This file is indexed.

/usr/share/gap/lib/factgrp.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
###########################################################################
##
#W  factgrp.gi                      GAP library              Alexander Hulpke
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of operations for factor group maps
##

#############################################################################
##
#M  NaturalHomomorphismsPool(G) . . . . . . . . . . . . . . initialize method
##
InstallMethod(NaturalHomomorphismsPool,true,[IsGroup],0,
  G->rec(GopDone:=false,ker:=[],ops:=[],cost:=[],group:=G,lock:=[],
         intersects:=[],blocksdone:=[],in_code:=false,dotriv:=false));

#############################################################################
##
#F  EraseNaturalHomomorphismsPool(G) . . . . . . . . . . . . initialize
##
InstallGlobalFunction(EraseNaturalHomomorphismsPool,function(G)
local r;
  r:=NaturalHomomorphismsPool(G);
  if r.in_code=true then return;fi;
  r.GopDone:=false;
  r.ker:=[];
  r.ops:=[];
  r.cost:=[];
  r.group:=G;
  r.lock:=[];
  r.intersects:=[];
  r.blocksdone:=[];
  r.in_code:=false;
  r.dotriv:=false;
  r:=NaturalHomomorphismsPool(G);
end);

#############################################################################
##
#F  AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]]) . Store operation
##       op for kernel N if there is not already a cheaper one
##       returns false if nothing had been added and 'fail' if adding was
##       forbidden
##
InstallGlobalFunction(AddNaturalHomomorphismsPool,function(arg)
local G, N, op, pool, p, c, perm, ch, diff, nch, nd, involved, i;
  G:=arg[1];
  N:=arg[2];
  op:=arg[3];

  # don't store trivial cases
  if Size(N)=Size(G) then
    Info(InfoFactor,4,"full group");
    return false;
  elif Size(N)=1 then
    # do we really want the trivial subgroup?
    if not (HasNaturalHomomorphismsPool(G) and
      NaturalHomomorphismsPool(G).dotriv=true) then
      Info(InfoFactor,4,"trivial sub: ignore");
      return false;
    fi;
    Info(InfoFactor,4,"trivial sub: OK");
  fi;

  pool:=NaturalHomomorphismsPool(G);

  # split lists in their components
  if IsList(op) and not IsInt(op[1]) then
    p:=[];
    for i in op do
      if IsMapping(i) then
        c:=Intersection(G,KernelOfMultiplicativeGeneralMapping(i));
      else
        c:=Core(G,i);
      fi;
      Add(p,c);
      AddNaturalHomomorphismsPool(G,c,i);
    od;
    # transfer in numbers list
    op:=List(p,i->PositionSet(pool.ker,i));
    if Length(arg)<4 then
      # add the prices
      c:=Sum(pool.cost{op});
    fi;
  # compute/get costs
  elif Length(arg)>3 then
    c:=arg[4];
  else
    if IsGroup(op) then
      c:=Index(G,op);
    elif IsMapping(op) then
      c:=Image(op);
      if IsPcGroup(c) then
	c:=1;
      elif IsPermGroup(c) then
	c:=NrMovedPoints(c);
      else
        c:=Size(c);
      fi;
    fi;
  fi;

  # check whether we have already a better operation (or whether this normal
  # subgroup is locked)

  p:=PositionSet(pool.ker,N);
  if p=fail then
    if pool.in_code then
      return fail;
    fi;
    p:=PositionSorted(pool.ker,N);
    # compute the permutation we have to apply finally
    perm:=PermList(Concatenation([1..p-1],[Length(pool.ker)+1],
                   [p..Length(pool.ker)]))^-1;

    # first add at the end
    p:=Length(pool.ker)+1;
    pool.ker[p]:=N;
    Info(InfoFactor,2,"Added price ",c," for size ",Index(G,N),
         " in group of size ",Size(G));
  elif c>=pool.cost[p] then
    Info(InfoFactor,4,"bad price");
    return false; # nothing added
  elif pool.lock[p]=true then
    return fail; # nothing added
  else
    Info(InfoFactor,2,"Changed price ",c," for size ",Index(G,N));
    perm:=();
    # update dependent costs
    ch:=[p];
    diff:=[pool.cost[p]-c];
    while Length(ch)>0 do
      nch:=[];
      nd:=[];
      for i in [1..Length(pool.ops)] do
        if IsList(pool.ops[i]) then
	  involved:=Intersection(pool.ops[i],ch);
	  if Length(involved)>0 then
	    involved:=Sum(diff{List(involved,x->Position(ch,x))});
	    pool.cost[i]:=pool.cost[i]-involved;
	    Add(nch,i);
	    Add(nd,involved);
	  fi;
	fi;
      od;
      ch:=nch;
      diff:=nd;
    od;
  fi;

  if IsMapping(op) and not HasKernelOfMultiplicativeGeneralMapping(op) then
    SetKernelOfMultiplicativeGeneralMapping(op,N);
  fi;
  pool.ops[p]:=op;
  pool.cost[p]:=c;
  pool.lock[p]:=false;

  # update the costs of all intersections that are affected
  for i in [1..Length(pool.ker)] do
    if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) and p in pool.ops[i] then
      pool.cost[i]:=Sum(pool.cost{pool.ops[i]});
    fi;
  od;

  if Length(arg)>4 then
    pool.blocksdone[p]:=arg[5];
  else
    pool.blocksdone[p]:=false;
  fi;

  if perm<>() then
    # sort the kernels anew
    pool.ker:=Permuted(pool.ker,perm);
    # sort/modify the other components accordingly
    pool.ops:=Permuted(pool.ops,perm);
    for i in [1..Length(pool.ops)] do
      # if entries are lists of integers
      if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
	pool.ops[i]:=List(pool.ops[i],i->i^perm);
      fi;
    od;
    pool.cost:=Permuted(pool.cost,perm);
    pool.lock:=Permuted(pool.lock,perm);
    pool.blocksdone:=Permuted(pool.blocksdone,perm);
    pool.intersects:=Set(List(pool.intersects,i->List(i,j->j^perm)));
  fi;

  return perm; # if anyone wants to keep the permutation
end);


