiffer for the ideas!
InstallGlobalFunction(Partitions,function ( arg )
local parts;
if Length(arg) = 1 then
if not(IsInt(arg[1])) then
Error("usage: Partitions( <n> [, <k>] )");
else
if arg[1] <= 0 then
parts := [[]];
else
parts := GPartitions( arg[1] );
fi;
fi;
elif Length(arg) = 2 then
if not(IsInt(arg[1]) and IsInt(arg[2])) then
Error("usage: Partitions( <n> [, <k>] )");
return;
elif arg[1] < 0 or arg[2] < 0 then
parts := [];
else
if arg[1] = 0 then
if arg[2] = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
if arg[2] = 0 then
parts := [ ];
else
parts := GPartitionsNrParts( arg[1], arg[2] );
fi;
fi;
fi;
else
Error("usage: Partitions( <n> [, <k>] )");
return;
fi;
return parts;
end);
#############################################################################
##
#F NrPartitions( <n> ) . . . . . . . . . number of partitions of an integer
##
## To compute $p(n) = NrPartitions(n)$ we use Euler\'s theorem, that asserts
## $p(n) = \sum_{k>0}{ (-1)^{k+1} (p(n-(3m^2-m)/2) + p(n-(3m^2+m)/2)) }$.
##
## To compute $p(n,k)$ we use $p(m,1) = p(m,m) = 1$, $p(m,l) = 0$ if $m\<l$,
## and the recurrence $p(m,l) = p(m-1,l-1) + p(m-l,l)$ if $1 \< l \< m$.
## This recurrence can be proved by spliting the number of ways to write $m$
## as a sum of $l$ summands in two subsets, those sums that have 1 as a
## summand and those that do not. The number of ways to write $m$ as a sum
## of $l$ summands that have 1 as a summand is $p(m-1,l-1)$, because we can
## take away the 1 and obtain a new sums with $l-1$ summands and value
## $m-1$. The number of ways to write $m$ as a sum of $l$ summands such
## that no summand is 1 is $P(m-l,l)$, because we can subtract 1 from each
## summand and obtain new sums that still have $l$ summands but value $m-l$.
##
InstallGlobalFunction(NrPartitions,function ( arg )
local s, n, m, p, k, l;
if Length(arg) = 1 then
n := arg[1];
s := 1; # p(0) = 1
p := [ s ];
for m in [1..n] do
s := 0;
k := 1;
l := 1; # k*(3*k-1)/2
while 0 <= m-(l+k) do
s := s - (-1)^k * (p[m-l+1] + p[m-(l+k)+1]);
k := k + 1;
l := l + 3*k - 2;
od;
if 0 <= m-l then
s := s - (-1)^k * p[m-l+1];
fi;
p[m+1] := s;
od;
elif Length(arg) = 2 then
if arg[1] = arg[2] then
s := 1;
elif arg[1] < arg[2] or arg[2] = 0 then
s := 0;
else
n := arg[1]; k := arg[2];
p := [];
for m in [1..n] do
p[m] := 1; # p(m,1) = 1
od;
for l in [2..k] do
for m in [l+1..n-l+1] do
p[m] := p[m] + p[m-l]; # p(m,l) = p(m,l-1) + p(m-l,l)
od;
od;
s := p[n-k+1];
fi;
else
Error("usage: NrPartitions( <n> [, <k>] )");
fi;
return s;
end);
#############################################################################
##
#F PartitionsGreatestLE( <n>, <m> ) . . . set of partitions of n parts <= m
##
## returns the set of all (unordered) partitions of the integer <n> having
## parts less or equal to the integer <m>.
##
BindGlobal( "GPartitionsGreatestLEEasy", function(n,m)
