/usr/share/gap/lib/cyclotom.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | #############################################################################
##
#W cyclotom.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file is being maintained by Thomas Breuer.
## Please do not make any changes without consulting him.
## (This holds also for minor changes such as the removal of whitespace or
## the correction of typos.)
##
## This file declares operations for cyclotomics.
##
#############################################################################
##
## <#GAPDoc Label="DefaultField:cyclotomics">
## <ManSection>
## <Func Name="DefaultField" Arg="list" Label="for cyclotomics"/>
##
## <Description>
## <Ref Func="DefaultField" Label="for cyclotomics"/> for cyclotomics
## is defined to return the smallest <E>cyclotomic</E> field containing
## the given elements.
## <P/>
## Note that <Ref Func="Field" Label="for several generators"/> returns
## the smallest field containing all given elements,
## which need not be a cyclotomic field.
## In both cases, the fields represent vector spaces over the rationals
## (see <Ref Sect="Integral Bases of Abelian Number Fields"/>).
## <P/>
## <Example><![CDATA[
## gap> Field( E(5)+E(5)^4 ); DefaultField( E(5)+E(5)^4 );
## NF(5,[ 1, 4 ])
## CF(5)
## ]]></Example>
## </Description>
## </ManSection>
## <!-- what about <C>DefaultRing</C>?? (integral rings are missing!)-->
## <#/GAPDoc>
##
#############################################################################
##
#M IsIntegralRing( <R> ) . . . . . . Every ring of cyclotomics is integral.
##
InstallTrueMethod( IsIntegralRing,
IsCyclotomicCollection and IsRing and IsNonTrivial );
#############################################################################
##
#A AbsoluteValue( <cyc> )
##
## <#GAPDoc Label="AbsoluteValue">
## <ManSection>
## <Attr Name="AbsoluteValue" Arg='cyc'/>
##
## <Description>
## returns the absolute value of a cyclotomic number <A>cyc</A>.
## At the moment only methods for rational numbers exist.
## <Example><![CDATA[
## gap> AbsoluteValue(-3);
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AbsoluteValue" , IsCyclotomic );
#############################################################################
##
#O RoundCyc( <cyc> )
##
## <#GAPDoc Label="RoundCyc">
## <ManSection>
## <Oper Name="RoundCyc" Arg='cyc'/>
##
## <Description>
## is a cyclotomic integer <M>z</M> (see <Ref Func="IsIntegralCyclotomic"/>)
## near to the cyclotomic <A>cyc</A> in the following sense:
## Let <C>c</C> be the <M>i</M>-th coefficient in the external
## representation (see <Ref Func="CoeffsCyc"/>) of <A>cyc</A>.
## Then the <M>i</M>-th coefficient in the external representation of
## <M>z</M> is <C>Int( c + 1/2 )</C> or <C>Int( c - 1/2 )</C>,
## depending on whether <C>c</C> is nonnegative or negative, respectively.
## <P/>
## Expressed in terms of the Zumbroich basis
## (see <Ref Sect="Integral Bases of Abelian Number Fields"/>),
## rounding the coefficients of <A>cyc</A> w.r.t. this basis to the
## nearest integer yields the coefficients of <M>z</M>.
## <P/>
## <Example><![CDATA[
## gap> RoundCyc( E(5)+1/2*E(5)^2 ); RoundCyc( 2/3*E(7)+3/2*E(4) );
## E(5)+E(5)^2
## -2*E(28)^3+E(28)^4-2*E(28)^11-2*E(28)^15-2*E(28)^19-2*E(28)^23
## -2*E(28)^27
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RoundCyc" , [ IsCyclotomic ] );
#############################################################################
##
#O RoundCycDown( <cyc> )
##
## <ManSection>
## <Oper Name="RoundCycDown" Arg='cyc'/>
##
## <Description>
## Performs much the same as RoundCyc, but rounds halves down.
## </Description>
## </ManSection>
##
DeclareOperation( "RoundCycDown" , [ IsCyclotomic ] );
#############################################################################
##
#F CoeffsCyc( <cyc>, <N> )