#############################################################################
##
#F  LockNaturalHomomorphismsPool(G,N)  . .  store flag to prohibit changes of
##                                                               the map to N
##
InstallGlobalFunction(LockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=true;
  fi;
end);


#############################################################################
##
#F  UnlockNaturalHomomorphismsPool(G,N) . . .  clear flag to allow changes of
##                                                               the map to N
##
InstallGlobalFunction(UnlockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=false;
  fi;
end);


#############################################################################
##
#F  KnownNaturalHomomorphismsPool(G,N) . . . . .  check whether Hom is stored
##                                                               (or obvious)
##
InstallGlobalFunction(KnownNaturalHomomorphismsPool,function(G,N)
  return N=G or Size(N)=1 
      or PositionSet(NaturalHomomorphismsPool(G).ker,N)<>fail;
end);


#############################################################################
##
#F  GetNaturalHomomorphismsPool(G,N)  . . . .  get operation for G/N if known
##
InstallGlobalFunction(GetNaturalHomomorphismsPool,function(G,N)
local pool,p,h,ise,emb,i,j;
  if not HasNaturalHomomorphismsPool(G) then
    return fail;
  fi;
  pool:=NaturalHomomorphismsPool(G);
  p:=PositionSet(pool.ker,N);
  if p<>fail then
    h:=pool.ops[p];
    if IsList(h) then
      # just stored as intersection. Construct the mapping!
      # join intersections
      ise:=ShallowCopy(h);
      for i in ise do
	if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
	  for j in Filtered(pool.ops[i],j-> not j in ise) do
	    Add(ise,j);
	  od;
	elif not pool.blocksdone[i] then
	  h:=GetNaturalHomomorphismsPool(G,pool.ker[i]);
	  pool.in_code:=true; # don't add any new kernel here
	  # (which would mess up the numbering)
	  ImproveActionDegreeByBlocks(G,pool.ker[i],h);
	  pool.in_code:=false;
	fi;
      od;
      ise:=List(ise,i->GetNaturalHomomorphismsPool(G,pool.ker[i]));
      h:=CallFuncList(DirectProduct,List(ise,Image));
      emb:=List([1..Length(ise)],i->Embedding(h,i));
      emb:=List(GeneratorsOfGroup(G),
	   i->Product([1..Length(ise)],j->Image(emb[j],Image(ise[j],i))));
      ise:=SubgroupNC(h,emb);

      h:=GroupHomomorphismByImagesNC(G,ise,GeneratorsOfGroup(G),emb);
      SetKernelOfMultiplicativeGeneralMapping(h,N);
      pool.ops[p]:=h;
    elif IsGroup(h) then
      h:=FactorCosetAction(G,h,N); # will implicitely store
    fi;
    p:=h;
  fi;
  return p;
end);


#############################################################################
##
#F  DegreeNaturalHomomorphismsPool(G,N) degree for operation for G/N if known
##
InstallGlobalFunction(DegreeNaturalHomomorphismsPool,function(G,N)
local p,pool;
  pool:=NaturalHomomorphismsPool(G);
  p:=First([1..Length(pool.ker)],i->IsIdenticalObj(pool.ker[i],N));
  if p=fail then
    p:=PositionSet(pool.ker,N);
  fi;
  if p<>fail then
    p:=pool.cost[p];
  fi;
  return p;
end);


#############################################################################
##
#F  CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
##         operation kernels, don't continue anything which is smaller than N
##
InstallGlobalFunction(CloseNaturalHomomorphismsPool,function(arg)
local G,pool,p,comb,i,c,perm,l,isi,N,discard,ab;
  G:=arg[1];
  pool:=NaturalHomomorphismsPool(G);
  p:=[1..Length(pool.ker)];

  if Length(arg)>1 then
    N:=arg[2];
    p:=Filtered(p,i->IsSubset(pool.ker[i],N));
  else
    N:=fail;
  fi;

  # do the abelians extra.
  p:=Filtered(p,x->not HasAbelianFactorGroup(G,pool.ker[x]));
  
  discard:=[];
  repeat
    # obviously it is sufficient to consider only pairs iteratively
    p:=Set(p);
    comb:=Combinations(p,2);
    comb:=Filtered(comb,i->not (i in pool.intersects or i in discard));
    l:=Length(pool.ker);
    Info(InfoFactor,2,"CloseNaturalHomomorphismsPool: ",Length(comb));
    for i in comb do
      Info(InfoFactor,3,"Intersect ",i,": ",
           Size(pool.ker[i[1]]),Size(pool.ker[i[2]]));
      if N=fail or not ForAny(pool.ker{p},j->Size(j)>Size(N) and
	      IsSubset(pool.ker[i[1]],j) and IsSubset(pool.ker[i[2]],j)) then
	c:=Intersection(pool.ker[i[1]],pool.ker[i[2]]);
	Info(InfoFactor,3,"yields ",Size(c));
	isi:=ShallowCopy(i);

	# unpack 'iterated' lists
	if IsList(pool.ops[i[2]]) and IsInt(pool.ops[i[2]][1]) then
	  isi:=Concatenation(isi{[1]},pool.ops[i[2]]);
	fi;
	if IsList(pool.ops[i[1]]) and IsInt(pool.ops[i[1]][1]) then
	  isi:=Concatenation(isi{[2..Length(isi)]},pool.ops[i[1]]);
	fi;
	isi:=Set(isi);

	perm:=AddNaturalHomomorphismsPool(G,c,isi,Sum(pool.cost{i}));
	if perm<>fail then
	  # note that we got the intersections
	  if perm<>false then
	    AddSet(pool.intersects,List(i,j->j^perm));
	  else
	    AddSet(pool.intersects,i);
	  fi;
	fi;

	# note index shifts
	if IsPerm(perm) then
	  p:=List(p,i->i^perm);
	  Apply(comb,j->OnSets(j,perm));
	fi;

	if Length(arg)=1 or IsSubgroup(c,arg[2]) then
	  AddSet(p,
	    PositionSet(pool.ker,c)); # to allow iterated intersections
	fi;
      else
	Add(discard,i);
	Info(InfoFactor,4," not done");
      fi;
    od;
  until Length(comb)=0; # nothing new was added
  
end);