# Returns a list of all Partitions of n with greatest part less or equal
# than m, sorted lexicographically.
# This works essentially as `GPartitions', but the greatest parts are
# limited.
# Algorithm/Proof:
# Let B_n^k be the set of partitions of n with all parts less or equal to k.
# Then P_n^m := Union_{k=1}^m [k] + B_{n-k}^k}, where "[k]+"
# means, that a part k is added. Note that the union is a disjoint union.
# Note that in the end we only need B_{n-k}^k for k<=m but to produce them
# we need also partial information about B_{n-k}^k for k>m.
# The algorithm first enumerates B_{n-k}^k for k=1,2,...,m and begins
# to enumerate B_{n-k}^k for k>m as necessary and then puts everything
# together by adding the greatest part.
# The GAP list B has as its j'th entry B[j] := B_{n-j}^j for j=1,...,n-1.
# Note the greatest part of all partitions in all of B is less than or
# equal to QuoInt(n,2) and less than or equal to m.
# The first stage of the algorithm consists of a loop, where k runs
# from 1 to min(QuoInt(n,2),m) and for each k all partitions are added to all
# B[j] with greatest part k. Because we run j in descending direction,
# we already have B[j+k] (partitions of n-j-k) ready up to greatest part k
# when we handle for B[j] (partitions of n-j) the partitions with greatest
# part k.
# In the second stage we only have to add the correct greatest part to get
# a partition of n.
# Note that `GPartitionsGreatestLE' improves this by including the
# work for the second step in the first one, such that less garbage
# objects are generated.
# n and m must be a natural numbers >= 1.
local B,j,k,l,p,res;
if m >= n then return GPartitions(n); fi; # a special case
B := List([1..n-1],x->[]);
for k in [1..Minimum(QuoInt(n,2),m)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [k];
Append(l,p); # This prolonges the bag without creating garbage!
Add(B[j],l);
od;
od;
od;
res := []; # here we collect the result
for k in [1..m] do # handle partitions with greatest part k
for p in B[k] do # use B[k] = B_{n-k}^k
l := [k]; # add a part k
Append(l,p);
Add(res,l); # collect
od;
od;
return res;
end );
BindGlobal( "GPartitionsGreatestLE", function(n,m)
# Returns a list of all Partitions of n with greatest part less or equal
# than m, sorted lexicographically.
# This works exactly as `GPartitionsGreatestLEEasy', but faster.
# This is done by doing all the work necessary for step 2 already in step 1.
# n and m must be a natural numbers >= 1.
local B,j,k,l,p,res;
if m >= n then return GPartitions(n); fi; # a special case
B := List([1..n-1],x->[]);
for k in [1..Minimum(QuoInt(n,2),m)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[n-k,k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [j]; # for step 2
Append(l,p); # This prolonges the bag without creating garbage!
l[2] := k; # here we add a new part k
Add(B[j],l);
od;
od;
od;
return Concatenation(B{[1..m]});
end );
InstallGlobalFunction( PartitionsGreatestLE,
function(n,m)
local parts;
if not(IsInt(n) and IsInt(m)) then
Error("usage: PartitionsGreatestLE( <n>, <m> )");
return;
elif n < 0 or m < 0 then
parts := [];
else
if n = 0 then
if m = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
if m = 0 then
parts := [ ];
else
parts := GPartitionsGreatestLE( n, m );
fi;
fi;
fi;
return parts;
end);
#############################################################################
##
#F PartitionsGreatestEQ( <n>, <m> ) . . . . set of partitions of n parts = n
##
## returns the set of all (unordered) partitions of the integer <n> having
## greatest part equal to the integer <m>.
##
BindGlobal( "GPartitionsGreatestEQHelper", function(n,m)
# Helper function for GPartitionsGreatestEQ (see below) for the case
# m > n. This is used only internally if m > QuoInt(n,2), because then
# the standard routine does not work. Here we just calculate all partitions
# of n and append a part m to it. We use exactly the algorithm in
# `GPartitions'.
local B,j,k,l,p;
B := List([1..n],x->[]);
for k in [1..QuoInt(n,2)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[m,n-k,k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [m]; # the greatest part
Append(l,p); # This prolonges the bag without creating garbage!
