/usr/share/gap/lib/ctblmoli.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | #############################################################################
##
#W ctblmoli.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F MolienSeries( [<tbl>, ]<psi>[, <chi>] )
##
## <#GAPDoc Label="MolienSeries">
## <ManSection>
## <Func Name="MolienSeries" Arg='[tbl, ]psi[, chi]'/>
##
## <Description>
## The <E>Molien series</E> of the character <M>\psi</M>,
## relative to the character <M>\chi</M>, is the rational function given by
## the series
## <M>M_{{\psi,\chi}}(z) = \sum_{{d = 0}}^{\infty} [\chi,\psi^{[d]}] z^d</M>,
## where <M>\psi^{[d]}</M> denotes the symmetrization of <M>\psi</M>
## with the trivial character of the symmetric group <M>S_d</M>
## (see <Ref Func="SymmetricParts"/>).
## <P/>
## <Ref Func="MolienSeries"/> returns the Molien series of <A>psi</A>,
## relative to <A>chi</A>, where <A>psi</A> and <A>chi</A> must be
## characters of the same character table;
## this table must be entered as <A>tbl</A> if <A>chi</A> and <A>psi</A>
## are only lists of character values.
## The default for <A>chi</A> is the trivial character of <A>tbl</A>.
## <P/>
## The return value of <Ref Func="MolienSeries"/> stores a value for the
## attribute <Ref Func="MolienSeriesInfo"/>.
## This admits the computation of coefficients of the series with
## <Ref Func="ValueMolienSeries"/>.
## Furthermore, this attribute gives access to numerator and denominator
## of the Molien series viewed as rational function,
## where the denominator is a product of polynomials of the form
## <M>(1-z^r)^k</M>; the Molien series is also displayed in this form.
## Note that such a representation is not unique, one can use
## <Ref Func="MolienSeriesWithGivenDenominator"/>
## to obtain the series with a prescribed denominator.
## <P/>
## For more information about Molien series, see <Cite Key="NPP84"/>.
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( AlternatingGroup( 5 ) );;
## gap> psi:= First( Irr( t ), x -> Degree( x ) = 3 );;
## gap> mol:= MolienSeries( psi );
## ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MolienSeries" );
#############################################################################
##
#F MolienSeriesWithGivenDenominator( <molser>, <list> )
##
## <#GAPDoc Label="MolienSeriesWithGivenDenominator">
## <ManSection>
## <Func Name="MolienSeriesWithGivenDenominator" Arg='molser, list'/>
##
## <Description>
## is a Molien series equal to <A>molser</A> as rational function,
## but viewed as quotient with denominator
## <M>\prod_{{i = 1}}^n (1-z^{{r_i}})</M>,
## where <M><A>list</A> = [ r_1, r_2, \ldots, r_n ]</M>.
## If <A>molser</A> cannot be represented this way,
## <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> MolienSeriesWithGivenDenominator( mol, [ 2, 6, 10 ] );
## ( 1+z^15 ) / ( (1-z^10)*(1-z^6)*(1-z^2) )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MolienSeriesWithGivenDenominator" );
##############################################################################
##
#A MolienSeriesInfo( <ratfun> )