#############################################################################
##
#F  FactorCosetAction( <G>, <U>, [<N>] )  operation on the right cosets Ug
##                                        with possibility to indicate kernel
##
BindGlobal("DoFactorCosetAction",function(arg)
local G,u,op,h,N,rt;
  G:=arg[1];
  u:=arg[2];
  if Length(arg)>2 then
    N:=arg[3];
  else
    N:=false;
  fi;
  if IsList(u) and Length(u)=0 then
    u:=G;
    Error("only trivial operation ?  I Set u:=G;");
  fi;
  if N=false then
    N:=Core(G,u);
  fi;
  rt:=RightTransversal(G,u);
  if not IsRightTransversalRep(rt) then
    # the right transversal has no special `PositionCanonical' method.
    rt:=List(rt,i->RightCoset(u,i));
  fi;
  h:=ActionHomomorphism(G,rt,OnRight,"surjective");
  op:=Image(h,G);
  SetSize(op,Index(G,N));

  # and note our knowledge
  SetKernelOfMultiplicativeGeneralMapping(h,N);
  AddNaturalHomomorphismsPool(G,N,h);
  return h;
end);

InstallMethod(FactorCosetAction,"by right transversal operation",
  IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
  return DoFactorCosetAction(G,U);
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel",IsFamFamFam,
  [IsGroup,IsGroup,IsGroup],0,
function(G,U,N)
  return DoFactorCosetAction(G,U,N);
end);

InstallMethod(FactorCosetAction,"by right transversal operation, Niceo",
  IsIdenticalObj,[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,U)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U));
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel, Niceo",IsFamFamFam,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup,IsGroup],0,
function(G,U,N)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U),Image(hom,N));
end);


#############################################################################
##
#M  DoCheapActionImages(G) . . . . . . . . . . All cheap operations for G
##
InstallMethod(DoCheapActionImages,"generic",true,[IsGroup],0,Ignore);

InstallMethod(DoCheapActionImages,"permutation",true,[IsPermGroup],0,
function(G)
local pool, dom, o, bl, op, Go, j, b, i,allb,newb,mov;

  pool:=NaturalHomomorphismsPool(G);
  if pool.GopDone=false then

    dom:=MovedPoints(G);
    # orbits
    o:=OrbitsDomain(G,dom);
    o:=Set(List(o,Set));

    # do orbits and test for blocks 
    bl:=[];
    for i in o do
      if Length(i)<>Length(dom) or
	# only works if domain are the first n points
	not (1 in dom and 2 in dom and IsRange(dom)) then
	op:=ActionHomomorphism(G,i,"surjective");
	Range(op:onlyimage); #`onlyimage' forces same generators 
        AddNaturalHomomorphismsPool(G,Stabilizer(G,i,OnTuples),
			    op,Length(i));
      else
	op:=IdentityMapping(G);
      fi;

      Go:=Image(op,G);
      # all minimal and maximal blocks
      mov:=MovedPoints(Go);
      allb:=ShallowCopy(RepresentativesMinimalBlocks(Go,mov));
      for j in allb do
	b:=Orbit(G,i{j},OnSets);
	Add(bl,Immutable(Set(b)));
	# also one finer blocks (as we iterate only once)
	newb:=Blocks(Go,Blocks(Go,mov,j),OnSets);
	if Length(newb)>1 then
	  newb:=Union(newb[1]);
	  if not newb in allb then
	    Add(allb,newb);
	  fi;
	fi;
      od;

      #if Length(i)<500 and Size(Go)>10*Length(i) then
      #else
#	# one block system
#	b:=Blocks(G,i);
#	if Length(b)>1 then
#	  Add(bl,Immutable(Set(b)));
#	fi;
#      fi;
    od;

    for i in bl do
      op:=ActionHomomorphism(G,i,OnSets,"surjective");
      ImagesSource(op:onlyimage); #`onlyimage' forces same generators 
      b:=KernelOfMultiplicativeGeneralMapping(op);
      AddNaturalHomomorphismsPool(G,b,op);
    od;

    pool.GopDone:=true;
  fi;

end);


#############################################################################
##
#F  GenericFindActionKernel  random search for subgroup with faithful core
##
BADINDEX:=1000; # the index that is too big
GenericFindActionKernel:=function(arg)
local G, N, knowi, goodi, simple, uc, zen, cnt, pool, ise, v, bv, badi,
totalcnt, interupt, u, nu, cor, zzz,bigperm,perm,badcores;

  G:=arg[1];
  N:=arg[2];
  if Length(arg)>2 then
    knowi:=arg[3];
  else
    knowi:=Index(G,N);
  fi;

  # special treatment for solvable groups. This will never be triggered for
  # perm groups or nice groups
  if Size(N)>1 and HasSolvableFactorGroup(G,N) then
    perm:=ActionHomomorphism(G,RightCosets(G,N),OnRight,"surjective");
    perm:=perm*IsomorphismPcGroup(Image(perm));
    return perm;
  fi;

  bigperm:=IsPermGroup(G) and NrMovedPoints(G)>10000;

  # what is a good degree:
  goodi:=Minimum(Int(knowi*9/10),LogInt(Index(G,N),2)^2);

  simple:=HasIsSimpleGroup(G) and IsSimpleGroup(G) and Size(N)=2;
  uc:=TrivialSubgroup(G);
  # look if it is worth to look at action on N
  # if not abelian: later replace by abelian Normal subgroup
  if IsAbelian(N) and (Size(N)>50 or Index(G,N)<Factorial(Size(N)))
      and Size(N)<50000 then
    zen:=Centralizer(G,N);
    if Size(zen)=Size(N) then
      cnt:=0;
      repeat
	cnt:=cnt+1;
	zen:=Centralizer(G,Random(N));
	if (simple or Size(Core(G,zen))=Size(N)) and
	    Index(G,zen)<Index(G,uc) then
	  uc:=zen;
	fi;
      # until enough searched or just one orbit
      until cnt=9 or (Index(G,zen)+1=Size(N));
      AddNaturalHomomorphismsPool(G,N,uc,Index(G,uc));
    else
      Info(InfoFactor,3,"centralizer too big");
    fi;
  fi;

  pool:=NaturalHomomorphismsPool(G);
  pool.dotriv:=true;
  CloseNaturalHomomorphismsPool(G,N);
  pool.dotriv:=false;
  ise:=Filtered(pool.ker,x->IsSubset(x,N));
  if Length(ise)=0 then
    ise:=G;
  else
    ise:=Intersection(ise);
  fi;