l[2] := j; # This is the greatest part for stage 2
l[3] := k; # here used to be the greatest part for stage 2, now k
Add(B[j],l);
od;
od;
od;
B[n][1] := [m,n]; # one more case
return Concatenation(B);
end );
BindGlobal( "GPartitionsGreatestEQ", function(n,m)
# Returns a list of all Partitions of n with greatest part equal to
# m, sorted lexicographically.
# This works exactly as `GPartitionsGreatestLE' for n-m and m and
# adds a part m to all partitions. This is however done effectively
# during the work.
# This is the same as `Partitions(n,m)' in the GAP library.
# n and m must be a natural numbers >= 1.
local B,j,k,l,p,res;
if m > n then return []; fi; # a special case
if m = n then return [[m]]; fi; # another special case
n := n - m; # this is >= 1
if m >= n then return GPartitionsGreatestEQHelper(n,m); fi;
B := List([1..n-1],x->[]);
for k in [1..Minimum(QuoInt(n,2),m)] do
# Now we add all partitions for all entries of B with greatest part k.
Add(B[n-k],[m,n-k,k]); # the trivial partition with greatest part k
for j in [n-k-1,n-k-2..k] do
# exactly in those are partitions with greatest part k. Think!
# we handle B[j] (partitions of n-j) with greatest part k
for p in B[j+k] do # those are partitions of n-j-k
l := [m]; # the greatest part m
Append(l,p); # This prolonges the bag without creating garbage!
l[2] := j; # for step 2
l[3] := k; # here we add a new part k
Add(B[j],l);
od;
od;
od;
return Concatenation(B{[1..m]});
end );
InstallGlobalFunction( PartitionsGreatestEQ,
function(n,m)
local parts;
if not(IsInt(n) and IsInt(m)) then
Error("usage: PartitionsGreatestEQ( <n>, <m> )");
return;
elif n < 0 or m < 0 then
parts := [];
else
if m = 0 or n = 0 then
parts := [];
else
parts := GPartitionsGreatestEQ( n, m );
fi;
fi;
return parts;
end);
#############################################################################
##
#F OrderedPartitions( <n> ) . . . . set of ordered partitions of an integer
##
## 'OrderedPartitionsA( <n>, <part>, <i> )' returns the set of all ordered
## partitions of '<n> + Sum(<part>[[1..<i>-1]])' that begin with
## '<part>[[1..<i>-1]]'. To do so it puts all possible values at
## '<part>[<i>]', which are of course exactly the elements of '[1..n]', and
## calls itself recursively.
##
## 'OrderedPartitionsK( <n>, <k>, <part>, <i> )' returns the set of all
## ordered partitions of '<n> + Sum(<part>[[1..<i>-1]])' that have length
## '<k>+<i>-1', and that begin with '<part>[[1..<i>-1]]'. To do so it puts
## all possible values at '<part>[<i>]', which are of course exactly the
## elements of '[1..<n>-<k>+1]', and calls itself recursively.
##
## 'OrderedPartitions' only calls 'OrderedPartitionsA' or
## 'OrderedPartitionsK' with initial arguments.
##
OrderedPartitionsA := function ( n, part, i )
local parts, l;
if n = 0 then
part := ShallowCopy(part);
parts := [ part ];
else
part := ShallowCopy(part);
parts := [];
for l in [1..n-1] do
part[i] := l;
Append( parts, OrderedPartitionsA( n-l, part, i+1 ) );
od;
part[i] := n;
Add( parts, part );
fi;
return parts;
end;
MakeReadOnlyGlobal( "OrderedPartitionsA" );
OrderedPartitionsK := function ( n, k, part, i )
local parts, l;
if k = 1 then
part := ShallowCopy(part);
part[i] := n;
parts := [ part ];
else
parts := [];
for l in [1..n-k+1] do
part[i] := l;
Append( parts, OrderedPartitionsK( n-l, k-1, part, i+1 ) );
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "OrderedPartitionsK" );
InstallGlobalFunction(OrderedPartitions,function ( arg )
local parts;
if Length(arg) = 1 then
parts := OrderedPartitionsA( arg[1], [], 1 );
elif Length(arg) = 2 then
if arg[1] = 0 then
if arg[2] = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
if arg[2] = 0 then
parts := [ ];
else
parts := OrderedPartitionsK( arg[1], arg[2], [], 1 );
fi;
fi;
else
Error("usage: OrderedPartitions( <n> [, <k>] )");
fi;
return parts;
end);