##
## <#GAPDoc Label="MolienSeriesInfo">
## <ManSection>
## <Attr Name="MolienSeriesInfo" Arg='ratfun'/>
##
## <Description>
## If the rational function <A>ratfun</A> was constructed by
## <Ref Func="MolienSeries"/>,
## a representation as quotient of polynomials is known such that the
## denominator is a product of terms of the form <M>(1-z^r)^k</M>.
## This information is encoded as value of <Ref Func="MolienSeriesInfo"/>.
## Additionally, there is a special <Ref Func="PrintObj"/> method
## for Molien series based on this.
## <P/>
## <Ref Func="MolienSeriesInfo"/> returns a record that describes the
## rational function <A>ratfun</A> as a Molien series.
## The components of this record are
##
## <List>
## <Mark><C>numer</C></Mark>
## <Item>
## numerator of <A>ratfun</A> (in general a multiple of the numerator
## one gets by <Ref Func="NumeratorOfRationalFunction"/>),
## </Item>
## <Mark><C>denom</C></Mark>
## <Item>
## denominator of <A>ratfun</A> (in general a multiple of the
## denominator one gets by <Ref Func="NumeratorOfRationalFunction"/>),
## </Item>
## <Mark><C>ratfun</C></Mark>
## <Item>
## the rational function <A>ratfun</A> itself,
## </Item>
## <Mark><C>numerstring</C></Mark>
## <Item>
## string corresponding to the polynomial <C>numer</C>,
## expressed in terms of <C>z</C>,
## </Item>
## <Mark><C>denomstring</C></Mark>
## <Item>
## string corresponding to the polynomial <C>denom</C>,
## expressed in terms of <C>z</C>,
## </Item>
## <Mark><C>denominfo</C></Mark>
## <Item>
## a list of the form <M>[ [ r_1, k_1 ], \ldots, [ r_n, k_n ] ]</M>
## such that <C>denom</C> is
## <M>\prod_{{i = 1}}^n (1-z^{{r_i}})^{{k_i}}</M>.
## </Item>
## <Mark><C>summands</C></Mark>
## <Item>
## a list of records, each with the components <C>numer</C>, <C>r</C>,
## and <C>k</C>,
## describing the summand <C>numer</C><M> / (1-z^r)^k</M>,
## </Item>
## <Mark><C>size</C></Mark>
## <Item>
## the order of the underlying matrix group,
## </Item>
## <Mark><C>degree</C></Mark>
## <Item>
## the degree of the underlying matrix representation.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> HasMolienSeriesInfo( mol );
## true
## gap> MolienSeriesInfo( mol );
## rec( degree := 3,
## denom := x_1^12-2*x_1^10-x_1^9+x_1^8+x_1^7+x_1^5+x_1^4-x_1^3-2*x_1^2\
## +1, denominfo := [ 5, 1, 3, 1, 2, 2 ],
## denomstring := "(1-z^5)*(1-z^3)*(1-z^2)^2",
## numer := -x_1^9+x_1^7+x_1^6-x_1^3-x_1^2+1,
## numerstring := "1-z^2-z^3+z^6+z^7-z^9",
## ratfun := ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 ),
## size := 60,
## summands := [ rec( k := 1, numer := [ -24, -12, -24 ], r := 5 ),
## rec( k := 1, numer := [ -20 ], r := 3 ),
## rec( k := 2, numer := [ -45/4, 75/4, -15/4, -15/4 ], r := 2 ),
## rec( k := 3, numer := [ -1 ], r := 1 ),
## rec( k := 1, numer := [ -15/4 ], r := 1 ) ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MolienSeriesInfo", IsRationalFunction );
#############################################################################
##
#F CoefficientTaylorSeries( <numer>, <r>, <k>, <i> )
##
## <ManSection>
## <Func Name="CoefficientTaylorSeries" Arg='numer, r, k, i'/>
##
## <Description>
## is the coefficient of <M>z^<A>i</A></M> in the Taylor series expansion of
## the quotient of polynomials
## <M>p(z) / ( 1 - z^{<A>r</A>} )^{<A>k</A>}</M>,
## where <A>numer</A> is the coefficients list of the numerator polynomial
## <M>p(z)</M>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CoefficientTaylorSeries" );
#############################################################################
##
#F SummandMolienSeries( <tbl>, <psi>, <chi>, <i> )
##
## <ManSection>
## <Func Name="SummandMolienSeries" Arg='tbl, psi, chi, i'/>
##
## <Description>
## is the summand of the Molien series of the character table <A>tbl</A>,
## for the characters <A>psi</A> and <A>chi</A>, that corresponds to class
## <A>i</A>.
## That is, the returned value is the quotient
## <Display Mode="M">
## \chi(g) \cdot \det(D(g)) / \det(z I - D(g))
## </Display>
## where <M>g</M> is in class <A>i</A>, <M>D</M> is a representation with
## character <A>psi</A>, and <M>z</M> is the indeterminate.
## <P/>
## The result is a record with components <C>numer</C> and <C>a</C>,
## with the following meaning.
## <P/>
## Write the denominator as a product of cyclotomic polynomials,
## encode this as a list <C>a</C> where at position <M>r</M> the
## multiplicity of the <M>r</M>-th cyclotomic polynomial <M>\Phi_r</M>
## is stored.
## (For that, we possibly must change the numerator.)
## We get
## <Display Mode="M">
## 1 / \det(z I - D(g))
## = P(z) / \left( \prod_{{d \mid n}} \Phi_d^{a_d}(z) \right) .
## </Display>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SummandMolienSeries" );
#############################################################################
##
#F ValueMolienSeries( <molser>, <i> )
##
## <#GAPDoc Label="ValueMolienSeries">
## <ManSection>
## <Func Name="ValueMolienSeries" Arg='molser, i'/>
##
## <Description>
## is the <A>i</A>-th coefficient of the Molien series <A>series</A>
## computed by <Ref Func="MolienSeries"/>.
## <P/>
## <Example><![CDATA[
## gap> List( [ 0 .. 20 ], i -> ValueMolienSeries( mol, i ) );
## [ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ValueMolienSeries" );
#############################################################################
##
#E
|