/usr/share/gap/lib/ctblsymm.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | #############################################################################
##
#W ctblsymm.gd GAP library Götz Pfeiffer
#W Felix Noeske
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of functions needed for a direct
## computation of the character values of wreath products of a group $G$
## with $S_n$, the symmetric group on n points. Special cases are the
## symmetric group $S_n$ itself and the Weyl group of type $B_n$ which is
## a wreath product of a cyclic group $C_2$ of order 2 with the symmetric
## group $S_n$.
##
## Moreover the character values of alternating groups $A_n$ are obtained
## by restriction from $S_n$ and the character values of Weyl groups of
## type $D_n$ are obtained from those of type $B_n$.
##
## The values are computed by a generalized Murnaghan-Nakayama formula.
##
## For a good reference of used formulae see:
## G. James, A.Kerber: The Representation Theory of the Symmetric Group,
## Addison-Wesley, 1981.
## A. Kerber, Representations of Permutation Groups I, Springer 1971.
## A. Kerber, Representations of Permutation Groups II, Springer 1975.
##
## Now the classes (as well as the characters) of $S_n$ are indexed by
## partitions (i.e. the cycle structure of the elements in that class).
## In general the classes (and again the characters) of the wreath
## product $G wr S_n$ are indexed by $r$-tuples of partitions, where $r$
## is the number of classes of the group $G$ and these partitions
## together form a partition of $n$. That is after distributing $n$ over
## $r$ places each place is partitioned.
##
## There are different ways to represent a partition and we make use of
## two of them.
##
## First there is the partition as a finite nonincreasing sequence of
## numbers which sum up to $n$. This representation serves to compute a
## complete list of partitions of $n$ and is stored in the resulting
## table as value of `ClassParameters'.
##
## The most beautiful way to treat Young tableaux and hooks of partitions
## is their representation as beta-numbers. A beta-number is a set,
## which arises from a partition by reversing the order and adding a
## sequence [0,1,2,...] of the same length. Since this reversed
## partition is allowed to have leading zeros, its beta-set is not
## uniquely determined. Each beta-set however determines a unique
## partition. For example a beta-set for the partition [4,2,1] is
## [1,3,6], another one [0,1,3,5,8]. To remove a $k$-hook from the
## corresponding Young tableau the beta-numbers are placed as beads on
## $k$ strings.
##
## xxxx _________ _________ _________ xxxx
## xx 0 1 2 | o | o o |
## x 3 4 5 o | | -> | | |
## 6 | | o | | o | |
##
## To find a removable $k$-hook now simply means to find a free place
## for a bead one step up on its string, the hook is then removed by
## lifting this bead. (You see how this process can produce leading
## zeros.) Beta-numbers are used to parametrize the characters.
##
## The case $2 wr S-n$ uses pairs of these objects while the general
## wreath product uses lists of them. A list of beta-numbers is called a
## symbol.
##
#############################################################################
##
#F BetaSet( <alpha> ) . . . . . . . . . . . . . . . . . . . . . . beta set.
##
## <ManSection>
## <Func Name="BetaSet" Arg='alpha'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "BetaSet" );
#############################################################################
##
#F CentralizerWreath( <sub_cen>, <ptuple> ) . . . . centralizer in G wr Sn.
##
## <ManSection>
## <Func Name="CentralizerWreath" Arg='sub_cen, ptuple'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CentralizerWreath" );
#############################################################################
##
#F PowerWreath( <sub_pm>, <ptuple>, <p> ) . . . . . . power map in G wr Sn.
##
## <ManSection>
## <Func Name="PowerWreath" Arg='sub_pm, ptuple, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PowerWreath" );
#############################################################################
##
#F InductionScheme( <n> ) . . . . . . . . . . . . . . . . removal of hooks.
##
## <ManSection>
## <Func Name="InductionScheme" Arg='n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InductionScheme" );
#############################################################################
##
#F MatCharsWreathSymmetric( <tbl>, <n> ) . . . character matrix of G wr Sn.
##
## <ManSection>
## <Func Name="MatCharsWreathSymmetric" Arg='tbl, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "MatCharsWreathSymmetric" );
#############################################################################
##
#F CharValueSymmetric( <n>, <beta>, <pi> ) . . . . . character value in S_n.