#############################################################################
##
#F NrOrderedPartitions( <n> ) . . number of ordered partitions of an integer
##
## 'NrOrderedPartitions' uses well known identities to compute the number of
## ordered partitions of <n>.
##
InstallGlobalFunction(NrOrderedPartitions,function ( arg )
local nr;
if Length(arg) = 1 then
if arg[1] = 0 then
nr := 1;
else
nr := 2^(arg[1]-1);
fi;
elif Length(arg) = 2 then
if arg[1] = 0 then
if arg[2] = 0 then
nr := 1;
else
nr := 0;
fi;
else
nr := Binomial(arg[1]-1,arg[2]-1);
fi;
else
Error("usage: NrOrderedPartitions( <n> [, <k>] )");
fi;
return nr;
end);
#############################################################################
##
#F RestrictedPartitions( <n>, <set> ) . restricted partitions of an integer
##
## 'RestrictedPartitionsA( <n>, <set>, <m>, <part>, <i> )' returns the set
## of all partitions of '<n> + Sum(<part>[[1..<i>-1]])' that contain only
## elements of <set> and that begin with '<part>[[1..<i>-1]]'. To do so it
## finds all elements of <set> that can go at '<part>[<i>]' and calls itself
## recursively for each candidate. <m> is the position of '<part>[<i>-1]'
## in <set>, so the candidates for '<part>[<i>]' are the elements of
## '<set>[[1..<m>]]' that are less than <n>, since we require that
## partitions are nonincreasing.
##
## 'RestrictedPartitionsK( <n>, <set>, <m>, <k>, <part>, <i> )' returns the
## set of all partitions of '<n> + Sum(<part>[[1..<i>-1]])' that contain
## only elements of <set>, that have length '<k>+<i>-1', and that begin with
## '<part>[[1..<i>-1]]'. To do so it finds all elements fo <set> that can
## go at '<part>[<i>]' and calls itself recursively for each candidate. <m>
## is the position of '<part>[<i>-1]' in <set>, so the candidates for
## '<part>[<i>]' are the elements of '<set>[[1..<m>]]' that are less than
## <n>, since we require that partitions are nonincreasing.
##
RestrictedPartitionsA := function ( n, set, m, part, i )
local parts, l;
if n = 0 then
part := ShallowCopy(part);
parts := [ part ];
else
part := ShallowCopy(part);
if n mod set[1] = 0 then
parts := [ part ];
else
parts := [ ];
fi;
for l in [2..m] do
if set[l] <= n then
part[i] := set[l];
Append(parts,RestrictedPartitionsA(n-set[l],set,l,part,i+1));
fi;
od;
if n mod set[1] = 0 then
for l in [i..i+n/set[1]-1] do
part[l] := set[1];
od;
fi;
fi;
return parts;
end;
MakeReadOnlyGlobal( "RestrictedPartitionsA" );
RestrictedPartitionsK := function ( n, set, m, k, part, i )
local parts, l;
if k = 1 then
if n in set then
part := ShallowCopy(part);
part[i] := n;
parts := [ part ];
else
parts := [];
fi;
else
part := ShallowCopy(part);
parts := [ ];
for l in [1..m] do
if set[l]+(k-1)*set[1] <= n and n <= k*set[l] then
part[i] := set[l];
Append(parts,
RestrictedPartitionsK(n-set[l],set,l,k-1,part,i+1) );
fi;
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "RestrictedPartitionsK" );
InstallGlobalFunction(RestrictedPartitions,function ( arg )
local parts;
if Length(arg) = 2 then
parts := RestrictedPartitionsA(arg[1],arg[2],Length(arg[2]),[],1);
elif Length(arg) = 3 then
if arg[1] = 0 then
if arg[3] = 0 then
parts := [ [ ] ];
else
parts := [ ];
fi;
else
if arg[2] = 0 then
parts := [ ];
else
parts := RestrictedPartitionsK(
arg[1], arg[2], Length(arg[2]), arg[3], [], 1 );
fi;
fi;
else
Error("usage: RestrictedPartitions( <n>, <set> [, <k>] )");
fi;
return parts;
end);
