This file is indexed.

/usr/share/gap/lib/ctblsymm.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#############################################################################
##
#W  ctblsymm.gd                 GAP library                    Götz Pfeiffer
#W                                                               Felix Noeske
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file  contains  the  declaration  of functions  needed for a  direct
##  computation of the character values of  wreath  products of a  group  $G$
##  with $S_n$, the  symmetric group  on  n points.  Special  cases  are  the
##  symmetric group $S_n$ itself  and the Weyl group  of type  $B_n$ which is
##  a wreath product of a  cyclic group $C_2$ of order 2  with  the symmetric
##  group $S_n$.
##  
##  Moreover the character values of   alternating groups $A_n$ are  obtained
##  by  restriction from $S_n$ and  the  character  values of Weyl  groups of
##  type $D_n$ are obtained from those of type $B_n$.
##  
##  The values are computed by a generalized Murnaghan-Nakayama formula.
##
##  For a good reference of used formulae see:
##  G. James, A.Kerber: The Representation Theory of the Symmetric Group,
##  Addison-Wesley, 1981.
##  A. Kerber, Representations of Permutation Groups I, Springer 1971.
##  A. Kerber, Representations of Permutation Groups II, Springer 1975.
## 
##  Now  the classes (as  well  as the  characters)  of $S_n$ are indexed  by
##  partitions (i.e.  the  cycle structure of  the elements in  that  class).
##  In  general the   classes  (and  again  the  characters)  of  the  wreath
##  product $G  wr S_n$ are indexed  by  $r$-tuples of partitions,  where $r$
##  is  the number of   classes   of  the  group  $G$  and  these  partitions
##  together form a  partition of $n$.  That is  after distributing  $n$ over
##  $r$ places each place is partitioned.
## 
##  There are different  ways  to  represent a  partition and we  make use of
##  two of them.
##
##  First there is  the  partition as  a   finite  nonincreasing sequence  of
##  numbers which sum up  to  $n$.  This representation serves to  compute  a
##  complete  list of  partitions  of $n$   and is stored in  the   resulting
##  table as value of `ClassParameters'.
##
##  The most beautiful way to treat  Young  tableaux and hooks of  partitions
##  is their  representation  as beta-numbers.    A  beta-number   is a  set,
##  which arises  from a  partition  by reversing  the   order  and  adding a
##  sequence [0,1,2,...] of   the  same    length.    Since this     reversed
##  partition  is   allowed to have   leading zeros,   its   beta-set  is not
##  uniquely  determined.  Each beta-set    however   determines  a    unique
##  partition.   For   example  a   beta-set for  the partition    [4,2,1] is
##  [1,3,6], another  one  [0,1,3,5,8].   To  remove    a  $k$-hook from  the
##  corresponding  Young  tableau  the beta-numbers  are  placed  as beads on
##  $k$ strings.
##
##  xxxx         _________      _________      _________        xxxx
##  xx            0  1  2        |  o  |        o  o  |          
##  x             3  4  5        o  |  |   ->   |  |  |          
##                6  |  |        o  |  |        o  |  |          
##
##  To  find a removable  $k$-hook now  simply  means  to find a  free  place
##  for  a bead  one step  up  on its string,  the  hook is  then  removed by
##  lifting this  bead.  (You see  how  this process   can   produce  leading
##  zeros.)  Beta-numbers are used to parametrize the characters.
##
##  The case $2  wr S-n$  uses pairs  of these  objects  while  the   general
##  wreath product  uses  lists of them. A list  of beta-numbers is  called a
##  symbol.
##


#############################################################################
##
#F  BetaSet( <alpha> )  . . . . . . . . . . . . . . . . . . . . . . beta set.
##
##  <ManSection>
##  <Func Name="BetaSet" Arg='alpha'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "BetaSet" );


#############################################################################
##
#F  CentralizerWreath( <sub_cen>, <ptuple> )  . . . . centralizer in G wr Sn.
##
##  <ManSection>
##  <Func Name="CentralizerWreath" Arg='sub_cen, ptuple'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CentralizerWreath" );


#############################################################################
##
#F  PowerWreath( <sub_pm>, <ptuple>, <p> )  . . . . . . power map in G wr Sn.
##
##  <ManSection>
##  <Func Name="PowerWreath" Arg='sub_pm, ptuple, p'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PowerWreath" );


#############################################################################
##
#F  InductionScheme( <n> )  . . . . . . . . . . . . . . . . removal of hooks.
##
##  <ManSection>
##  <Func Name="InductionScheme" Arg='n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InductionScheme" );


#############################################################################
##
#F  MatCharsWreathSymmetric( <tbl>, <n> ) . . .  character matrix of G wr Sn.
##
##  <ManSection>
##  <Func Name="MatCharsWreathSymmetric" Arg='tbl, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "MatCharsWreathSymmetric" );