##
## <#GAPDoc Label="CoeffsCyc">
## <ManSection>
## <Func Name="CoeffsCyc" Arg='cyc, N'/>
##
## <Description>
## <Index Subkey="for cyclotomics">coefficients</Index>
## Let <A>cyc</A> be a cyclotomic with conductor <M>n</M>
## (see <Ref Func="Conductor" Label="for a cyclotomic"/>).
## If <A>N</A> is not a multiple of <M>n</M> then <Ref Func="CoeffsCyc"/>
## returns <K>fail</K> because <A>cyc</A> cannot be expressed in terms of
## <A>N</A>-th roots of unity.
## Otherwise <Ref Func="CoeffsCyc"/> returns a list of length <A>N</A> with
## entry at position <M>j</M> equal to the coefficient of
## <M>\exp(2 \pi i (j-1)/<A>N</A>)</M> if this root
## belongs to the <A>N</A>-th Zumbroich basis
## (see <Ref Sect="Integral Bases of Abelian Number Fields"/>),
## and equal to zero otherwise.
## So we have
## <A>cyc</A> = <C>CoeffsCyc(</C> <A>cyc</A>, <A>N</A> <C>) *
## List( [1..</C><A>N</A><C>], j -> E(</C><A>N</A><C>)^(j-1) )</C>.
## <P/>
## <Example><![CDATA[
## gap> cyc:= E(5)+E(5)^2;
## E(5)+E(5)^2
## gap> CoeffsCyc( cyc, 5 ); CoeffsCyc( cyc, 15 ); CoeffsCyc( cyc, 7 );
## [ 0, 1, 1, 0, 0 ]
## [ 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0 ]
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CoeffsCyc" );
#############################################################################
##
#F IsGaussInt( <x> ) . . . . . . . . test if an object is a Gaussian integer
##
## <#GAPDoc Label="IsGaussInt">
## <ManSection>
## <Func Name="IsGaussInt" Arg='x'/>
##
## <Description>
## <Ref Func="IsGaussInt"/> returns <K>true</K> if the object <A>x</A> is
## a Gaussian integer (see <Ref Func="GaussianIntegers"/>),
## and <K>false</K> otherwise.
## Gaussian integers are of the form <M>a + b</M><C>*E(4)</C>,
## where <M>a</M> and <M>b</M> are integers.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsGaussInt" );
#############################################################################
##
#F IsGaussRat( <x> ) . . . . . . . test if an object is a Gaussian rational
##
## <#GAPDoc Label="IsGaussRat">
## <ManSection>
## <Func Name="IsGaussRat" Arg='x'/>
##
## <Description>
## <Ref Func="IsGaussRat"/> returns <K>true</K> if the object <A>x</A> is
## a Gaussian rational (see <Ref Func="GaussianRationals"/>),
## and <K>false</K> otherwise.
## Gaussian rationals are of the form <M>a + b</M><C>*E(4)</C>,
## where <M>a</M> and <M>b</M> are rationals.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsGaussRat" );
##############################################################################
##
#F DescriptionOfRootOfUnity( <root> )
##
## <#GAPDoc Label="DescriptionOfRootOfUnity">
## <ManSection>
## <Func Name="DescriptionOfRootOfUnity" Arg='root'/>
##
## <Description>
## <Index Subkey="of a root of unity">logarithm</Index>
## <P/>
## Given a cyclotomic <A>root</A> that is known to be a root of unity
## (this is <E>not</E> checked),
## <Ref Func="DescriptionOfRootOfUnity"/> returns a list <M>[ n, e ]</M>
## of coprime positive integers such that
## <A>root</A> <M>=</M> <C>E</C><M>(n)^e</M> holds.
## <P/>
## <Example><![CDATA[
## gap> E(9); DescriptionOfRootOfUnity( E(9) );
## -E(9)^4-E(9)^7
## [ 9, 1 ]
## gap> DescriptionOfRootOfUnity( -E(3) );
## [ 6, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DescriptionOfRootOfUnity" );
#############################################################################
##
#F EB( <N> ) . . . . . . . . . . . . . . . some atomic ATLAS irrationalities
#F EC( <N> )
#F ED( <N> )
#F EE( <N> )
#F EF( <N> )
#F EG( <N> )
#F EH( <N> )
