This file is indexed.

/usr/share/gap/lib/ctblauto.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#############################################################################
##
#W  ctblauto.gd                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the declaration of operations to calculate
##  automorphisms of matrices,
#T better in `matrix.gd'?
##  e.g., the character matrices of character tables,
##  and functions to calculate permutations transforming the rows of a matrix
##  to the rows of another matrix.
##


#############################################################################
##
#F  FamiliesOfRows( <mat>, <maps> )
##
##  <#GAPDoc Label="FamiliesOfRows">
##  <ManSection>
##  <Func Name="FamiliesOfRows" Arg='mat, maps'/>
##
##  <Description>
##  distributes the rows of the matrix <A>mat</A> into families, as follows.
##  Two rows of <A>mat</A> belong to the same family if there is
##  a permutation of columns that maps one row to the other row.
##  Each entry in the list <A>maps</A> is regarded to form a family
##  of length 1.
##  <P/>
##  <Ref Func="FamiliesOfRows"/> returns a record with the components
##  <List>
##  <Mark><C>famreps</C></Mark>
##  <Item>
##     the list of representatives for each family,
##  </Item>
##  <Mark><C>permutations</C></Mark>
##  <Item>
##     the list that contains at position <M>i</M> a list of permutations
##     that map the members of the family with representative
##     <C>famreps</C><M>[i]</M> to that representative,
##  </Item>
##  <Mark><C>families</C></Mark>
##  <Item>
##     the list that contains at position <M>i</M> the list of positions
##     of members of the family of representative <C>famreps</C><M>[i]</M>;
##     (for the element <A>maps</A><M>[i]</M> the only member of the family
##     will get the number <C>Length( <A>mat</A> ) + </C><M>i</M>).
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FamiliesOfRows" );


#############################################################################
##
#O  MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
##  <#GAPDoc Label="MatrixAutomorphisms">
##  <ManSection>
##  <Oper Name="MatrixAutomorphisms" Arg='mat[, maps, subgroup]'/>
##
##  <Description>
##  For a matrix <A>mat</A>,
##  <Ref Oper="MatrixAutomorphisms"/> returns the group of those
##  permutations of the columns of <A>mat</A> that leave the set of rows of
##  <A>mat</A> invariant.
##  <P/>
##  If the arguments <A>maps</A> and <A>subgroup</A> are given,
##  only the group of those permutations is constructed that additionally
##  fix each list in the list <A>maps</A> under pointwise action
##  <Ref Func="OnTuples"/>,
##  and <A>subgroup</A> is a permutation group that is known to be a subgroup
##  of this group of automorphisms.
##  <P/>
##  Each entry in <A>maps</A> must be a list of same length as the rows of
##  <A>mat</A>.
##  For example, if <A>mat</A> is a list of irreducible characters of a group
##  then the list of element orders of the conjugacy classes
##  (see&nbsp;<Ref Func="OrdersClassRepresentatives"/>) may be an entry in
##  <A>maps</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix ] );
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix, IsList, IsPermGroup ] );


#############################################################################
##
#O  TableAutomorphisms( <tbl>, <characters>[, <info>] )
##
##  <#GAPDoc Label="TableAutomorphisms">
##  <ManSection>
##  <Oper Name="TableAutomorphisms" Arg='tbl, characters[, info]'/>
##
##  <Description>
##  <Ref Oper="TableAutomorphisms"/> returns the permutation group of those
##  matrix automorphisms (see&nbsp;<Ref Func="MatrixAutomorphisms"/>) of the
##  list <A>characters</A> that leave the element orders
##  (see&nbsp;<Ref Func="OrdersClassRepresentatives"/>)
##  and all stored power maps (see&nbsp;<Ref Func="ComputedPowerMaps"/>)
##  of the character table <A>tbl</A> invariant.
##  <P/>
##  If <A>characters</A> is closed under Galois conjugacy
##  &ndash;this is always fulfilled for the list of all irreducible
##  characters of ordinary character tables&ndash; the string <C>"closed"</C>
##  may be entered as the third argument <A>info</A>.
##  Alternatively, a known subgroup of the table automorphisms
##  can be entered as the third argument <A>info</A>.
##  <P/>
##  The attribute <Ref Attr="AutomorphismsOfTable"/>
##  can be used to compute and store the table automorphisms for the case
##  that <A>characters</A> equals the
##  <Ref Func="Irr" Label="for a character table"/> value of <A>tbl</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> tbld8:= CharacterTable( "Dihedral", 8 );;
##  gap> irrd8:= Irr( tbld8 );
##  [ Character( CharacterTable( "Dihedral(8)" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "Dihedral(8)" ), [ 1, 1, 1, -1, -1 ] ), 
##    Character( CharacterTable( "Dihedral(8)" ), [ 1, -1, 1, 1, -1 ] ), 
##    Character( CharacterTable( "Dihedral(8)" ), [ 1, -1, 1, -1, 1 ] ), 
##    Character( CharacterTable( "Dihedral(8)" ), [ 2, 0, -2, 0, 0 ] ) ]
##  gap> orders:= OrdersClassRepresentatives( tbld8 );
##  [ 1, 4, 2, 2, 2 ]
##  gap> MatrixAutomorphisms( irrd8 );
##  Group([ (4,5), (2,4) ])
##  gap> MatrixAutomorphisms( irrd8, [ orders ], Group( () ) );
##  Group([ (4,5) ])
##  gap> TableAutomorphisms( tbld8, irrd8 );
##  Group([ (4,5) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableAutomorphisms",
    [ IsNearlyCharacterTable, IsList ] );
DeclareOperation( "TableAutomorphisms",
    [ IsNearlyCharacterTable, IsList, IsString ] );
DeclareOperation( "TableAutomorphisms",
    [ IsNearlyCharacterTable, IsList, IsPermGroup ] );
#T use `AutomorphismsOfTable' for that
#T (the distinction stems from the times where attributes were not allowed
#T to have non-unary methods!)


