This file is indexed.

/usr/share/gap/lib/ctblperm.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#############################################################################
##
#W  ctblperm.gi                  GAP library                 Alexander Hulpke
##
##
#Y  Copyright (C) 1993, 1997
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation of the Dixon-Schneider algorithm
##

#############################################################################
##
#F  FingerprintPerm( <D>, <el>, <i>, <j>, <orbitJ>, <representatives>)
#F       Entry i,j of the matrix of el in the permutation representation of G
##
FingerprintPerm := function(D,el,i,j,orbitJ,representatives)
  local x,a,cycle,cycles;
  a:=0;
  #cycles:=Cycles(el,D.group.orbit);
  cycles:=Cycles(el,MovedPoints(D.group));
  for cycle in cycles do
    x:=cycle[1];
    if x^(el*representatives[x]) in orbitJ then
      a:=a+Length(cycle);
    fi;
  od;
  return a;
end;


#############################################################################
##
#F  IdentificationPermGroup(<D>,<el>) . . . . .  class invariants for el in G
##
##  The class invariant consists of the cycle structure and - if computation
##  might improve results - of the Fingerprint of the permutation
##
IdentificationPermGroup := function(D,el)
  local s,t,i,l; # guter Programmier s t i l !
  s:=CycleStructurePerm(el);
  s:=ShallowCopy(s);
  if not IsPerfectGroup(D.group) then
    Add(s,CanonicalRightCosetElement(DerivedSubgroup(D.group),el));
  fi;
  t:=ShallowCopy(s);
  if t in D.centmulCandidates then
    Add(s,"c");
    l:=First(D.centmulMults,i->i[1]=t);
    for i in l{[2..Length(l)]} do
      s:=Concatenation(s,CycleStructurePerm(
                           el*D.classreps[i]));
    od;
  fi;
  if t in D.fingerprintCandidates then
    Add(s,-FingerprintPerm(D,el,D.p1,D.p2,D.fingerprintOrbitStabilizer,
                                    D.fingerprintRepresentatives));
  fi;
  if IsBound(D.usefitfree) and not s in D.nocanonize then
    l:=First(D.faclaimg,x->x[1]=s);
    l:=TFCanonicalClassRepresentative(D.group,[el]:candidatenums:=l[2]);
    Add(s,l[1][2]);
  fi;
  return s;
end;


#############################################################################
##
#F  RationalIdentificationPermGroup( <D>, <el> )   galois-fix class invariant
##
##  When trying to use cheap identifications, we cannot use all
##  identification routines: For exaple galois conjugated elements must be
##  multiplied by the *galois conjugate* of the central element!
##
RationalIdentificationPermGroup := function(D,el)
  return CycleStructurePerm(el);
end;


#############################################################################
##
#M  DxPreparation(<G>)
##  Set up some functions. Also test, whether calculating fingerprints and
##  multiplication by central elements might improve the quick
##  identification
##
InstallMethod(DxPreparation,"perm",true,[IsPermGroup,IsRecord],0,
function(G,D)
local k,structures,ambiguousStructures,i,j,p,cem,ces,z,t,cen,a,
      c,s,f,fc,fs,fos,fr,enum;

  D.identification:=IdentificationPermGroup;
  D.rationalidentification:=RationalIdentificationPermGroup;
  D.ClassMatrixColumn:=StandardClassMatrixColumn;

  if IsDxLargeGroup(G) then
    D.ClassElement:=ClassElementLargeGroup;
  else
    enum:=Enumerator(G);
    D.enum:=enum;
    D.ClassElement:=ClassElementSmallGroup;
    
    D.classMap:=ListWithIdenticalEntries(Size(G),D.klanz);
    for j in [1..D.klanz-1] do
      for i in Orbit(G,D.classreps[j]) do
        D.classMap[Position(enum,i)]:=j;
      od;
    od;
  fi;