  # try a random extension step
  # (We might always first add a random element and get something bigger)
  v:=N;
  bv:=v;

  #if Length(arg)=3 then
    ## in one example 512->90, ca. 40 tries
    #cnt:=Int(arg[3]/10);
  #else
    #cnt:=25;
  #fi;

  badcores:=[];
  badi:=BADINDEX;
  totalcnt:=0;
  interupt:=false;
  cnt:=20;
  repeat
    u:=v;
    repeat
      repeat
	if Length(arg)<4 or Random([1,2])=1 then
	  if IsCyclic(u) and Random([1..4])=1 then
	    # avoid being stuck with a bad first element
	    u:=Subgroup(G,[Random(G)]);
	  fi;
	  if Length(GeneratorsOfGroup(u))<2 then
	    # closing might cost a big stabilizer chain calculation -- just
	    # recreate
	    nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(G)]));
	  else
	    nu:=ClosureGroup(u,Random(G));
	  fi;
	else
	  if Length(GeneratorsOfGroup(u))<2 then
	    # closing might cost a big stabilizer chain calculation -- just
	    # recreate
	    nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(arg[4])]));
	  else
	    nu:=ClosureGroup(u,Random(arg[4]));
	  fi;
	fi;
	totalcnt:=totalcnt+1;
	if KnownNaturalHomomorphismsPool(G,N) and
	  Minimum(Index(G,v),knowi)<20000 
	     and 5*totalcnt>Minimum(Index(G,v),knowi,1000) then
	  # interupt if we're already quite good
	  interupt:=true;
	fi;
	# Abbruchkriterium: Bis kein Normalteiler, es sei denn, es ist N selber
	# (das brauchen wir, um in einigen trivialen F"allen abbrechen zu
	# k"onnen)
#Print("nu=",Length(GeneratorsOfGroup(nu))," : ",Size(nu),"\n");
      until 
        
        # der Index ist nicht so klein, da"s wir keine Chance haben
	not ForAny(badcores,x->IsSubset(nu,x)) and (((not bigperm or
	Length(Orbit(nu,MovedPoints(G)[1]))<NrMovedPoints(G)) and 
	(Index(G,nu)>50 or Factorial(Index(G,nu))>=Index(G,N)) and
	not IsNormal(G,nu)) or IsSubset(u,nu) or interupt);

      Info(InfoFactor,4,"Index ",Index(G,nu));
      u:=nu;

    until 
      # und die Gruppe ist nicht zuviel schlechter als der
      # beste bekannte Index. Daf"ur brauchen wir aber wom"oglich mehrfache
      # Erweiterungen.
      interupt or (((Length(arg)=2 or Index(G,u)<knowi)));

    if Index(G,u)<knowi then

      #Print("Index:",Index(G,u),"\n");    

      if simple and u<>G then
	cor:=TrivialSubgroup(G);
      else
	cor:=Core(G,u);
      fi;
      if Size(cor)>Size(N) and IsSubset(cor,N) and not cor in badcores then
	Add(badcores,cor);
      fi;
      # store known information(we do't act, just store the subgroup.
      # Thus this is fairly cheap
      pool.dotriv:=true;
      zzz:=AddNaturalHomomorphismsPool(G,cor,u,Index(G,u));

      if IsPerm(zzz) and zzz<>() then
	CloseNaturalHomomorphismsPool(G,N);
      fi;
      pool.dotriv:=false;

      zzz:=DegreeNaturalHomomorphismsPool(G,N);

      Info(InfoFactor,3,"  ext ",cnt,": ",Index(G,u)," best degree:",zzz);
    else
      zzz:=DegreeNaturalHomomorphismsPool(G,N);
    fi;
    if IsInt(zzz) then
      knowi:=zzz;
    fi;

    cnt:=cnt-1;

    if cnt=0 and zzz>badi then
      Info(InfoWarning,2,"index unreasonably large, iterating");
      badi:=Int(badi*12/10);
      cnt:=20;
      v:=N; # all new
    fi;
  until interupt or cnt<=0 or zzz<=goodi;
#Print(goodi," vs ",badi,"\n");

  return GetNaturalHomomorphismsPool(G,N);

end;

#############################################################################
##
#F  SmallerDegreePermutationRepresentation( <G> )
##
InstallGlobalFunction(SmallerDegreePermutationRepresentation,function(G)
local o, s, k, gut, erg, H, hom, b, ihom, improve, map, loop,
  i,cheap,first;
  cheap:=ValueOption("cheap");
  if cheap="skip" then
    return IdentityMapping(G);
  fi;

  cheap:=cheap=true;

  # deal with large abelian cases first (which could be direct)
  hom:=MaximalAbelianQuotient(G);
  i:=IndependentGeneratorsOfAbelianGroup(Image(hom));
  o:=List(i,Order);
  if ValueOption("norecurse")<>true and 
    Product(o)>20 and Sum(o)*4<NrMovedPoints(G) then
    Info(InfoFactor,2,"append abelian rep");
    s:=AbelianGroup(IsPermGroup,o);
    ihom:=GroupHomomorphismByImagesNC(Image(hom),s,i,GeneratorsOfGroup(s));
    erg:=SubdirectDiagonalPerms(
	  List(GeneratorsOfGroup(G),x->Image(ihom,Image(hom,x))),
	  GeneratorsOfGroup(G));
    k:=Group(erg);SetSize(k,Size(G));
    hom:=GroupHomomorphismByImagesNC(G,k,GeneratorsOfGroup(G),erg);
    return hom*SmallerDegreePermutationRepresentation(k:norecurse);
  fi;


  if not IsTransitive(G,MovedPoints(G)) then
    o:=ShallowCopy(OrbitsDomain(G,MovedPoints(G)));
    Sort(o,function(a,b)return Length(a)<Length(b);end);