#############################################################################
##
#F NrRestrictedPartitions(<n>,<set>) . . . . number of restricted partitions
##
#N 22-Jul-91 martin there should be a better way to do this for given <k>
##
NrRestrictedPartitionsK := function ( n, set, m, k, part, i )
local parts, l;
if k = 1 then
if n in set then
parts := 1;
else
parts := 0;
fi;
else
part := ShallowCopy(part);
parts := 0;
for l in [1..m] do
if set[l]+(k-1)*set[1] <= n and n <= k*set[l] then
part[i] := set[l];
parts := parts +
NrRestrictedPartitionsK(n-set[l],set,l,k-1,part,i+1);
fi;
od;
fi;
return parts;
end;
MakeReadOnlyGlobal( "NrRestrictedPartitionsK" );
InstallGlobalFunction(NrRestrictedPartitions,function ( arg )
local s, n, set, m, p, l;
if Length(arg) = 2 then
n := arg[1];
set := arg[2];
p := [];
for m in [1..n+1] do
if (m-1) mod set[1] = 0 then
p[m] := 1;
else
p[m] := 0;
fi;
od;
for l in set{ [2..Length(set)] } do
for m in [l+1..n+1] do
p[m] := p[m] + p[m-l];
od;
od;
s := p[n+1];
elif Length(arg) = 3 then
if arg[1] = 0 and arg[3] = 0 then
s := 1;
elif arg[1] < arg[3] or arg[3] = 0 then
s := 0;
else
s := NrRestrictedPartitionsK(
arg[1], arg[2], Length(arg[2]), arg[3], [], 1 );
fi;
else
Error("usage: NrRestrictedPartitions( <n>, <set> [, <k>] )");
fi;
return s;
end);
#############################################################################
##
#F IteratorOfPartitions( <n> )
##
## The partitions of <n> are returned in lexicographic order.
##
## So the partition $\lambda = [ \lambda_1, \lambda_2, \ldots, \lambda_m ]$
## has a successor if and only if $m > 1$.
## If we set $k = \max\{ i; 1 \leq i \leq m-2, \lambda_k > \lambda_{m-1} \}$
## (or $k = 0$ if the set is empty)
## and $l = n - 1 - \sum_{i=1}^{k+1} \lambda_i$
## then the successor of $\lambda$ has the form
## $\mu = [ \lambda_1, \lambda_2, \ldots, \lambda_k, \lambda_{k+1}+1, 1^l ]$
## (where the last term is omitted if $l = 0$).
##
## (Note that $\mu$ is lexicographically larger than $\lambda$,
## clearly $\mu_i = \lambda_i$ for $i \leq k$ is the minimal choice,
## $\mu_{k+1}$ must satisfy $\mu_{k+1} > \lambda_{k+1}$ since
## $\lambda_{k+1} = \lambda_{k+2} = \ldots = \lambda_{m-1} \geq \lambda_m$,
## and for $i > k+1$, $\mu_i = 1$ is the smallest choice.)
##
BindGlobal( "IsDoneIterator_Partitions", iter -> ( iter!.next = false ) );
BindGlobal( "NextIterator_Partitions", function( iter)
local part, m, succ, k;
part:= iter!.next;
m:= Length( part );
if m = 1 then
succ:= false;
else
k:= m-2;
while 0 < k and part[ m-1 ] = part[k] do
k:= k-1;
od;
succ:= part{ [ 1 .. k ] };
k:= k+1;
succ[k]:= part[k] + 1;
Append( succ, 0 * [ 1 .. iter!.n - Sum( succ, 0 ) ] + 1 );
fi;
iter!.next:= succ;
return part;
end );
BindGlobal( "ShallowCopy_Partitions",
iter -> rec( n:= iter!.n, next:= ShallowCopy( iter!.next ) ) );
InstallGlobalFunction( "IteratorOfPartitions", function( n )
if not IsPosInt( n ) then
Error( "<n> must be a positive integer" );
fi;
return IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_Partitions,
NextIterator := NextIterator_Partitions,
ShallowCopy := ShallowCopy_Partitions,
n := n,
next := 0 * [ 1 .. n ] + 1 ) );
end );
#############################################################################
##
#F SignPartition( <pi> ) . . . . . . . . . . . . . signum of partition <pi>
##
InstallGlobalFunction(SignPartition,function(pi)
return (-1)^(Sum(pi) - Length(pi));
end);
