/usr/share/gap/lib/ffe.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | #############################################################################
##
#W ffe.gd GAP library Werner Nickel
#W & Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares operations for `FFE's.
##
#############################################################################
##
## <#GAPDoc Label="Z">
## <ManSection>
## <Func Name="Z" Arg='p^d' Label="for field size"/>
## <Func Name="Z" Arg='p, d' Label="for prime and degree"/>
##
## <Description>
## For creating elements of a finite field,
## the function <Ref Func="Z" Label="for field size"/> can be used.
## The call <C>Z(<A>p</A>,<A>d</A>)</C>
## (alternatively <C>Z(<A>p</A>^<A>d</A>)</C>)
## returns the designated generator of the multiplicative group of the
## finite field with <A>p^d</A> elements.
## <A>p</A> must be a prime integer.
## <P/>
## &GAP; can represent elements of all finite fields
## <C>GF(<A>p^d</A>)</C> such that either
## (1) <A>p^d</A> <M><= 65536</M> (in which case an extremely efficient
## internal representation is used);
## (2) d = 1, (in which case, for large <A>p</A>, the field is represented
## using the machinery of residue class rings
## (see section <Ref Sect="Residue Class Rings"/>) or
## (3) if the Conway polynomial of degree <A>d</A> over the field with
## <A>p</A> elements is known, or can be computed
## (see <Ref Oper="ConwayPolynomial"/>).
## <P/>
## If you attempt to construct an element of <C>GF(<A>p^d</A>)</C> for which
## <A>d</A> <M>> 1</M> and the relevant Conway polynomial is not known,
## and not necessarily easy to find
## (see <Ref Func="IsCheapConwayPolynomial"/>),
## then &GAP; will stop with an error and enter the break loop.
## If you leave this break loop by entering <C>return;</C>
## &GAP; will attempt to compute the Conway polynomial,
## which may take a very long time.
## <P/>
## The root returned by <Ref Func="Z" Label="for field size"/> is a
## generator of the multiplicative group of the finite field with <A>p^d</A>
## elements, which is cyclic.
## The order of the element is of course <A>p^d</A> <M>-1</M>.
## The <A>p^d</A> <M>-1</M> different powers of the root
## are exactly the nonzero elements of the finite field.
## <P/>
## Thus all nonzero elements of the finite field with <A>p^d</A> elements
## can be entered as <C>Z(<A>p^d</A>)^</C><M>i</M>.
## Note that this is also the form that &GAP; uses to output those elements
## when they are stored in the internal representation.
## In larger fields, it is more convenient to enter and print elements as
## linear combinations of powers of the primitive element, see section
## <Ref Sect="Printing, Viewing and Displaying Finite Field Elements"/>.
## <P/>
## The additive neutral element is <C>0 * Z(<A>p</A>)</C>.
## It is different from the integer <C>0</C> in subtle ways.
## First <C>IsInt( 0 * Z(<A>p</A>) )</C> (see <Ref Func="IsInt"/>) is
## <K>false</K> and <C>IsFFE( 0 * Z(<A>p</A>) )</C>
## (see <Ref Func="IsFFE"/>) is <K>true</K>, whereas it is
## just the other way around for the integer <C>0</C>.
## <P/>
## The multiplicative neutral element is <C>Z(<A>p</A>)^0</C>.
## It is different from the integer <C>1</C> in subtle ways.
## First <C>IsInt( Z(<A>p</A>)^0 )</C> (see <Ref Func="IsInt"/>)
## is <K>false</K> and <C>IsFFE( Z(<A>p</A>)^0 )</C>
## (see <Ref Func="IsFFE"/>) is <K>true</K>, whereas it
## is just the other way around for the integer <C>1</C>.
## Also <C>1+1</C> is <C>2</C>,
## whereas, e.g., <C>Z(2)^0 + Z(2)^0</C> is <C>0 * Z(2)</C>.