    for loop in [1..2] do
      s:=[];
      # Try subdirect product
      k:=G;
      gut:=[];
      for i in [1..Length(o)] do
	s:=Stabilizer(k,o[i],OnTuples);
	if Size(s)<Size(k) then
	  k:=s;
	  Add(gut,i);
	fi;
      od;
      # reduce each orbit separately
      o:=o{gut};
      # second run: now take the big orbits first
      Sort(o,function(a,b)return Length(a)>Length(b);end);
    od;

    erg:=List(GeneratorsOfGroup(G),i->());
    for i in [1..Length(o)] do
      Info(InfoFactor,1,"Try to shorten orbit ",i," Length ",Length(o[i]));
      s:=ActionHomomorphism(G,o[i],OnPoints,"surjective");
      Range(s);
      s:=s*SmallerDegreePermutationRepresentation(Image(s));
      erg:=SubdirectDiagonalPerms(erg,List(GeneratorsOfGroup(G),i->Image(s,i)));
    od;
    if NrMovedPoints(erg)<NrMovedPoints(G) then
      s:=Group(erg,());  # `erg' arose from `SubdirectDiagonalPerms'
      SetSize(s,Size(G));
      s:=GroupHomomorphismByImagesNC(G,s,GeneratorsOfGroup(G),erg);
      SetIsBijective(s,true);
      return s;
    fi;
    return IdentityMapping(G);
  # simple test is comparatively cheap for permgrp
  elif IsSimpleGroup(G) and not IsAbelian(G) then 
    H:=SimpleGroup(ClassicalIsomorphismTypeFiniteSimpleGroup(G));
    if IsPermGroup(H) and NrMovedPoints(H)>=NrMovedPoints(G) then
      return IdentityMapping(G);
    fi;
  fi; # transitive/simple treatment

  # if the original group has no stabchain we probably do not want to keep
  # it (or a homomorphisms pool) there -- make a copy for working
  # intermediately with it.
  if not HasStabChainMutable(G) then
    H:= GroupWithGenerators( GeneratorsOfGroup( G ),One(G) );
    if HasSize(G) then
      SetSize(H,Size(G));
    fi;
    if HasBaseOfGroup(G) then
      SetBaseOfGroup(H,BaseOfGroup(G));
    fi;
  else
    H:=G;
  fi;
  hom:=IdentityMapping(H);
  b:=NaturalHomomorphismsPool(H);
  b.dotriv:=true;
  AddNaturalHomomorphismsPool(H,TrivialSubgroup(H),hom,NrMovedPoints(H));
  b.dotriv:=false;
  ihom:=H;
  improve:=false; # indicator for first run
  first:=true;
  repeat
    if improve=false and NrMovedPoints(H)*5>Size(H) and
      IsTransitive(H,MovedPoints(H)) then
      b:=Blocks(H,MovedPoints(H));
      map:=ActionHomomorphism(G,b,OnSets,"surjective");
      ImagesSource(map:onlyimage); #`onlyimage' forces same generators 
      b:=KernelOfMultiplicativeGeneralMapping(map);
      AddNaturalHomomorphismsPool(G,b,map);
      if Size(b)=1 then
	H:=Image(map);
	Info(InfoFactor,2," first improved to degree ",NrMovedPoints(H));
	hom:=hom*map;
	ihom:=H;
      fi;
    fi;
    improve:=false;
    b:=NaturalHomomorphismsPool(H);
    b.dotriv:=true;
    if first then # only once!
      b.GopDone:=false;
      DoCheapActionImages(H);
      CloseNaturalHomomorphismsPool(H,TrivialSubgroup(H));
      first:=false;
    fi;
    b.dotriv:=false;
    map:=GetNaturalHomomorphismsPool(H,TrivialSubgroup(H));
    if map<>fail and Image(map)<>H then
      improve:=true;
      H:=Image(map);
      Info(InfoFactor,2," improved to degree ",NrMovedPoints(H));
      hom:=hom*map;
      ihom:=H;
    fi;
  until improve=false;

  o:=DegreeNaturalHomomorphismsPool(H,TrivialSubgroup(H));
  if cheap<>true and (IsBool(o) or o*2>=NrMovedPoints(H)) then
    s:=GenericFindActionKernel(ihom,TrivialSubgroup(ihom),NrMovedPoints(ihom));
    if s<>fail then
      hom:=hom*s;
    fi;
  fi;

  return hom;
end);

#############################################################################
##
#F  ImproveActionDegreeByBlocks( <G>, <N> , hom )
##  extension of <U> in <G> such that   \bigcap U^g=N remains valid
##
InstallGlobalFunction(ImproveActionDegreeByBlocks,function(G,N,oh)
local gimg,img,dom,b,improve,bp,bb,i,k,bestdeg,subo,op,bc,bestblock,bdom,
      bestop,sto,gimgbas,subomax;
  Info(InfoFactor,1,"try to find block systems");

  # remember that we computed the blocks
  b:=NaturalHomomorphismsPool(G);

  # special case to use it for improving a permutation representation
  if Size(N)=1 then
    Info(InfoFactor,1,"special case for trivial subgroup");
    b.ker:=[N];
    b.ops:=[oh];
    b.cost:=[Length(MovedPoints(Range(oh)))];
    b.lock:=[false];
    b.blocksdone:=[false];
    subomax:=20;
  else
    subomax:=500;
  fi;

  i:=PositionSet(b.ker,N);
  if b.blocksdone[i] then
    return DegreeNaturalHomomorphismsPool(G,N); # we have done it already
  fi;
  b.blocksdone[i]:=true;

  if not IsPermGroup(Range(oh)) then
    return 1;
  fi;

  gimg:=Image(oh,G);
  gimgbas:=false;
  if HasBaseOfGroup(gimg) then
    gimgbas:=Filtered(BaseOfGroup(gimg),i->ForAny(GeneratorsOfGroup(gimg),
                                           j->i^j<>i));
  fi;
  img:=gimg;
  dom:=MovedPoints(img);
  bdom:=fail;