#############################################################################
##
#O  TransformingPermutations( <mat1>, <mat2> )
##
##  <#GAPDoc Label="TransformingPermutations">
##  <ManSection>
##  <Oper Name="TransformingPermutations" Arg='mat1, mat2'/>
##
##  <Description>
##  Let <A>mat1</A> and <A>mat2</A> be matrices.
##  <Ref Oper="TransformingPermutations"/> tries to construct
##  a permutation <M>\pi</M> that transforms the set of rows of the matrix
##  <A>mat1</A> to the set of rows of the matrix <A>mat2</A>
##  by permuting the columns.
##  <P/>
##  If such a permutation exists,
##  a record with the components <C>columns</C>, <C>rows</C>,
##  and <C>group</C> is returned, otherwise <K>fail</K>.
##  For <C>TransformingPermutations( <A>mat1</A>, <A>mat2</A> )
##  = <A>r</A></C> <M>\neq</M> <K>fail</K>,
##  we have <C><A>mat2</A> =
##   Permuted( List( <A>mat1</A>, x -&gt; Permuted( x, <A>r</A>.columns ) ),
##  <A>r</A>.rows )</C>.
##  <P/>
##  <A>r</A><C>.group</C> is the group of matrix automorphisms of <A>mat2</A>
##  (see&nbsp;<Ref Oper="MatrixAutomorphisms"/>).
##  This group stabilizes the transformation in the sense that applying any
##  of its elements to the columns of <A>mat2</A>
##  preserves the set of rows of <A>mat2</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TransformingPermutations", [ IsMatrix, IsMatrix ] );


#############################################################################
##
#O  TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
##  <#GAPDoc Label="TransformingPermutationsCharacterTables">
##  <ManSection>
##  <Oper Name="TransformingPermutationsCharacterTables" Arg='tbl1, tbl2'/>
##
##  <Description>
##  Let <A>tbl1</A> and <A>tbl2</A> be character tables.
##  <Ref Oper="TransformingPermutationsCharacterTables"/> tries to construct
##  a permutation <M>\pi</M> that transforms the set of rows of the matrix
##  <C>Irr( <A>tbl1</A> )</C> to the set of rows of the matrix
##  <C>Irr( <A>tbl2</A> )</C> by permuting the columns
##  (see&nbsp;<Ref Oper="TransformingPermutations"/>), such that
##  <M>\pi</M> transforms also the power maps and the element orders.
##  <P/>
##  If such a permutation <M>\pi</M> exists then a record with the components
##  <C>columns</C> (<M>\pi</M>),
##  <C>rows</C> (the permutation of <C>Irr( <A>tbl1</A> )</C> corresponding
##  to <M>\pi</M>), and <C>group</C> (the permutation group of table
##  automorphisms of <A>tbl2</A>,
##  see&nbsp;<Ref Attr="AutomorphismsOfTable"/>) is returned.
##  If no such permutation exists, <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> tblq8:= CharacterTable( "Quaternionic", 8 );;
##  gap> irrq8:= Irr( tblq8 );
##  [ Character( CharacterTable( "Q8" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "Q8" ), [ 1, 1, 1, -1, -1 ] ), 
##    Character( CharacterTable( "Q8" ), [ 1, -1, 1, 1, -1 ] ), 
##    Character( CharacterTable( "Q8" ), [ 1, -1, 1, -1, 1 ] ), 
##    Character( CharacterTable( "Q8" ), [ 2, 0, -2, 0, 0 ] ) ]
##  gap> OrdersClassRepresentatives( tblq8 );
##  [ 1, 4, 2, 4, 4 ]
##  gap> TransformingPermutations( irrd8, irrq8 );
##  rec( columns := (), group := Group([ (4,5), (2,4) ]), rows := () )
##  gap> TransformingPermutationsCharacterTables( tbld8, tblq8 );
##  fail
##  gap> tbld6:= CharacterTable( "Dihedral", 6 );;
##  gap> tbls3:= CharacterTable( "Symmetric", 3 );;
##  gap> TransformingPermutationsCharacterTables( tbld6, tbls3 );
##  rec( columns := (2,3), group := Group(()), rows := (1,3,2) )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TransformingPermutationsCharacterTables",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );


#############################################################################
##
#E