## <P/>
## The various roots returned by <Ref Func="Z" Label="for field size"/>
## for finite fields of the same characteristic are compatible in the
## following sense.
## If the field <C>GF(<A>p</A>,</C><M>n</M><C>)</C> is a subfield of the
## field <C>GF(<A>p</A>,</C><M>m</M><C>)</C>, i.e.,
## <M>n</M> divides <M>m</M>,
## then <C>Z</C><M>(<A>p</A>^n) =
## </M><C>Z</C><M>(<A>p</A>^m)^{{(<A>p</A>^m-1)/(<A>p</A>^n-1)}}</M>.
## Note that this is the simplest relation that may hold between a generator
## of <C>GF(<A>p</A>,</C><M>n</M><C>)</C> and
## <C>GF(<A>p</A>,</C><M>m</M><C>)</C>,
## since <C>Z</C><M>(<A>p</A>^n)</M> is an element of order
## <M><A>p</A>^m-1</M> and <C>Z</C><M>(<A>p</A>^m)</M> is an element
## of order <M><A>p</A>^n-1</M>.
## This is achieved by choosing <C>Z(<A>p</A>)</C> as the smallest
## primitive root modulo <A>p</A> and <C>Z(</C><A>p^n</A><C>)</C> as a root
## of the <M>n</M>-th <E>Conway polynomial</E>
## (see <Ref Func="ConwayPolynomial"/>) of characteristic <A>p</A>.
## Those polynomials were defined by J. H. Conway,
## and many of them were computed by R. A. Parker.
## <P/>
## <Example><![CDATA[
## gap> a:= Z( 32 );
## Z(2^5)
## gap> a+a;
## 0*Z(2)
## gap> a*a;
## Z(2^5)^2
## gap> b := Z(3,12);
## z
## gap> b*b;
## z2
## gap> b+b;
## 2z
## gap> Print(b^100,"\n");
## Z(3)^0+Z(3,12)^5+Z(3,12)^6+2*Z(3,12)^8+Z(3,12)^10+Z(3,12)^11
## ]]></Example>
## <Log><![CDATA[
## gap> Z(11,40);
## Error, Conway Polynomial 11^40 will need to computed and might be slow
## return to continue called from
## FFECONWAY.ZNC( p, d ) called from
## <function>( <arguments> ) called from read-eval-loop
## Entering break read-eval-print loop ...
## you can 'quit;' to quit to outer loop, or
## you can 'return;' to continue
## brk>
## ]]></Log>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
## <#GAPDoc Label="[2]{ffe}">
## Since finite field elements are scalars,
## the operations <Ref Func="Characteristic"/>,
## <Ref Func="One"/>, <Ref Func="Zero"/>, <Ref Func="Inverse"/>,
## <Ref Func="AdditiveInverse"/>, <Ref Func="Order"/> can be applied to
## them (see <Ref Sect="Attributes and Properties of Elements"/>).
## Contrary to the situation with other scalars,
## <Ref Attr="Order"/> is defined also for the zero element
## in a finite field, with value <C>0</C>.
## <P/>
## <Example><![CDATA[
## gap> Characteristic( Z( 16 )^10 ); Characteristic( Z( 9 )^2 );
## 2
## 3
## gap> Characteristic( [ Z(4), Z(8) ] );
## 2
## gap> One( Z(9) ); One( 0*Z(4) );
## Z(3)^0
## Z(2)^0
## gap> Inverse( Z(9) ); AdditiveInverse( Z(9) );
## Z(3^2)^7
## Z(3^2)^5
## gap> Order( Z(9)^7 );
## 8
## ]]></Example>
## <#/GAPDoc>
##
#############################################################################
##
## <#GAPDoc Label="DefaultField:ffe">
## <ManSection>
## <Meth Name="DefaultField" Arg='list' Label="for finite field elements"/>
## <Meth Name="DefaultRing" Arg='list' Label="for finite field elements"/>
##
## <Description>
## <Ref Func="DefaultField" Label="for finite field elements"/> and
## <Ref Func="DefaultRing" Label="for finite field elements"/>
## for finite field elements are defined to return the <E>smallest</E> field
## containing the given elements.
## <P/>
## <Example><![CDATA[
## gap> DefaultField( [ Z(4), Z(4)^2 ] ); DefaultField( [ Z(4), Z(8) ] );
## GF(2^2)
## GF(2^6)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#C IsFFE(<obj>)
#C IsFFECollection(<obj>)
#C IsFFECollColl(<obj>)