  if IsTransitive(img,dom) then
    # one orbit: Blocks
    repeat
      b:=Blocks(img,dom);
      improve:=false;
      if Length(b)>1 then
	if Length(dom)<40000 then
	  subo:=ApproximateSuborbitsStabilizerPermGroup(img,dom[1]);
	  subo:=Difference(List(subo,i->i[1]),dom{[1]});
	else
	  subo:=fail;
	fi;
	bc:=First(b,i->dom[1] in i);
	if subo<>fail and (Length(subo)<=subomax) then
	  Info(InfoFactor,2,"try all seeds");
	  # if the degree is not too big or if we are desparate then go for
	  # all blocks
	  # greedy approach: take always locally best one (otherwise there
	  # might be too much work to do)
	  bestdeg:=Length(dom);
	  bp:=[]; #Blocks pool
	  i:=1;
	  while i<=Length(subo) do
	    if subo[i] in bc then
	      bb:=b;
	    else
	      bb:=Blocks(img,dom,[dom[1],subo[i]]);
	    fi;
	    if Length(bb)>1 and not (bb[1] in bp or Length(bb)>bestdeg) then
	      Info(InfoFactor,3,"found block system ",Length(bb));
	      # new nontriv. system found 
	      AddSet(bp,bb[1]);
	      # store action
	      op:=1;# remove old homomorphism to free memory
	      if bdom<>fail then
	        bb:=Set(List(bb,i->Immutable(Union(bdom{i}))));
	      fi;

	      op:=ActionHomomorphism(gimg,bb,OnSets,"surjective");
	      if HasSize(gimg) and not HasStabChainMutable(gimg) then
		sto:=StabChainOptions(Range(op));
		sto.limit:=Size(gimg);
		# try only with random (will exclude some chances, but is
		# quicker. If the size is OK we have a proof anyhow).
		sto.random:=100;
#		if gimgbas<>false then
#		  SetBaseOfGroup(Range(op),
#		    List(gimgbas,i->PositionProperty(bb,j->i in j)));
#		fi;
		if Size(Range(op))=Size(gimg) then
		  sto.random:=1000;
		  k:=TrivialSubgroup(gimg);
		  op:=oh*op;
		  SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
		  AddNaturalHomomorphismsPool(G,
		      KernelOfMultiplicativeGeneralMapping(op),
					      op,Length(bb));
		else
		  k:=[]; # do not trigger improvement
		fi;
	      else
		k:=KernelOfMultiplicativeGeneralMapping(op);
		SetSize(Range(op),Index(gimg,k));
		op:=oh*op;
		SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
		AddNaturalHomomorphismsPool(G,
		    KernelOfMultiplicativeGeneralMapping(op),
					    op,Length(bb));

	      fi;
	      # and note whether we got better
	      #improve:=improve or (Size(k)=1);
	      if Size(k)=1 and Length(bb)<bestdeg then
		improve:=true;
		bestdeg:=Length(bb);
		bestblock:=bb;
		bestop:=op;
	      fi;
	    fi;
	    # break the test loop if we found a fairly small block system
	    # (iterate greedily immediately)
	    if improve and bestdeg<i then
	      i:=Length(dom);
	    fi;
	    i:=i+1;
	  od;
	else
	  Info(InfoFactor,2,"try only one system");
	  op:=1;# remove old homomorphism to free memory
	  if bdom<>fail then
	    b:=Set(List(b,i->Immutable(Union(bdom{i}))));
	  fi;
	  op:=ActionHomomorphism(gimg,b,OnSets,"surjective");
	  if HasSize(gimg) and not HasStabChainMutable(gimg) then
	    sto:=StabChainOptions(Range(op));
	    sto.limit:=Size(gimg);
	    # try only with random (will exclude some chances, but is
	    # quicker. If the size is OK we have a proof anyhow).
	    sto.random:=100;
#	    if gimgbas<>false then
#	      SetBaseOfGroup(Range(op),
#	         List(gimgbas,i->PositionProperty(b,j->i in j)));
#	    fi;
	    if Size(Range(op))=Size(gimg) then
	      sto.random:=1000;
	      k:=TrivialSubgroup(gimg);
	      op:=oh*op;
	      SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
	      AddNaturalHomomorphismsPool(G,
		  KernelOfMultiplicativeGeneralMapping(op),
					  op,Length(b));
	    else
	      k:=[]; # do not trigger improvement
	    fi;
	  else
	    k:=KernelOfMultiplicativeGeneralMapping(op);
	    SetSize(Range(op),Index(gimg,k));
	    # keep action knowledge
	    op:=oh*op;
	    SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
	    AddNaturalHomomorphismsPool(G,
		KernelOfMultiplicativeGeneralMapping(op),
					op,Length(b));
	  fi;

	  if Size(k)=1 then
	    improve:=true;
	    bestblock:=b;
	    bestop:=op;
	  fi;
	fi;
	if improve then
	  # update mapping
	  bdom:=bestblock;
	  img:=Image(bestop,G);
	  dom:=MovedPoints(img);
	fi;
      fi;
    until improve=false;
  fi;
  Info(InfoFactor,1,"end of blocks search");
  return DegreeNaturalHomomorphismsPool(G,N);
end);

#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"generic for finite groups",IsIdenticalObj,
  [IsGroup and IsFinite,IsGroup],0,
function(G,N)
  return GenericFindActionKernel(G,N);
end);

InstallMethod(FindActionKernel,"general case: can't do",IsIdenticalObj,
  [IsGroup,IsGroup],0,
function(G,N)
  return fail;
end);


#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . permgrp
##
InstallMethod(FindActionKernel,"perm",IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,N)
local pool, dom, bestdeg, blocksdone, o, s, badnormals, cnt, v, u, oo, m,
      badcomb, idx, i, comb;

  if Index(G,N)<50 then
    # small index, anything is OK
    return GenericFindActionKernel(G,N);
  else
    # get the known ones, including blocks &c. which might be of use
    DoCheapActionImages(G);

    pool:=NaturalHomomorphismsPool(G);
    dom:=MovedPoints(G);

    # store regular to have one anyway
    bestdeg:=Index(G,N);
    AddNaturalHomomorphismsPool(G,N,N,bestdeg);

    # check if there are multiple orbits
    o:=Orbits(G,MovedPoints(G));
    s:=List(o,i->Stabilizer(G,i,OnTuples));
    if not ForAny(s,i->IsSubset(N,i)) then
      Info(InfoFactor,2,"Try reduction to orbits");
      s:=List(s,i->ClosureGroup(i,N));
      if Intersection(s)=N then
	Info(InfoFactor,1,"Reduction to orbits will do");
	List(s,i->NaturalHomomorphismByNormalSubgroup(G,i));
      fi;
    fi;
    CloseNaturalHomomorphismsPool(G,N);

    bestdeg:=DegreeNaturalHomomorphismsPool(G,N);