##
## <#GAPDoc Label="EB">
## <ManSection>
## <Heading>EB, EC, <M>\ldots</M>, EH</Heading>
## <Func Name="EB" Arg='N'/>
## <Func Name="EC" Arg='N'/>
## <Func Name="ED" Arg='N'/>
## <Func Name="EE" Arg='N'/>
## <Func Name="EF" Arg='N'/>
## <Func Name="EG" Arg='N'/>
## <Func Name="EH" Arg='N'/>
##
## <Description>
## <Index Key="b_N"><M>b_N</M> (irrational value)</Index>
## <Index Key="c_N"><M>c_N</M> (irrational value)</Index>
## <Index Key="d_N"><M>d_N</M> (irrational value)</Index>
## <Index Key="e_N"><M>e_N</M> (irrational value)</Index>
## <Index Key="f_N"><M>f_N</M> (irrational value)</Index>
## <Index Key="g_N"><M>g_N</M> (irrational value)</Index>
## <Index Key="h_N"><M>h_N</M> (irrational value)</Index>
## For a positive integer <A>N</A>,
## let <M>z =</M> <C>E(</C><A>N</A><C>)</C> <M>= \exp(2 \pi i/<A>N</A>)</M>.
## The following so-called <E>atomic irrationalities</E>
## (see <Cite Key="CCN85" Where="Chapter 7, Section 10"/>)
## can be entered using functions.
## (Note that the values are not necessary irrational.)
## <P/>
## <Table Align="lclclcl">
## <Row>
## <Item><C>EB(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>b_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^2}} \right) / 2</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{2}</M></Item>
## </Row>
## <Row>
## <Item><C>EC(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>c_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^3}} \right) / 3</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{3}</M></Item>
## </Row>
## <Row>
## <Item><C>ED(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>d_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^4}} \right) / 4</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{4}</M></Item>
## </Row>
## <Row>
## <Item><C>EE(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>e_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^5}} \right) / 5</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{5}</M></Item>
## </Row>
## <Row>
## <Item><C>EF(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>f_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^6}} \right) / 6</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{6}</M></Item>
## </Row>
## <Row>
## <Item><C>EG(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>g_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^7}} \right) / 7</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{7}</M></Item>
## </Row>
## <Row>
## <Item><C>EH(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>h_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>\left( \sum_{{j = 1}}^{{<A>N</A>-1}} z^{{j^8}} \right) / 8</M>
## </Item>
## <Item>,</Item>
## <Item><M><A>N</A> \equiv 1 \pmod{8}</M></Item>
## </Row>
## </Table>
## (Note that in <C>EC(</C><A>N</A><C>)</C>, <M>\ldots</M>,
## <C>EH(</C><A>N</A><C>)</C>, <A>N</A> must be a prime.)
## <P/>
## <Example><![CDATA[
## gap> EB(5); EB(9);
## E(5)+E(5)^4
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EB" );
DeclareGlobalFunction( "EC" );
DeclareGlobalFunction( "ED" );
DeclareGlobalFunction( "EE" );
DeclareGlobalFunction( "EF" );
DeclareGlobalFunction( "EG" );
DeclareGlobalFunction( "EH" );
#############################################################################
##
#F EI( <N> ) . . . . ATLAS irrationality $i_{<N>}$ (the square root of -<N>)
#F ER( <N> ) . . . . ATLAS irrationality $r_{<N>}$ (pos. square root of <N>)