##
## <#GAPDoc Label="IsFFE">
## <ManSection>
## <Filt Name="IsFFE" Arg='obj' Type='Category'/>
## <Filt Name="IsFFECollection" Arg='obj' Type='Category'/>
## <Filt Name="IsFFECollColl" Arg='obj' Type='Category'/>
## <Filt Name="IsFFECollCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## Objects in the category <Ref Func="IsFFE"/> are used to implement
## elements of finite fields.
## In this manual, the term <E>finite field element</E> always means an
## object in <Ref Func="IsFFE"/>.
## All finite field elements of the same characteristic form a family in
## &GAP; (see <Ref Sect="Families"/>).
## Any collection of finite field elements
## (see <Ref Func="IsCollection"/>) lies in
## <Ref Func="IsFFECollection"/>, and a collection of such collections
## (e.g., a matrix of finite field elements) lies in
## <Ref Func="IsFFECollColl"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryKernel( "IsFFE",
IsScalar and IsAssociativeElement and IsCommutativeElement
and IsAdditivelyCommutativeElement and IsZDFRE,
IS_FFE );
DeclareCategoryCollections( "IsFFE" );
DeclareCategoryCollections( "IsFFECollection" );
DeclareCategoryCollections( "IsFFECollColl" );
#############################################################################
##
#C IsLexOrderedFFE(<ffe>)
#C IsLogOrderedFFE(<ffe>)
##
## <#GAPDoc Label="IsLexOrderedFFE">
## <ManSection>
## <Filt Name="IsLexOrderedFFE" Arg='ffe' Type='Category'/>
## <Filt Name="IsLogOrderedFFE" Arg='ffe' Type='Category'/>
##
## <Description>
## Elements of finite fields can be compared using the operators <C>=</C>
## and <C><</C>.
## The call <C><A>a</A> = <A>b</A></C> returns <K>true</K> if and only if
## the finite field elements <A>a</A> and <A>b</A> are equal.
## Furthermore <C><A>a</A> < <A>b</A></C> tests whether <A>a</A> is
## smaller than <A>b</A>.
## The exact behaviour of this comparison depends on which of two categories
## the field elements belong to:
## <P/>
## Finite field elements are ordered in &GAP; (by <Ref Func="\<"/>)
## first by characteristic and then by their degree
## (i.e. the sizes of the smallest fields containing them).
## Amongst irreducible elements of a given field, the ordering
## depends on which of these categories the elements of the field belong to
## (all irreducible elements of a given field should belong to the same one)
## <P/>
## Elements in <Ref Filt="IsLexOrderedFFE"/> are ordered lexicographically
## by their coefficients with respect to the canonical basis of the field.
## <P/>
## Elements in <Ref Filt="IsLogOrderedFFE"/> are ordered according to their
## discrete logarithms with respect to the <Ref Func="PrimitiveElement"/>
## attribute of the field.
## For the comparison of finite field elements with other &GAP; objects,
## see <Ref Sect="Comparisons"/>.
## <P/>
## <Example><![CDATA[
## gap> Z( 16 )^10 = Z( 4 )^2; # illustrates embedding of GF(4) in GF(16)
## true
## gap> 0 < 0*Z(101);
## true
## gap> Z(256) > Z(101);
## false
## gap> Z(2,20) < Z(2,20)^2; # this illustrates the lexicographic ordering
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsLexOrderedFFE", IsFFE);
DeclareCategory("IsLogOrderedFFE", IsFFE);
InstallTrueMethod(IsLogOrderedFFE, IsFFE and IsInternalRep);
#############################################################################
##
#C IsFFEFamily
##
## <ManSection>
## <Filt Name="IsFFEFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsFFE" );
#############################################################################
##
#F FFEFamily( <p> )
##
## is the family of finite field elements in characteristic <p>.
##
DeclareGlobalFunction( "FFEFamily" );