#############################################################################
##
#F AssociatedPartition( <pi> ) . . . . . . the associated partition of <pi>
##
## 'AssociatedPartition' returns the associated partition of the partition
## <pi> which is obtained by transposing the corresponding Young diagram.
##
InstallGlobalFunction(AssociatedPartition,function(lambda)
local res, k, j;
res := [];
k := Length(lambda);
for j in [1..lambda[1]] do
if j <= lambda[k] then
res[j] := k;
else
k := k-1;
while j > lambda[k] do
k := k-1;
od;
res[j] := k;
fi;
od;
return res;
end);
#############################################################################
##
#F PowerPartition( <pi>, <k> ) . . . . . . . . . . . . power of a partition
##
## 'PowerPartition' returns the partition corresponding to the <k>-th power
## of a permutation with cycle structure <pi>.
##
InstallGlobalFunction(PowerPartition,function(pi, k)
local res, i, d, part;
res:= [];
for part in pi do
d:= GcdInt(part, k);
for i in [1..d] do
Add(res, part/d);
od;
od;
Sort(res);
return Reversed(res);
end);
#############################################################################
##
#F PartitionTuples( <n>, <r> ) . . . . . . . . . <r> partitions with sum <n>
##
## 'PartitionTuples' returns the list of all <r>-tuples of partitions which
## together form a partition of <n>.
##
InstallGlobalFunction(PartitionTuples,function( n, r )
local empty, pm, m, i, s, k, t, t1, res;
empty := rec( tup := List( [1..r], x-> [] ),
pos := List( [1..n-1], x-> 1 ) );
if n = 0 then
return [empty.tup];
fi;
pm := List( [1..n-1], x -> [] );
for m in [ 1 .. QuoInt(n,2) ] do
# the m-cycle in all possible places.
for i in [ 1 .. r ] do
s := rec( tup := List( empty.tup, ShallowCopy ),
pos := ShallowCopy( empty.pos ) );
s.tup[i] := [m];
s.pos[m] := i;
Add( pm[m], s );
od;
# add the m-cycle to everything you know.
for k in [ m+1 .. n-m ] do
for t in pm[k-m] do
for i in [ t.pos[m] .. r ] do
t1 := rec( tup := List( t.tup, ShallowCopy ),
pos := ShallowCopy( t.pos ) );
s := [m];
Append( s, t.tup[i] );
t1.tup[i] := s;
t1.pos[m] := i;
Add( pm[k], t1 );
od;
od;
od;
od;
# collect.
res := [];
for k in [ 1 .. n-1 ] do
for t in pm[n-k] do
for i in [ t.pos[k] .. r ] do
t1 := List( t.tup, ShallowCopy );
s := [k];
Append( s, t.tup[i] );
t1[i] := s;
Add( res, t1 );
od;
od;
od;
for i in [ 1 .. r ] do
s := List( empty.tup, ShallowCopy );
s[i] := [n];
Add( res, s );
od;
return res;
end);
InstallGlobalFunction(NrPartitionTuples, function(n, k)
local res, l, pp, r, a, pr, b;
res := 0;
for l in [0..k] do
pp := Partitions(n, l);
r := Binomial(k, l);
for a in pp do
pr := 1;
for b in a do
pr := pr * NrPartitions(b);
od;
res := res + r * NrArrangements(a, l) * pr;
od;
od;
return res;
end);