##
## <#GAPDoc Label="EI">
## <ManSection>
## <Heading>EI and ER</Heading>
## <Func Name="EI" Arg='N'/>
## <Func Name="ER" Arg='N'/>
##
## <Description>
## <Index Key="i_N"><M>i_N</M> (irrational value)</Index>
## <Index Key="r_N"><M>r_N</M> (irrational value)</Index>
## For a rational number <A>N</A>,
## <Ref Func="ER"/> returns the square root <M>\sqrt{{<A>N</A>}}</M> of
## <A>N</A>,
## and <Ref Func="EI"/> returns <M>\sqrt{{-<A>N</A>}}</M>.
## By the chosen embedding of cyclotomic fields into the complex numbers,
## <Ref Func="ER"/> returns the positive square root if <A>N</A> is
## positive, and if <A>N</A> is negative then
## <C>ER(</C><A>N</A><C>) = EI(-</C><A>N</A><C>)</C> holds.
## In any case, <C>EI(</C><A>N</A><C>) = E(4) * ER(</C><A>N</A><C>)</C>.
## <P/>
## <Ref Func="ER"/> is installed as method for the operation
## <Ref Func="Sqrt"/>, for rational argument.
## <P/>
## From a theorem of Gauss we know that
## <M>b_{<A>N</A>} =</M>
## <Table Align="lcl">
## <Row>
## <Item><M>(-1 + \sqrt{{<A>N</A>}}) / 2</M></Item>
## <Item>if</Item>
## <Item><M><A>N</A> \equiv 1 \pmod 4</M></Item>
## </Row>
## <Row>
## <Item><M>(-1 + i \sqrt{{<A>N</A>}}) / 2</M></Item>
## <Item>if</Item>
## <Item><M><A>N</A> \equiv -1 \pmod 4</M></Item>
## </Row>
## </Table>
## So <M>\sqrt{{<A>N</A>}}</M> can be computed from <M>b_{<A>N</A>}</M>,
## see <Ref Func="EB"/>.
## <P/>
## <Example><![CDATA[
## gap> ER(3); EI(3);
## -E(12)^7+E(12)^11
## E(3)-E(3)^2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EI" );
DeclareGlobalFunction( "ER" );
#############################################################################
##
#F EY( <N>[, <d>] )
#F EX( <N>[, <d>] )
#F EW( <N>[, <d>] )
#F EV( <N>[, <d>] )
#F EU( <N>[, <d>] )
#F ET( <N>[, <d>] )
#F ES( <N>[, <d>] )
##
## <#GAPDoc Label="EY">
## <ManSection>
## <Heading>EY, EX, <M>\ldots</M>, ES</Heading>
## <Func Name="EY" Arg='N[, d]'/>
## <Func Name="EX" Arg='N[, d]'/>
## <Func Name="EW" Arg='N[, d]'/>
## <Func Name="EV" Arg='N[, d]'/>
## <Func Name="EU" Arg='N[, d]'/>
## <Func Name="ET" Arg='N[, d]'/>
## <Func Name="ES" Arg='N[, d]'/>
##
## <Description>
## <Index Key="s_N"><M>s_N</M> (irrational value)</Index>
## <Index Key="t_N"><M>t_N</M> (irrational value)</Index>
## <Index Key="u_N"><M>u_N</M> (irrational value)</Index>
## <Index Key="v_N"><M>v_N</M> (irrational value)</Index>
## <Index Key="w_N"><M>w_N</M> (irrational value)</Index>
## <Index Key="x_N"><M>x_N</M> (irrational value)</Index>
## <Index Key="y_N"><M>y_N</M> (irrational value)</Index>
## For the given integer <A>N</A> <M>> 2</M>,
## let <M><A>N</A>_k</M> denote the first integer
## with multiplicative order exactly <M>k</M> modulo <A>N</A>,
## chosen in the order of preference
## <Display Mode="M">
## 1, -1, 2, -2, 3, -3, 4, -4, \ldots .
## </Display>
## <P/>
## We define (with <M>z = \exp(2 \pi i/<A>N</A>)</M>)
## <Table Align="lclcll">
## <Row>
## <Item><C>EY(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>y_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n</M></Item>
## <Item><M>(n = <A>N</A>_2)</M></Item>
## </Row>
## <Row>
## <Item><C>EX(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>x_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}}</M></Item>
## <Item><M>(n = <A>N</A>_3)</M></Item>
## </Row>
## <Row>
## <Item><C>EW</C>(<A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>w_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}} + z^{{n^3}}</M></Item>
## <Item><M>(n = <A>N</A>_4)</M></Item>
## </Row>
## <Row>
## <Item><C>EV(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>v_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}} + z^{{n^3}} + z^{{n^4}}</M></Item>
## <Item><M>(n = <A>N</A>_5)</M></Item>
## </Row>
## <Row>
## <Item><C>EU(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>u_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}} + \ldots + z^{{n^5}}</M></Item>
## <Item><M>(n = <A>N</A>_6)</M></Item>
## </Row>
## <Row>
## <Item><C>ET(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>t_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}} + \ldots + z^{{n^6}}</M></Item>
## <Item><M>(n = <A>N</A>_7)</M></Item>
## </Row>
## <Row>
## <Item><C>ES(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>s_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z + z^n + z^{{n^2}} + \ldots + z^{{n^7}}</M></Item>
## <Item><M>(n = <A>N</A>_8)</M></Item>
## </Row>
## </Table>
## <P/>
## For the two-argument versions of the functions,
## see Section <Ref Func="NK"/>.
## <P/>
## <Example><![CDATA[
## gap> EY(5);
## E(5)+E(5)^4
## gap> EW(16,3); EW(17,2);
## 0
## E(17)+E(17)^4+E(17)^13+E(17)^16
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EY" );
DeclareGlobalFunction( "EX" );
DeclareGlobalFunction( "EW" );
DeclareGlobalFunction( "EV" );
DeclareGlobalFunction( "EU" );
DeclareGlobalFunction( "ET" );
DeclareGlobalFunction( "ES" );
#############################################################################
##
#F EM( <N>[, <d>] )
#F EL( <N>[, <d>] )
#F EK( <N>[, <d>] )
#F EJ( <N>[, <d>] )