##
## <ManSection>
## <Func Name="CharValueSymmetric" Arg='n, beta, pi'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CharValueSymmetric" );
#############################################################################
##
#V CharTableSymmetric . . . . generic character table of symmetric groups.
##
## <ManSection>
## <Var Name="CharTableSymmetric"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableSymmetric",
"generic character table of symmetric groups" );
#############################################################################
##
#V CharTableAlternating . . generic character table of alternating groups.
##
## <ManSection>
## <Var Name="CharTableAlternating"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableAlternating",
"generic character table of alternating groups" );
#############################################################################
##
#F CharValueWeylB( <n>, <beta>, <pi> ) . . . . . character value in 2 wr Sn.
##
## <ManSection>
## <Func Name="CharValueWeylB" Arg='n, beta, pi'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CharValueWeylB" );
#############################################################################
##
#V CharTableWeylB . . . . generic character table of Weyl groups of type B.
##
## <ManSection>
## <Var Name="CharTableWeylB"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableWeylB",
"generic character table of Weyl groups of type B" );
#############################################################################
##
#V CharTableWeylD . . . . generic character table of Weyl groups of type D.
##
## <ManSection>
## <Var Name="CharTableWeylD"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableWeylD",
"generic character table of Weyl groups of type D" );
#############################################################################
##
#F CharValueWreathSymmetric(<sub>,<n>,<beta>,<pi>) . char. value in G wr Sn.
##
## <ManSection>
## <Func Name="CharValueWreathSymmetric" Arg='sub,n,beta,pi'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CharValueWreathSymmetric" );
#############################################################################
##
#F CharacterTableWreathSymmetric( <tbl>, <n> ) . . char. table of G wr Sn.
##
## <#GAPDoc Label="CharacterTableWreathSymmetric">
## <ManSection>
## <Func Name="CharacterTableWreathSymmetric" Arg='tbl, n'/>
##
## <Description>
## returns the character table of the wreath product of a group <M>G</M>
## with the full symmetric group on <A>n</A> points,
## where <A>tbl</A> is the character table of <M>G</M>.
## <P/>
## The result has values for <Ref Attr="ClassParameters"/> and
## <Ref Attr="CharacterParameters"/> stored,
## the entries in these lists are sequences of partitions.
## Note that this parametrization prevents the principal character from
## being the first one in the list of irreducibles.
## <P/>
## <Example><![CDATA[
## gap> c3:= CharacterTable( "Cyclic", 3 );;
## gap> wr:= CharacterTableWreathSymmetric( c3, 2 );;
## gap> Display( wr );
## C3wrS2
##
## 2 1 . . 1 . 1 1 1 1
## 3 2 2 2 2 2 2 1 1 1
##
## 1a 3a 3b 3c 3d 3e 2a 6a 6b
## 2P 1a 3b 3a 3e 3d 3c 1a 3c 3e
## 3P 1a 1a 1a 1a 1a 1a 2a 2a 2a
##
## X.1 1 1 1 1 1 1 -1 -1 -1
## X.2 2 A /A B -1 /B . . .
## X.3 2 /A A /B -1 B . . .
## X.4 1 -/A -A -A 1 -/A -1 /A A
## X.5 2 -1 -1 2 -1 2 . . .
## X.6 1 -A -/A -/A 1 -A -1 A /A
## X.7 1 1 1 1 1 1 1 1 1
## X.8 1 -/A -A -A 1 -/A 1 -/A -A
## X.9 1 -A -/A -/A 1 -A 1 -A -/A
##
## A = -E(3)^2
## = (1+Sqrt(-3))/2 = 1+b3
## B = 2*E(3)
## = -1+Sqrt(-3) = 2b3
## gap> CharacterParameters( wr )[1];
## [ [ 1, 1 ], [ ], [ ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CharacterTableWreathSymmetric" );
#############################################################################
##
#V CharTableDoubleCoverSymmetric
##
## <ManSection>
## <Var Name="CharTableDoubleCoverSymmetric"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableDoubleCoverSymmetric",
"gen. char. table of the standard Schur double cover of symm. groups" );
#############################################################################
##
#V CharTableDoubleCoverAlternating
##
## <ManSection>
## <Var Name="CharTableDoubleCoverAlternating"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CharTableDoubleCoverAlternating",
"generic char. table of the Schur double cover of alternating groups" );
#############################################################################
##
#E
|