/usr/share/gap/lib/ctblperm.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | #############################################################################
##
#W ctblperm.gi GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1993, 1997
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation of the Dixon-Schneider algorithm
##
#############################################################################
##
#F FingerprintPerm( <D>, <el>, <i>, <j>, <orbitJ>, <representatives>)
#F Entry i,j of the matrix of el in the permutation representation of G
##
FingerprintPerm := function(D,el,i,j,orbitJ,representatives)
local x,a,cycle,cycles;
a:=0;
#cycles:=Cycles(el,D.group.orbit);
cycles:=Cycles(el,MovedPoints(D.group));
for cycle in cycles do
x:=cycle[1];
if x^(el*representatives[x]) in orbitJ then
a:=a+Length(cycle);
fi;
od;
return a;
end;
#############################################################################
##
#F IdentificationPermGroup(<D>,<el>) . . . . . class invariants for el in G
##
## The class invariant consists of the cycle structure and - if computation
## might improve results - of the Fingerprint of the permutation
##
IdentificationPermGroup := function(D,el)
local s,t,i,l; # guter Programmier s t i l !
s:=CycleStructurePerm(el);
s:=ShallowCopy(s);
if not IsPerfectGroup(D.group) then
Add(s,CanonicalRightCosetElement(DerivedSubgroup(D.group),el));
fi;
t:=ShallowCopy(s);
if t in D.centmulCandidates then
Add(s,"c");
l:=First(D.centmulMults,i->i[1]=t);
for i in l{[2..Length(l)]} do
s:=Concatenation(s,CycleStructurePerm(
el*D.classreps[i]));
od;
fi;
if t in D.fingerprintCandidates then
Add(s,-FingerprintPerm(D,el,D.p1,D.p2,D.fingerprintOrbitStabilizer,
D.fingerprintRepresentatives));
fi;
if IsBound(D.usefitfree) and not s in D.nocanonize then
l:=First(D.faclaimg,x->x[1]=s);
l:=TFCanonicalClassRepresentative(D.group,[el]:candidatenums:=l[2]);
Add(s,l[1][2]);
fi;
return s;
end;
#############################################################################
##
#F RationalIdentificationPermGroup( <D>, <el> ) galois-fix class invariant
##
## When trying to use cheap identifications, we cannot use all
## identification routines: For exaple galois conjugated elements must be
## multiplied by the *galois conjugate* of the central element!
##
RationalIdentificationPermGroup := function(D,el)
return CycleStructurePerm(el);
end;
#############################################################################
##
#M DxPreparation(<G>)
## Set up some functions. Also test, whether calculating fingerprints and
## multiplication by central elements might improve the quick
## identification
##
InstallMethod(DxPreparation,"perm",true,[IsPermGroup,IsRecord],0,
function(G,D)
local k,structures,ambiguousStructures,i,j,p,cem,ces,z,t,cen,a,
c,s,f,fc,fs,fos,fr,enum;
D.identification:=IdentificationPermGroup;
D.rationalidentification:=RationalIdentificationPermGroup;
D.ClassMatrixColumn:=StandardClassMatrixColumn;
if IsDxLargeGroup(G) then
D.ClassElement:=ClassElementLargeGroup;
else
enum:=Enumerator(G);
D.enum:=enum;
D.ClassElement:=ClassElementSmallGroup;
D.classMap:=ListWithIdenticalEntries(Size(G),D.klanz);
for j in [1..D.klanz-1] do
for i in Orbit(G,D.classreps[j]) do
D.classMap[Position(enum,i)]:=j;
od;
od;
fi;
D.fingerprintCandidates:=[];
D.centmulCandidates:=[];
D.permdegree:=LargestMovedPoint(G);
k:=D.klanz;
if IsDxLargeGroup(G) then
# test, if cyclestructure yields no perfect result
structures:=[];
ambiguousStructures:=[];
for i in [1..k] do
s:=IdentificationPermGroup(D,D.classreps[i]);
if not s in structures then
Add(structures,s);
elif not s in ambiguousStructures then
Add(ambiguousStructures,s);
fi;
od;
if ambiguousStructures<>[] then
# Centre multiplikation test
cem:=[];
cen:=[];
for i in [2..Length(D.classes)] do
if D.classiz[i]=1 then
Add(cen,i);
fi;
od;
if cen<>[] then
for s in ambiguousStructures do
ces:=[s];
c:=Filtered(D.classrange,i->
IdentificationPermGroup(D,D.classreps[i])=s);
a:=[[1..Length(c)]];
for z in cen do
t:=List(c,i->
CycleStructurePerm(
D.classreps[i]*
D.classreps[z]));
if Length(Set(t))>1 then
# improved result ?
fc:=[];
fs:=[];
for i in [1..Length(t)] do
p:=Position(fc,t[i]);
if p=fail then
Add(fc,t[i]);
p:=Length(fc);
fs[p]:=[];
fi;
Add(fs[p],i);
od;
fc:=[];
for i in a do
fc:=Concatenation(fc,Filtered(List(fs,j->Intersection(j,i)),
j->j<>[]));
od;
fc:=Set(fc);
if fc<>a then
Add(ces,z);
a:=fc;
fi;
fi;
od;
if Length(ces)>1 then
Add(cem,ces);
fi;
od;
D.centmulMults:=cem;
fi;
# fingerprint test
if IsTransitive(G,MovedPoints(G)) and
# otherwise lotsa representatives will mess up memory
Length(MovedPoints(G))<1500 then
# select moved points 1 and 2
fos:=MovedPoints(G);
D.p1:=fos[1];
D.p2:=fos[2];
fs := Stabilizer(G,D.p1);
fos := First(OrbitsDomain(fs,[1..D.permdegree]),o->D.p2 in o);
fr := List([1..D.permdegree],x->RepresentativeAction(G,x,D.p1));
fc:=[];
for s in ambiguousStructures do
c:=Filtered([1..D.klanz],i->IdentificationPermGroup(D,
D.classreps[i])=s);
f:=List(c,i->FingerprintPerm(D,
D.classreps[i],D.p1,D.p2,fos,fr));
if Length(Set(f))>1 then Add(fc,s);
fi;
od;
if Length(fc)>0 then
D.fingerprintCandidates:=fc;
D.fingerprintOrbitStabilizer:=fos;
D.fingerprintRepresentatives:=fr;
fi;
fi;
D.centmulCandidates:=Set(List(cem,i->i[1]));
fi;
fi;
D.ids:=[];
D.rids:=[];
for i in [1..D.klanz] do
D.ids[i]:=D.identification(D,D.classreps[i]);
D.rids[i]:=
D.rationalidentification(D,D.classreps[i]);
od;
# use canonical reps?
if Size(RadicalGroup(D.group))>1 then
D.usefitfree:=true;
D.nocanonize:=[];
D.faclaimg:=[];
fs:=List(D.ids,ShallowCopy);
for i in [1..D.klanz] do
f:=Filtered([1..D.klanz],x->fs[x]=fs[i]);
if Length(f)=1 then
Add(D.nocanonize,fs[i]);
else
Add(D.faclaimg,[fs[i],f]); # store which classes images could be
f:=TFCanonicalClassRepresentative(D.group,[D.classreps[i]]);
Add(D.ids[i],f[1][2]);
fi;
od;
fi;
return D;
end);
#############################################################################
##
#E ctblperm.gi
##
|