##
## <#GAPDoc Label="EM">
## <ManSection>
## <Heading>EM, EL, <M>\ldots</M>, EJ</Heading>
## <Func Name="EM" Arg='N[, d]'/>
## <Func Name="EL" Arg='N[, d]'/>
## <Func Name="EK" Arg='N[, d]'/>
## <Func Name="EJ" Arg='N[, d]'/>
##
## <Description>
## Let <A>N</A> be an integer, <A>N</A> <M>> 2</M>.
## We define (with <M>z = \exp(2 \pi i/<A>N</A>)</M>)
## <Index Key="j_N"><M>j_N</M> (irrational value)</Index>
## <Index Key="k_N"><M>k_N</M> (irrational value)</Index>
## <Index Key="l_N"><M>l_N</M> (irrational value)</Index>
## <Index Key="m_N"><M>m_N</M> (irrational value)</Index>
## <Table Align="lclcll">
## <Row>
## <Item><C>EM(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>m_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z - z^n</M></Item>
## <Item><M>(n = <A>N</A>_2)</M></Item>
## </Row>
## <Row>
## <Item><C>EL(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>l_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z - z^n + z^{{n^2}} - z^{{n^3}}</M></Item>
## <Item><M>(n = <A>N</A>_4)</M></Item>
## </Row>
## <Row>
## <Item><C>EK(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>k_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z - z^n + \ldots - z^{{n^5}}</M></Item>
## <Item><M>(n = <A>N</A>_6)</M></Item>
## </Row>
## <Row>
## <Item><C>EJ(</C><A>N</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>j_{<A>N</A>}</M></Item>
## <Item>=</Item>
## <Item><M>z - z^n + \ldots - z^{{n^7}}</M></Item>
## <Item><M>(n = <A>N</A>_8)</M></Item>
## </Row>
## </Table>
## <P/>
## For the two-argument versions of the functions,
## see Section <Ref Func="NK"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EM" );
DeclareGlobalFunction( "EL" );
DeclareGlobalFunction( "EK" );
DeclareGlobalFunction( "EJ" );
#############################################################################
##
#F NK( <N>, <k>, <d> ) . . . . . . . . . . utility for ATLAS irrationalities
##
## <#GAPDoc Label="NK">
## <ManSection>
## <Func Name="NK" Arg='N, k, d'/>
##
## <Description>
## Let <M><A>N</A>_{<A>k</A>}^{(<A>d</A>)}</M> be the <M>(<A>d</A>+1)</M>-th
## integer with multiplicative order exactly <A>k</A> modulo <A>N</A>,
## chosen in the order of preference defined in Section <Ref Subsect="EY"/>;
## <Ref Func="NK"/> returns <M><A>N</A>_{<A>k</A>}^{(<A>d</A>)}</M>;
## if there is no integer with the required multiplicative order,
## <Ref Func="NK"/> returns <K>fail</K>.
## <P/>
## We write <M><A>N</A>_{<A>k</A>} = <A>N</A>_{<A>k</A>}^{(0)},
## <A>N</A>_{<A>k</A>}^{\prime} = <A>N</A>_{<A>k</A>}^{(1)},
## <A>N</A>_{<A>k</A>}^{\prime\prime} = <A>N</A>_{<A>k</A>}^{(2)}</M>
## and so on.
## <P/>
## The algebraic numbers
## <Display Mode="M">
## y_{<A>N</A>}^{\prime} = y_{<A>N</A>}^{(1)},
## y_{<A>N</A>}^{\prime\prime} = y_{<A>N</A>}^{(2)}, \ldots,
## x_{<A>N</A>}^{\prime}, x_{<A>N</A>}^{\prime\prime}, \ldots,
## j_{<A>N</A>}^{\prime}, j_{<A>N</A>}^{\prime\prime}, \ldots
## </Display>
## are obtained on replacing <M><A>N</A>_{<A>k</A>}</M> in the
## definitions in the sections <Ref Subsect="EY"/> and <Ref Subsect="EM"/>
## by <M><A>N</A>_{<A>k</A>}^{\prime},
## <A>N</A>_{<A>k</A>}^{\prime\prime}, \ldots</M>;
## they can be entered as
## <P/>
## <Table Align="lcl">
## <Row>
## <Item><C>EY(</C><A>N</A>,<A>d</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>y_{<A>N</A>}^{(<A>d</A>)}</M></Item>
## </Row>
## <Row>
## <Item><C>EX(</C><A>N</A>,<A>d</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>x_{<A>N</A>}^{(<A>d</A>)}</M></Item>
## </Row>
## <Row>
## <Item></Item>
## <Item><M>\ldots</M></Item>
## <Item></Item>
## </Row>
## <Row>
## <Item><C>EJ(</C><A>N</A>,<A>d</A><C>)</C></Item>
## <Item>=</Item>
## <Item><M>j_{<A>N</A>}^{(<A>d</A>)}</M></Item>
## </Row>
## </Table>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "NK" );
#############################################################################
##
#F AtlasIrrationality( <irratname> )