    Info(InfoFactor,1,"Orbits and known, best Index ",bestdeg);

    blocksdone:=false;
    # use subgroup that fixes a base of N
    # get orbits of a suitable stabilizer.
    o:=BaseOfGroup(N);
    s:=Stabilizer(G,o,OnTuples);
    badnormals:=Filtered(pool.ker,i->IsSubset(i,N) and Size(i)>Size(N));
    if Size(s)>1 and Index(G,s)/Size(N)<2000 and bestdeg>Index(G,s) then
      cnt:=Filtered(OrbitsDomain(s,dom),i->Length(i)>1);
      for i in cnt do
	v:=ClosureGroup(N,Stabilizer(s,i[1]));
	if Size(v)>Size(N) and Index(G,v)<2000 
	  and not ForAny(badnormals,j->IsSubset(v,j)) then
	  u:=Core(G,v);
	  if Size(u)>Size(N) and IsSubset(u,N) and not u in badnormals then
	    Add(badnormals,u);
	  fi;
	  AddNaturalHomomorphismsPool(G,u,v,Index(G,v));
	fi;
      od;

      # try also intersections
      CloseNaturalHomomorphismsPool(G,N);

      bestdeg:=DegreeNaturalHomomorphismsPool(G,N);

      Info(InfoFactor,1,"Base Stabilizer and known, best Index ",bestdeg);

      if bestdeg<500 and bestdeg<Index(G,N) then
	# should be better...
	bestdeg:=ImproveActionDegreeByBlocks(G,N,
	  GetNaturalHomomorphismsPool(G,N));
	blocksdone:=true;
	Info(InfoFactor,2,"Blocks improve to ",bestdeg);
      fi;
    fi;

    # then we should look at the orbits of the normal subgroup to see,
    # whether anything stabilizing can be of use
    o:=Filtered(OrbitsDomain(N,dom),i->Length(Orbit(G,i[1]))>Length(i));
    Apply(o,Set);
    oo:=OrbitsDomain(G,o,OnSets);
    s:=G;
    for i in oo do
      s:=StabilizerOfBlockNC(s,i[1]);
    od;
    Info(InfoFactor,2,"stabilizer of index ",Index(G,s));

    if not ForAny(badnormals,j->IsSubset(s,j)) then
      m:=Core(G,s); # the normal subgroup we get this way.
      if Size(m)>Size(N) and IsSubset(m,N) and not m in badnormals then
	Add(badnormals,m);
      fi;
      AddNaturalHomomorphismsPool(G,m,s,Index(G,s));
    else
      m:=G; # guaranteed fail
    fi;

    if Size(m)=Size(N) and Index(G,s)<bestdeg then
      bestdeg:=Index(G,s);
      blocksdone:=false;
      Info(InfoFactor,2,"Orbits Stabilizer improves to index ",bestdeg);
    elif Size(m)>Size(N) then
      # no hard work for trivial cases
      if 2*Index(G,N)>Length(o) then
	# try to find a subgroup, which does not contain any part of m
	# For wreath products (the initial aim), the following method works
	# fairly well
	v:=Subgroup(G,Filtered(GeneratorsOfGroup(G),i->not i in m));
	v:=SmallGeneratingSet(v);

	cnt:=1;
	badcomb:=[];
	repeat
	  Info(InfoFactor,3,"Trying",cnt);
	  for comb in Combinations([1..Length(v)],cnt) do
    #Print(">",comb,"\n");
	    if not ForAny(badcomb,j->IsSubset(comb,j)) then
	      u:=SubgroupNC(G,v{comb});
	      o:=ClosureGroup(N,u);
	      idx:=Size(G)/Size(o);
	      if idx<10 and Factorial(idx)*Size(N)<Size(G) then
		# the permimage won't be sufficiently large
		AddSet(badcomb,Immutable(comb));
	      fi;
	      if idx<bestdeg and Size(G)>Size(o) 
	      and not ForAny(badnormals,i->IsSubset(o,i)) then
		m:=Core(G,o);
		if Size(m)>Size(N) and IsSubset(m,N) then
		  Info(InfoFactor,3,"Core ",comb," failed");
		  AddSet(badcomb,Immutable(comb));
		  if not m in badnormals then
		    Add(badnormals,m);
		  fi;
		fi;
		if idx<bestdeg and Size(m)=Size(N) then
		  Info(InfoFactor,3,"Core ",comb," succeeded");
		  bestdeg:=idx;
		  AddNaturalHomomorphismsPool(G,N,o,bestdeg);
		  blocksdone:=false;
		  cnt:=0;
		fi;
	      fi;
	    fi;
	  od;
	  cnt:=cnt+1;
	until cnt>Length(v);
      fi;
    fi;

    Info(InfoFactor,2,"Orbits Stabilizer, Best Index ",bestdeg);
    # first force blocks
    if (not blocksdone) and bestdeg<200 and bestdeg<Index(G,N) then
      Info(InfoFactor,3,"force blocks");
      bestdeg:=ImproveActionDegreeByBlocks(G,N,
	GetNaturalHomomorphismsPool(G,N));
      blocksdone:=true;
      Info(InfoFactor,2,"Blocks improve to ",bestdeg);
    fi;

    if bestdeg=Index(G,N) or 
      (bestdeg>400 and not(bestdeg<=2*NrMovedPoints(G))) then
      if GenericFindActionKernel(G,N,bestdeg,s)<>fail then
	blocksdone:=true;
      fi;
      Info(InfoFactor,1,"  Random search found ",
           DegreeNaturalHomomorphismsPool(G,N));
    #if (bestdeg>500 and Index(G,o)<5000) or Index(G,o)<bestdeg then
    #  # tell 'IODBB' not to doo too much blocksearch
    #  o:=ImproveActionDegreeByBlocks(G,o,N,bestdeg<Index(G,o));
    #  Info(InfoFactor,1,"  Blocks improve to ",Index(G,o),"\n");
    #fi;
    fi;

    if not blocksdone then
      ImproveActionDegreeByBlocks(G,N,GetNaturalHomomorphismsPool(G,N));
    fi;