#############################################################################
##
#F  CharValueSymmetric( <n>, <beta>, <pi> ) . . . . . character value in S_n.
##
##  <ManSection>
##  <Func Name="CharValueSymmetric" Arg='n, beta, pi'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CharValueSymmetric" );


#############################################################################
##
#V  CharTableSymmetric  . . . .  generic character table of symmetric groups.
##
##  <ManSection>
##  <Var Name="CharTableSymmetric"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableSymmetric",
    "generic character table of symmetric groups" );


#############################################################################
##
#V  CharTableAlternating  . .  generic character table of alternating groups.
##
##  <ManSection>
##  <Var Name="CharTableAlternating"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableAlternating",
    "generic character table of alternating groups" );


#############################################################################
##
#F  CharValueWeylB( <n>, <beta>, <pi> ) . . . . . character value in 2 wr Sn.
##
##  <ManSection>
##  <Func Name="CharValueWeylB" Arg='n, beta, pi'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CharValueWeylB" );


#############################################################################
##
#V  CharTableWeylB  . . . . generic character table of Weyl groups of type B.
##
##  <ManSection>
##  <Var Name="CharTableWeylB"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableWeylB",
    "generic character table of Weyl groups of type B" );


#############################################################################
##
#V  CharTableWeylD  . . . . generic character table of Weyl groups of type D.
##
##  <ManSection>
##  <Var Name="CharTableWeylD"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableWeylD",
    "generic character table of Weyl groups of type D" );


#############################################################################
##
#F  CharValueWreathSymmetric(<sub>,<n>,<beta>,<pi>) . char. value in G wr Sn.
##
##  <ManSection>
##  <Func Name="CharValueWreathSymmetric" Arg='sub,n,beta,pi'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CharValueWreathSymmetric" );


#############################################################################
##
#F  CharacterTableWreathSymmetric( <tbl>, <n> )  . .  char. table of G wr Sn.
##
##  <#GAPDoc Label="CharacterTableWreathSymmetric">
##  <ManSection>
##  <Func Name="CharacterTableWreathSymmetric" Arg='tbl, n'/>
##
##  <Description>
##  returns the character table of the wreath product of a group <M>G</M>
##  with the full symmetric group on <A>n</A> points,
##  where <A>tbl</A> is the character table of <M>G</M>.
##  <P/>
##  The result has values for <Ref Attr="ClassParameters"/> and
##  <Ref Attr="CharacterParameters"/> stored,
##  the entries in these lists are sequences of partitions.
##  Note that this parametrization prevents the principal character from
##  being the first one in the list of irreducibles.
##  <P/>
##  <Example><![CDATA[
##  gap> c3:= CharacterTable( "Cyclic", 3 );;
##  gap> wr:= CharacterTableWreathSymmetric( c3, 2 );;
##  gap> Display( wr );
##  C3wrS2
##  
##       2  1   .   .   1  .   1  1   1   1
##       3  2   2   2   2  2   2  1   1   1
##  
##         1a  3a  3b  3c 3d  3e 2a  6a  6b
##      2P 1a  3b  3a  3e 3d  3c 1a  3c  3e
##      3P 1a  1a  1a  1a 1a  1a 2a  2a  2a
##  
##  X.1     1   1   1   1  1   1 -1  -1  -1
##  X.2     2   A  /A   B -1  /B  .   .   .
##  X.3     2  /A   A  /B -1   B  .   .   .
##  X.4     1 -/A  -A  -A  1 -/A -1  /A   A
##  X.5     2  -1  -1   2 -1   2  .   .   .
##  X.6     1  -A -/A -/A  1  -A -1   A  /A
##  X.7     1   1   1   1  1   1  1   1   1
##  X.8     1 -/A  -A  -A  1 -/A  1 -/A  -A
##  X.9     1  -A -/A -/A  1  -A  1  -A -/A
##  
##  A = -E(3)^2
##    = (1+Sqrt(-3))/2 = 1+b3
##  B = 2*E(3)
##    = -1+Sqrt(-3) = 2b3
##  gap> CharacterParameters( wr )[1];
##  [ [ 1, 1 ], [  ], [  ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CharacterTableWreathSymmetric" );


#############################################################################
##
#V  CharTableDoubleCoverSymmetric
##
##  <ManSection>
##  <Var Name="CharTableDoubleCoverSymmetric"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableDoubleCoverSymmetric",
    "gen. char. table of the standard Schur double cover of symm. groups" );


#############################################################################
##
#V  CharTableDoubleCoverAlternating
##
##  <ManSection>
##  <Var Name="CharTableDoubleCoverAlternating"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CharTableDoubleCoverAlternating",
    "generic char. table of the Schur double cover of alternating groups" );


#############################################################################
##
#E