##
## <#GAPDoc Label="AtlasIrrationality">
## <ManSection>
## <Func Name="AtlasIrrationality" Arg='irratname'/>
##
## <Description>
## Let <A>irratname</A> be a string that describes an irrational value as
## a linear combination in terms of the atomic irrationalities introduced in
## the sections <Ref Subsect="EB"/>, <Ref Subsect="EI"/>,
## <Ref Subsect="EY"/>, <Ref Subsect="EM"/>.
## These irrational values are defined in
## <Cite Key="CCN85" Where="Chapter 6, Section 10"/>, and the following
## description is mainly copied from there.
## If <M>q_N</M> is such a value (e.g. <M>y_{24}^{\prime\prime}</M>)
## then linear combinations of algebraic conjugates of <M>q_N</M> are
## abbreviated as in the following examples:
## <P/>
## <Table Align="lcl">
## <Row>
## <Item><C>2qN+3&5-4&7+&9</C></Item>
## <Item>means</Item>
## <Item><M>2 q_N + 3 q_N^{{*5}} - 4 q_N^{{*7}} + q_N^{{*9}}</M>
## </Item>
## </Row>
## <Row>
## <Item><C>4qN&3&5&7-3&4</C></Item>
## <Item>means</Item>
## <Item><M>4 (q_N + q_N^{{*3}} + q_N^{{*5}} + q_N^{{*7}})
## - 3 q_N^{{*11}}</M></Item>
## </Row>
## <Row>
## <Item><C>4qN*3&5+&7</C></Item>
## <Item>means</Item>
## <Item><M>4 (q_N^{{*3}} + q_N^{{*5}}) + q_N^{{*7}}</M></Item>
## </Row>
## </Table>
## <P/>
## To explain the <Q>ampersand</Q> syntax in general we remark that
## <Q>&k</Q> is interpreted as <M>q_N^{{*k}}</M>,
## where <M>q_N</M> is the most recently named atomic irrationality,
## and that the scope of any premultiplying coefficient is broken by a
## <M>+</M> or <M>-</M> sign, but not by <M>\&</M> or <M>*k</M>.
## The algebraic conjugations indicated by the ampersands apply directly to
## the <E>atomic</E> irrationality <M>q_N</M>, even when,
## as in the last example,
## <M>q_N</M> first appears with another conjugacy <M>*k</M>.
## <P/>
## <Example><![CDATA[
## gap> AtlasIrrationality( "b7*3" );
## E(7)^3+E(7)^5+E(7)^6
## gap> AtlasIrrationality( "y'''24" );
## E(24)-E(24)^19
## gap> AtlasIrrationality( "-3y'''24*13&5" );
## 3*E(8)-3*E(8)^3
## gap> AtlasIrrationality( "3y'''24*13-2&5" );
## -3*E(24)-2*E(24)^11+2*E(24)^17+3*E(24)^19
## gap> AtlasIrrationality( "3y'''24*13-&5" );
## -3*E(24)-E(24)^11+E(24)^17+3*E(24)^19
## gap> AtlasIrrationality( "3y'''24*13-4&5&7" );
## -7*E(24)-4*E(24)^11+4*E(24)^17+7*E(24)^19
## gap> AtlasIrrationality( "3y'''24&7" );
## 6*E(24)-6*E(24)^19
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AtlasIrrationality" );
