/usr/share/gap/lib/ctblauto.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | #############################################################################
##
#W ctblauto.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the declaration of operations to calculate
## automorphisms of matrices,
#T better in `matrix.gd'?
## e.g., the character matrices of character tables,
## and functions to calculate permutations transforming the rows of a matrix
## to the rows of another matrix.
##
#############################################################################
##
#F FamiliesOfRows( <mat>, <maps> )
##
## <#GAPDoc Label="FamiliesOfRows">
## <ManSection>
## <Func Name="FamiliesOfRows" Arg='mat, maps'/>
##
## <Description>
## distributes the rows of the matrix <A>mat</A> into families, as follows.
## Two rows of <A>mat</A> belong to the same family if there is
## a permutation of columns that maps one row to the other row.
## Each entry in the list <A>maps</A> is regarded to form a family
## of length 1.
## <P/>
## <Ref Func="FamiliesOfRows"/> returns a record with the components
## <List>
## <Mark><C>famreps</C></Mark>
## <Item>
## the list of representatives for each family,
## </Item>
## <Mark><C>permutations</C></Mark>
## <Item>
## the list that contains at position <M>i</M> a list of permutations
## that map the members of the family with representative
## <C>famreps</C><M>[i]</M> to that representative,
## </Item>
## <Mark><C>families</C></Mark>
## <Item>
## the list that contains at position <M>i</M> the list of positions
## of members of the family of representative <C>famreps</C><M>[i]</M>;
## (for the element <A>maps</A><M>[i]</M> the only member of the family
## will get the number <C>Length( <A>mat</A> ) + </C><M>i</M>).
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FamiliesOfRows" );
#############################################################################
##
#O MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
## <#GAPDoc Label="MatrixAutomorphisms">
## <ManSection>
## <Oper Name="MatrixAutomorphisms" Arg='mat[, maps, subgroup]'/>
##
## <Description>
## For a matrix <A>mat</A>,
## <Ref Oper="MatrixAutomorphisms"/> returns the group of those
## permutations of the columns of <A>mat</A> that leave the set of rows of
## <A>mat</A> invariant.
## <P/>
## If the arguments <A>maps</A> and <A>subgroup</A> are given,
## only the group of those permutations is constructed that additionally
## fix each list in the list <A>maps</A> under pointwise action
## <Ref Func="OnTuples"/>,
## and <A>subgroup</A> is a permutation group that is known to be a subgroup
## of this group of automorphisms.
## <P/>
## Each entry in <A>maps</A> must be a list of same length as the rows of
## <A>mat</A>.
## For example, if <A>mat</A> is a list of irreducible characters of a group
## then the list of element orders of the conjugacy classes
## (see <Ref Func="OrdersClassRepresentatives"/>) may be an entry in
## <A>maps</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix ] );
DeclareOperation( "MatrixAutomorphisms", [ IsMatrix, IsList, IsPermGroup ] );
#############################################################################
##
#O TableAutomorphisms( <tbl>, <characters>[, <info>] )