  D.fingerprintCandidates:=[];
  D.centmulCandidates:=[];
  D.permdegree:=LargestMovedPoint(G);
  k:=D.klanz;
  if IsDxLargeGroup(G) then
    # test, if cyclestructure yields no perfect result
    structures:=[];
    ambiguousStructures:=[];
    for i in [1..k] do
      s:=IdentificationPermGroup(D,D.classreps[i]);
      if not s in structures then
        Add(structures,s);
      elif not s in ambiguousStructures then
        Add(ambiguousStructures,s);
      fi;
    od;
    if ambiguousStructures<>[] then
      # Centre multiplikation test
      cem:=[];
      cen:=[];
      for i in [2..Length(D.classes)] do
        if D.classiz[i]=1 then
          Add(cen,i);
        fi;
      od;

      if cen<>[] then
        for s in ambiguousStructures do
          ces:=[s];
          c:=Filtered(D.classrange,i->
               IdentificationPermGroup(D,D.classreps[i])=s);
          a:=[[1..Length(c)]];
          for z in cen do
            t:=List(c,i->
                     CycleStructurePerm(
                                    D.classreps[i]*
                                    D.classreps[z]));
            if Length(Set(t))>1 then
              # improved result ?
              fc:=[];
              fs:=[];
              for i in [1..Length(t)] do
                p:=Position(fc,t[i]);
                if p=fail then
                  Add(fc,t[i]);
                  p:=Length(fc);
                  fs[p]:=[];
                fi;
                Add(fs[p],i);
              od;
              fc:=[];
              for i in a do
                fc:=Concatenation(fc,Filtered(List(fs,j->Intersection(j,i)),
                                    j->j<>[]));
              od;
              fc:=Set(fc);
              if fc<>a then
                Add(ces,z);
                a:=fc;
              fi;
            fi;
          od;
          if Length(ces)>1 then
            Add(cem,ces);
          fi;
        od;
        D.centmulMults:=cem;
      fi;

      # fingerprint test
      if IsTransitive(G,MovedPoints(G)) and
  # otherwise lotsa representatives will mess up memory
         Length(MovedPoints(G))<1500 then

        # select moved points 1 and 2
        fos:=MovedPoints(G);
        D.p1:=fos[1];
        D.p2:=fos[2]; 

        fs  := Stabilizer(G,D.p1);
        fos := First(OrbitsDomain(fs,[1..D.permdegree]),o->D.p2 in o);
        fr  := List([1..D.permdegree],x->RepresentativeAction(G,x,D.p1));
        fc:=[];
        for s in ambiguousStructures do
          c:=Filtered([1..D.klanz],i->IdentificationPermGroup(D,
                  D.classreps[i])=s);
          f:=List(c,i->FingerprintPerm(D,
                    D.classreps[i],D.p1,D.p2,fos,fr));
          if Length(Set(f))>1 then Add(fc,s);
          fi;
        od;
        if Length(fc)>0 then
          D.fingerprintCandidates:=fc;
          D.fingerprintOrbitStabilizer:=fos;
          D.fingerprintRepresentatives:=fr;
        fi;
      fi;
      D.centmulCandidates:=Set(List(cem,i->i[1]));
    fi;
  fi;

  D.ids:=[];
  D.rids:=[];
  for i in [1..D.klanz] do
    D.ids[i]:=D.identification(D,D.classreps[i]);
    D.rids[i]:=
     D.rationalidentification(D,D.classreps[i]);
  od;

  # use canonical reps?
  if Size(RadicalGroup(D.group))>1 then
    D.usefitfree:=true;
    D.nocanonize:=[];
    D.faclaimg:=[];
    fs:=List(D.ids,ShallowCopy);
    for i in [1..D.klanz] do
      f:=Filtered([1..D.klanz],x->fs[x]=fs[i]);
      if Length(f)=1 then
	Add(D.nocanonize,fs[i]);
      else
	Add(D.faclaimg,[fs[i],f]); # store which classes images could be
	f:=TFCanonicalClassRepresentative(D.group,[D.classreps[i]]);
	Add(D.ids[i],f[1][2]);
      fi;
    od;
  fi;

  return D;

end);


#############################################################################
##
#E  ctblperm.gi
##