#############################################################################
##
#F StarCyc( <cyc> ) . . . . the unique nontrivial Galois conjugate of <cyc>
##
## <#GAPDoc Label="StarCyc">
## <ManSection>
## <Func Name="StarCyc" Arg='cyc'/>
##
## <Description>
## If the cyclotomic <A>cyc</A> is an irrational element of a quadratic
## extension of the rationals then <Ref Func="StarCyc"/> returns the unique
## Galois conjugate of <A>cyc</A> that is different from <A>cyc</A>,
## otherwise <K>fail</K> is returned.
## In the first case, the return value is often called <A>cyc</A><M>*</M>
## (see <Ref Sect="Printing Character Tables"/>).
## <P/>
## <Example><![CDATA[
## gap> StarCyc( EB(5) ); StarCyc( E(5) );
## E(5)^2+E(5)^3
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "StarCyc" );
#############################################################################
##
#F Quadratic( <cyc> ) . . . . . information about quadratic irrationalities
##
## <#GAPDoc Label="Quadratic">
## <ManSection>
## <Func Name="Quadratic" Arg='cyc'/>
##
## <Description>
## Let <A>cyc</A> be a cyclotomic integer that lies in a quadratic extension
## field of the rationals.
## Then we have <A>cyc</A><M> = (a + b \sqrt{{n}}) / d</M>,
## for integers <M>a</M>, <M>b</M>, <M>n</M>, <M>d</M>,
## such that <M>d</M> is either <M>1</M> or <M>2</M>.
## In this case, <Ref Func="Quadratic"/> returns a record with the
## components <C>a</C>, <C>b</C>, <C>root</C>, <C>d</C>, <C>ATLAS</C>,
## and <C>display</C>;
## the values of the first four are <M>a</M>, <M>b</M>, <M>n</M>,
## and <M>d</M>,
## the <C>ATLAS</C> value is a (not necessarily shortest) representation of
## <A>cyc</A> in terms of the &ATLAS; irrationalities
## <M>b_{{|n|}}</M>, <M>i_{{|n|}}</M>, <M>r_{{|n|}}</M>,
## and the <C>display</C> value is a string that expresses <A>cyc</A> in
## &GAP; notation, corresponding to the value of the <C>ATLAS</C> component.
## <P/>
## If <A>cyc</A> is not a cyclotomic integer or does not lie in a quadratic
## extension field of the rationals then <K>fail</K> is returned.
## <P/>
## If the denominator <M>d</M> is <M>2</M> then necessarily <M>n</M> is
## congruent to <M>1</M> modulo <M>4</M>,
## and <M>r_n</M>, <M>i_n</M> are not possible;
## we have <C><A>cyc</A> = x + y * EB( root )</C>
## with <C>y = b</C>, <C>x = ( a + b ) / 2</C>.
## <P/>
## If <M>d = 1</M>, we have the possibilities
## <M>i_{{|n|}}</M> for <M>n < -1</M>,
## <M>a + b * i</M> for <M>n = -1</M>, <M>a + b * r_n</M>
## for <M>n > 0</M>.
## Furthermore if <M>n</M> is congruent to <M>1</M> modulo <M>4</M>,
## also <A>cyc</A> <M>= (a+b) + 2 * b * b_{{|n|}}</M> is possible;
## the shortest string of these is taken as the value for the component
## <C>ATLAS</C>.
## <P/>
## <Example><![CDATA[
## gap> Quadratic( EB(5) ); Quadratic( EB(27) );
## rec( ATLAS := "b5", a := -1, b := 1, d := 2,
## display := "(-1+Sqrt(5))/2", root := 5 )
## rec( ATLAS := "1+3b3", a := -1, b := 3, d := 2,
## display := "(-1+3*Sqrt(-3))/2", root := -3 )
## gap> Quadratic(0); Quadratic( E(5) );
## rec( ATLAS := "0", a := 0, b := 0, d := 1, display := "0", root := 1 )
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Quadratic" );
#############################################################################
##
#A GaloisMat( <mat> )