##
## <#GAPDoc Label="TableAutomorphisms">
## <ManSection>
## <Oper Name="TableAutomorphisms" Arg='tbl, characters[, info]'/>
##
## <Description>
## <Ref Oper="TableAutomorphisms"/> returns the permutation group of those
## matrix automorphisms (see <Ref Func="MatrixAutomorphisms"/>) of the
## list <A>characters</A> that leave the element orders
## (see <Ref Func="OrdersClassRepresentatives"/>)
## and all stored power maps (see <Ref Func="ComputedPowerMaps"/>)
## of the character table <A>tbl</A> invariant.
## <P/>
## If <A>characters</A> is closed under Galois conjugacy
## –this is always fulfilled for the list of all irreducible
## characters of ordinary character tables– the string <C>"closed"</C>
## may be entered as the third argument <A>info</A>.
## Alternatively, a known subgroup of the table automorphisms
## can be entered as the third argument <A>info</A>.
## <P/>
## The attribute <Ref Attr="AutomorphismsOfTable"/>
## can be used to compute and store the table automorphisms for the case
## that <A>characters</A> equals the
## <Ref Func="Irr" Label="for a character table"/> value of <A>tbl</A>.
## <P/>
## <Example><![CDATA[
## gap> tbld8:= CharacterTable( "Dihedral", 8 );;
## gap> irrd8:= Irr( tbld8 );
## [ Character( CharacterTable( "Dihedral(8)" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Dihedral(8)" ), [ 1, 1, 1, -1, -1 ] ),
## Character( CharacterTable( "Dihedral(8)" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Dihedral(8)" ), [ 1, -1, 1, -1, 1 ] ),
## Character( CharacterTable( "Dihedral(8)" ), [ 2, 0, -2, 0, 0 ] ) ]
## gap> orders:= OrdersClassRepresentatives( tbld8 );
## [ 1, 4, 2, 2, 2 ]
## gap> MatrixAutomorphisms( irrd8 );
## Group([ (4,5), (2,4) ])
## gap> MatrixAutomorphisms( irrd8, [ orders ], Group( () ) );
## Group([ (4,5) ])
## gap> TableAutomorphisms( tbld8, irrd8 );
## Group([ (4,5) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList ] );
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList, IsString ] );
DeclareOperation( "TableAutomorphisms",
[ IsNearlyCharacterTable, IsList, IsPermGroup ] );
#T use `AutomorphismsOfTable' for that
#T (the distinction stems from the times where attributes were not allowed
#T to have non-unary methods!)
#############################################################################
##
#O TransformingPermutations( <mat1>, <mat2> )
##
## <#GAPDoc Label="TransformingPermutations">
## <ManSection>
## <Oper Name="TransformingPermutations" Arg='mat1, mat2'/>
##
## <Description>
## Let <A>mat1</A> and <A>mat2</A> be matrices.
## <Ref Oper="TransformingPermutations"/> tries to construct
## a permutation <M>\pi</M> that transforms the set of rows of the matrix
## <A>mat1</A> to the set of rows of the matrix <A>mat2</A>
## by permuting the columns.
## <P/>
## If such a permutation exists,
## a record with the components <C>columns</C>, <C>rows</C>,
## and <C>group</C> is returned, otherwise <K>fail</K>.
## For <C>TransformingPermutations( <A>mat1</A>, <A>mat2</A> )
## = <A>r</A></C> <M>\neq</M> <K>fail</K>,
## we have <C><A>mat2</A> =
## Permuted( List( <A>mat1</A>, x -> Permuted( x, <A>r</A>.columns ) ),
## <A>r</A>.rows )</C>.
## <P/>
## <A>r</A><C>.group</C> is the group of matrix automorphisms of <A>mat2</A>
## (see <Ref Oper="MatrixAutomorphisms"/>).
## This group stabilizes the transformation in the sense that applying any
## of its elements to the columns of <A>mat2</A>
## preserves the set of rows of <A>mat2</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TransformingPermutations", [ IsMatrix, IsMatrix ] );
#############################################################################
##
#O TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
## <#GAPDoc Label="TransformingPermutationsCharacterTables">
## <ManSection>
## <Oper Name="TransformingPermutationsCharacterTables" Arg='tbl1, tbl2'/>
##
## <Description>
## Let <A>tbl1</A> and <A>tbl2</A> be character tables.
## <Ref Oper="TransformingPermutationsCharacterTables"/> tries to construct
## a permutation <M>\pi</M> that transforms the set of rows of the matrix
## <C>Irr( <A>tbl1</A> )</C> to the set of rows of the matrix
## <C>Irr( <A>tbl2</A> )</C> by permuting the columns
## (see <Ref Oper="TransformingPermutations"/>), such that
## <M>\pi</M> transforms also the power maps and the element orders.
## <P/>
## If such a permutation <M>\pi</M> exists then a record with the components
## <C>columns</C> (<M>\pi</M>),
## <C>rows</C> (the permutation of <C>Irr( <A>tbl1</A> )</C> corresponding
## to <M>\pi</M>), and <C>group</C> (the permutation group of table
## automorphisms of <A>tbl2</A>,
## see <Ref Attr="AutomorphismsOfTable"/>) is returned.
## If no such permutation exists, <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> tblq8:= CharacterTable( "Quaternionic", 8 );;
## gap> irrq8:= Irr( tblq8 );
## [ Character( CharacterTable( "Q8" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Q8" ), [ 1, 1, 1, -1, -1 ] ),
## Character( CharacterTable( "Q8" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Q8" ), [ 1, -1, 1, -1, 1 ] ),
## Character( CharacterTable( "Q8" ), [ 2, 0, -2, 0, 0 ] ) ]
## gap> OrdersClassRepresentatives( tblq8 );
## [ 1, 4, 2, 4, 4 ]
## gap> TransformingPermutations( irrd8, irrq8 );
## rec( columns := (), group := Group([ (4,5), (2,4) ]), rows := () )
## gap> TransformingPermutationsCharacterTables( tbld8, tblq8 );
## fail
## gap> tbld6:= CharacterTable( "Dihedral", 6 );;
## gap> tbls3:= CharacterTable( "Symmetric", 3 );;
## gap> TransformingPermutationsCharacterTables( tbld6, tbls3 );
## rec( columns := (2,3), group := Group(()), rows := (1,3,2) )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TransformingPermutationsCharacterTables",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
#############################################################################
##
#E
|