#############################################################################
##
#F Lucas(<P>,<Q>,<k>) . . . . . . . . . . . . . . value of a lucas sequence
##
## 'Lucas' uses the following relations to compute the result in $O(log(k))$
## $U_{2k} = U_k V_k, U_{2k+1} = (P U_{2k} + V_{2k}) / 2$ and
## $V_{2k} = V_k^2 - 2 Q^k, V_{2k+1} = ((P^2-4Q) U_{2k} + P V_{2k}) / 2$.
##
InstallGlobalFunction(Lucas,function ( P, Q, k )
local l;
if k = 0 then
l := [ 0, 2, 1 ];
elif k < 0 then
l := Lucas( P, Q, -k );
l := [ -l[1]/l[3], l[2]/l[3], 1/l[3] ];
elif k mod 2 = 0 then
l := Lucas( P, Q, k/2 );
l := [ l[1]*l[2], l[2]^2-2*l[3], l[3]^2 ];
else
l := Lucas( P, Q, k-1 );
l := [ (P*l[1]+l[2])/2, ((P^2-4*Q)*l[1]+P*l[2])/2, Q*l[3] ];
fi;
return l;
end);
##############################################################################
##
#F LucasMod(P,Q,N,k) - return the reduction modulo N of the k'th terms of
## the Lucas Sequences U,V associated to x^2+Px+Q.
##
## Recursive version is a trivial modification of the above function, but
## the running time is dramatically decreased. The running time of the
## the function is dominated by the cost of basic arithmetic operations.
## If reductions mod N are enforced regularly, then these operations are
## constant cost. If not, then they grow quickly as the Lucas sequence
## itself grows exponentially.
##
## See lib/primality.gi for a faster implementation.
##
InstallMethod(LucasMod,
"recursive version, reduce mod N regularly",
[IsInt,IsInt,IsInt,IsInt],
function(P,Q,N,k)
local l;
if k = 0 then
l := [ 0, 2, 1 ];
elif k < 0 then
l := LucasMod( P, Q, N, -k );
if GcdInt( l[3], N ) <> 1 then return fail; fi;
l := [ -l[1]/l[3], l[2]/l[3], 1/l[3] ];
elif k mod 2 = 0 then
l := LucasMod( P, Q, N, k/2 );
l := [ l[1]*l[2], l[2]^2-2*l[3], l[3]^2 ];
else
l := LucasMod( P, Q, N, k-1 );
l := [ (P*l[1]+l[2])/2, ((P^2-4*Q)*l[1]+P*l[2])/2, Q*l[3] ];
fi;
return l mod N;
end);
#############################################################################
##
#F Fibonacci( <n> ) . . . . . . . . . . . . value of the Fibonacci sequence
##
## A recursive Fibonacci needs $O( Fibonacci(n) ) = O(2^n)$ bit operations.
## An iterative version performs $n$ additions, the <i>th involving integers
## with $i$ bits, so we need $\sum_{i=1}^{n}{i} = O(n^2)$ bit operations.
## The binary recursion of 'Lucas' reduces the number of calls to $log2(n)$.
## The number of bit operations now is $O(n)$, i.e., the size of the result.
##
InstallGlobalFunction(Fibonacci,function ( n )
return Lucas( 1, -1, n )[ 1 ];
end);
#############################################################################
##
#F Bernoulli( <n> ) . . . . . . . . . . . . value of the Bernoulli sequence
##
BindGlobal( "Bernoulli2",
[-1/2,1/6,0,-1/30,0,1/42,0,-1/30,0,5/66,0,-691/2730,0,7/6] );
InstallGlobalFunction(Bernoulli,function ( n )
local brn, bin, i, j;
if n < 0 then
Error("Bernoulli: <n> must be nonnegative");
elif n = 0 then
brn := 1;
elif n = 1 then
brn := -1/2;
elif n mod 2 = 1 then
brn := 0;
elif n <= Length(Bernoulli2) then
brn := Bernoulli2[n];
else
for i in [Length(Bernoulli2)+1..n] do
if i mod 2 = 1 then
Bernoulli2[i] := 0;
else
bin := 1;
brn := 1;
for j in [1..i-1] do
bin := (i+2-j)/j * bin;
brn := brn + bin * Bernoulli2[j];
od;
Bernoulli2[i] := - brn / (i+1);
fi;
od;
brn := Bernoulli2[n];
fi;
return brn;
end);
#############################################################################
##
#E combinat.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|