##
## <#GAPDoc Label="GaloisMat">
## <ManSection>
## <Attr Name="GaloisMat" Arg='mat'/>
##
## <Description>
## Let <A>mat</A> be a matrix of cyclotomics.
## <Ref Func="GaloisMat"/> calculates the complete orbits under
## the operation of the Galois group of the (irrational) entries of
## <A>mat</A>,
## and the permutations of rows corresponding to the generators of the
## Galois group.
## <P/>
## If some rows of <A>mat</A> are identical,
## only the first one is considered for the permutations,
## and a warning will be printed.
## <P/>
## <Ref Func="GaloisMat"/> returns a record with the components <C>mat</C>,
## <C>galoisfams</C>, and <C>generators</C>.
## <P/>
## <List>
## <Mark><C>mat</C></Mark>
## <Item>
## a list with initial segment being the rows of <A>mat</A>
## (<E>not</E> shallow copies of these rows);
## the list consists of full orbits under the action of the Galois
## group of the entries of <A>mat</A> defined above.
## The last rows in the list are those not contained in <A>mat</A> but
## must be added in order to complete the orbits;
## so if the orbits were already complete, <A>mat</A> and <C>mat</C> have
## identical rows.
## </Item>
## <Mark><C>galoisfams</C></Mark>
## <Item>
## a list that has the same length as the <C>mat</C> component,
## its entries are either 1, 0, -1, or lists.
## <List>
## <Mark><C>galoisfams[i] = 1</C></Mark>
## <Item>
## means that <C>mat[i]</C> consists of rationals,
## i.e., <C>[ mat[i] ]</C> forms an orbit;
## </Item>
## <Mark><C>galoisfams[i] = -1</C></Mark>
## <Item>
## means that <C>mat[i]</C> contains unknowns
## (see Chapter <Ref Chap="Unknowns"/>);
## in this case <C>[ mat[i] ]</C> is regarded as an orbit, too,
## even if <C>mat[i]</C> contains irrational entries;
## </Item>
## <Mark><C>galoisfams[i] = </C><M>[ l_1, l_2 ]</M></Mark>
## <Item>
## (a list) means that <C>mat[i]</C> is the first element of its orbit
## in <C>mat</C>,
## <M>l_1</M> is the list of positions of rows that form the orbit,
## and <M>l_2</M> is the list of corresponding Galois automorphisms
## (as exponents, not as functions);
## so we have <C>mat</C><M>[ l_1[j] ][k] = </M>
## <C>GaloisCyc( mat</C><M>[i][k], l_2[j]</M><C> )</C>;
## </Item>
## <Mark><C>galoisfams[i] = 0</C></Mark>
## <Item>
## means that <C>mat[i]</C> is an element of a
## nontrivial orbit but not the first element of it.
## </Item>
## </List>
## </Item>
## <Mark><C>generators</C></Mark>
## <Item>
## a list of permutations generating the permutation group
## corresponding to the action of the Galois group on the rows of
## <C>mat</C>.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> GaloisMat( [ [ E(3), E(4) ] ] );
## rec( galoisfams := [ [ [ 1, 2, 3, 4 ], [ 1, 7, 5, 11 ] ], 0, 0, 0 ],
## generators := [ (1,2)(3,4), (1,3)(2,4) ],
## mat := [ [ E(3), E(4) ], [ E(3), -E(4) ], [ E(3)^2, E(4) ],
## [ E(3)^2, -E(4) ] ] )
## gap> GaloisMat( [ [ 1, 1, 1 ], [ 1, E(3), E(3)^2 ] ] );
## rec( galoisfams := [ 1, [ [ 2, 3 ], [ 1, 2 ] ], 0 ],
## generators := [ (2,3) ],
## mat := [ [ 1, 1, 1 ], [ 1, E(3), E(3)^2 ], [ 1, E(3)^2, E(3) ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GaloisMat", IsMatrix );
#############################################################################
##
#A RationalizedMat( <mat> ) . . . . . . list of rationalized rows of <mat>
##
## <#GAPDoc Label="RationalizedMat">
## <ManSection>
## <Attr Name="RationalizedMat" Arg='mat'/>
##
## <Description>
## returns the list of rationalized rows of <A>mat</A>,
## which must be a matrix of cyclotomics.
## This is the set of sums over orbits under the action of the Galois group
## of the entries of <A>mat</A> (see <Ref Func="GaloisMat"/>),
## so the operation may be viewed as a kind of trace on the rows.
## <P/>
## Note that no two rows of <A>mat</A> should be equal.
## <P/>
## <Example><![CDATA[
## gap> mat:= [ [ 1, 1, 1 ], [ 1, E(3), E(3)^2 ], [ 1, E(3)^2, E(3) ] ];;
## gap> RationalizedMat( mat );
## [ [ 1, 1, 1 ], [ 2, -1, -1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RationalizedMat", IsMatrix );
#############################################################################
##
#F DenominatorCyc( <cyc> )
##
## <#GAPDoc Label="DenominatorCyc">
## <ManSection>
## <Func Name="DenominatorCyc" Arg='cyc'/>
##
## <Description>
## For a cyclotomic number <A>cyc</A> (see <Ref Func="IsCyclotomic"/>),
## this function returns the smallest positive integer <M>n</M> such that
## <M>n</M><C> * </C><A>cyc</A> is a cyclotomic integer
## (see <Ref Func="IsIntegralCyclotomic"/>).
## For rational numbers <A>cyc</A>, the result is the same as that of
## <Ref Func="DenominatorRat"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DenominatorCyc" );
#############################################################################
##
#E
|