    Info(InfoFactor,3,"return hom");
    return GetNaturalHomomorphismsPool(G,N);
    return o;
  fi;

end);

#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"Niceo",IsIdenticalObj,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,N)
local hom,hom2;
  hom:=NiceMonomorphism(G);
  hom2:=GenericFindActionKernel(Image(hom,G),Image(hom,N));
  if hom2<>fail then
    return hom*hom2;
  else
    return hom;
  fi;
end);

BindGlobal("FACTGRP_TRIV",Group([],()));

#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> )  . .  mapping G ->> G/N
##                             this function returns an epimorphism from G
##  with kernel N. The range of this mapping is a suitable (isomorphic) 
##  permutation group (with which we can compute much easier).
InstallMethod(NaturalHomomorphismByNormalSubgroupOp,
  "search for operation",IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,N)
local h;

  # catch the trivial case N=G 
  if CanComputeIndex(G,N) and Index(G,N)=1 then
    h:=FACTGRP_TRIV;  # a new group is created
    h:=GroupHomomorphismByImagesNC( G, h, GeneratorsOfGroup( G ),
           List( GeneratorsOfGroup( G ), i -> () ));  # a new group is created
    SetKernelOfMultiplicativeGeneralMapping( h, G );
    return h;
  fi;
 
  # catch trivial case N=1 (IsTrivial might not be set)
  if (HasSize(N) and Size(N)=1) or (HasGeneratorsOfGroup(N) and
    ForAll(GeneratorsOfGroup(N),IsOne)) then
    return IdentityMapping(G);
  fi;

  # check, whether we already know a factormap
  DoCheapActionImages(G);
  h:=GetNaturalHomomorphismsPool(G,N);
  if h=fail and HasIsSolvableGroup(N) and HasIsSolvableGroup(G) and
    IsSolvableGroup(N) and not IsSolvableGroup(G) and HasRadicalGroup(G) 
    and N=RadicalGroup(G)
    then
    # did we just compute it?
    h:=GetNaturalHomomorphismsPool(G,N);
  fi;
  if h=fail then
    # now we try to find a suitable operation
    h:=FindActionKernel(G,N);
    if h<>fail then
      Info(InfoFactor,1,"Action of degree ",
	Length(MovedPoints(Range(h)))," found");
    else
      Error("I don't know how to find a natural homomorphism for <N> in <G>");
      # nothing had been found, Desperately one could try again, but that
      # would create a possible infinite loop.
      h:= NaturalHomomorphismByNormalSubgroup( G, N );
    fi;
  fi;
  # return the map
  return h;
end);

#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . .  for solvable factors
##
NH_TRYPCGS_LIMIT:=30000;
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
  "test if known/try solvable factor for permutation groups",
  IsIdenticalObj, [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local   map,  pcgs, A, filter,p,i;
    
  if KnownNaturalHomomorphismsPool(G,N) then
    A:=DegreeNaturalHomomorphismsPool(G,N);
    if A<50 or (IsInt(A) and A<IndexNC(G,N)/LogInt(IndexNC(G,N),2)^2) then
      map:=GetNaturalHomomorphismsPool(G,N);
      if map<>fail then
	Info(InfoFactor,2,"use stored map");
	return map;
      fi;
    fi;
  fi;

  if Index(G,N)=1 or Size(N)=1
    or Minimum(Index(G,N),NrMovedPoints(G))>NH_TRYPCGS_LIMIT then
    TryNextMethod();
  fi;

  # Make  a pcgs   based on  an  elementary   abelian series (good  for  ag
  # routines).
  pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
  if not IsModuloPcgs( pcgs )  then
      TryNextMethod();
  fi;

  # Construct or look up the pcp group <A>.
  A:=CreateIsomorphicPcGroup(pcgs,false,false);

  UseFactorRelation( G, N, A );

  # Construct the epimorphism from <G> onto <A>.
  map := rec();
  filter := IsPermGroupGeneralMappingByImages and
            IsToPcGroupGeneralMappingByImages and
            IsGroupGeneralMappingByPcgs and
            IsMapping and IsSurjective and
            HasSource and HasRange and 
            HasPreImagesRange and HasImagesSource and
            HasKernelOfMultiplicativeGeneralMapping;

  map.sourcePcgs       := pcgs;
  map.sourcePcgsImages := GeneratorsOfGroup( A );

  ObjectifyWithAttributes( map,
  NewType( GeneralMappingsFamily
	  ( ElementsFamily( FamilyObj( G ) ),
	    ElementsFamily( FamilyObj( A ) ) ), filter ), 
	    Source,G,
	    Range,A,
	    PreImagesRange,G,
	    ImagesSource,A,
	    KernelOfMultiplicativeGeneralMapping,N
	    );
  
  return map;
end );

#############################################################################
##
#F  PullBackNaturalHomomorphismsPool( <hom> )
##
InstallGlobalFunction(PullBackNaturalHomomorphismsPool,function(hom)
local s,r,nat,k;
  s:=Source(hom);
  r:=Range(hom);
  for k in NaturalHomomorphismsPool(r).ker do
    nat:=hom*NaturalHomomorphismByNormalSubgroup(r,k);
    AddNaturalHomomorphismsPool(s,PreImage(hom,k),nat);
  od;
end);

#############################################################################
##
#M  UseFactorRelation( <num>, <den>, <fac> )  . . . .  for perm group factors
##
InstallMethod( UseFactorRelation,
   [ IsGroup and HasSize, IsObject, IsPermGroup ],
   function( num, den, fac )
   local limit;
   if not HasSize( fac ) then
     if HasSize(den) then
       SetSize( fac, Size( num ) / Size( den ) );
     else
       limit := Size( num );
       if IsBound( StabChainOptions(fac).limit ) then
         limit := Minimum( limit, StabChainOptions(fac).limit );
       fi;
       StabChainOptions(fac).limit:=limit;
     fi;
   fi;
   TryNextMethod();
   end );

#############################################################################
##
#E  factgrp.gi  . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##