#############################################################################
##
#V FAMS_FFE_LARGE
##
## <ManSection>
## <Var Name="FAMS_FFE_LARGE"/>
##
## <Description>
## At position 1 the ordered list of characteristics is stored,
## at position 2 the families of field elements of these characteristics.
## <P/>
## Known families of FFE in characteristic at most <C>MAXSIZE_GF_INTERNAL</C>
## are stored via the types in the list <C>TYPE_FFE</C>, the default type of
## elements in characteristic <M>p</M> at position <M>p</M>.
## </Description>
## </ManSection>
##
BIND_GLOBAL( "FAMS_FFE_LARGE", [ [], [] ] );
#############################################################################
##
#V GALOIS_FIELDS
##
## <ManSection>
## <Var Name="GALOIS_FIELDS"/>
##
## <Description>
## global list of finite fields <C>GF( <A>p</A>^<A>d</A> )</C>,
## the field of size <M>p^d</M> is stored in <C>GALOIS_FIELDS[<A>p</A>][<A>d</A>]</C>, provided
## p^d < MAXSIZE_GF_INTERNAL. Larger fields are stored in the FFEFamily of the
## appropriate characteristic
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "GALOIS_FIELDS",
"list of lists, GALOIS_FIELDS[p][n] = GF(p^n) if bound" );
#############################################################################
##
#O LargeGaloisField( <p>^<n> )
#O LargeGaloisField( <p>, <n> )
##
## <ManSection>
## <Oper Name="LargeGaloisField" Arg='p^n'/>
## <Oper Name="LargeGaloisField" Arg='p, n'/>
##
## <Description>
## Ideally these would be declared for IsPosInt, but this
## causes problems with reading order.
## <P/>
## <!-- other construction possibilities?-->
## </Description>
## </ManSection>
##
DeclareOperation( "LargeGaloisField", [IS_INT] );
DeclareOperation( "LargeGaloisField", [IS_INT, IS_INT] );
#############################################################################
##
#F GaloisField( <p>^<d> ) . . . . . . . . . . create a finite field object
#F GF( <p>^<d> )
#F GaloisField( <p>, <d> )
#F GF( <p>, <d> )
#F GaloisField( <subfield>, <d> )
#F GF( <subfield>, <d> )
#F GaloisField( <p>, <pol> )
#F GF( <p>, <pol> )
#F GaloisField( <subfield>, <pol> )
#F GF( <subfield>, <pol> )
##
## <#GAPDoc Label="GaloisField">
## <ManSection>
## <Func Name="GaloisField" Arg='p^d' Label="for field size"/>
## <Func Name="GF" Arg='p^d' Label="for field size"/>
## <Func Name="GaloisField" Arg='p, d'
## Label="for characteristic and degree"/>
## <Func Name="GF" Arg='p, d' Label="for characteristic and degree"/>
## <Func Name="GaloisField" Arg='subfield, d'
## Label="for subfield and degree"/>
## <Func Name="GF" Arg='subfield, d' Label="for subfield and degree"/>
## <Func Name="GaloisField" Arg='p, pol'
## Label="for characteristic and polynomial"/>
## <Func Name="GF" Arg='p, pol' Label="for characteristic and polynomial"/>
## <Func Name="GaloisField" Arg='subfield, pol'
## Label="for subfield and polynomial"/>
## <Func Name="GF" Arg='subfield, pol' Label="for subfield and polynomial"/>
##
## <Description>
## <Ref Func="GaloisField" Label="for field size"/> returns a finite field.
## It takes two arguments.
## The form <C>GaloisField( <A>p</A>, <A>d</A> )</C>,
## where <A>p</A>, <A>d</A> are integers,
## can also be given as <C>GaloisField( <A>p</A>^<A>d</A> )</C>.
## <Ref Func="GF" Label="for field size"/> is an abbreviation for
## <Ref Func="GaloisField" Label="for field size"/>.
## <P/>
## The first argument specifies the subfield <M>S</M> over which the new
## field is to be taken.
## It can be a prime integer or a finite field.
## If it is a prime <A>p</A>, the subfield is the prime field of this
## characteristic.
## <P/>
## The second argument specifies the extension.
## It can be an integer or an irreducible polynomial over the field
## <M>S</M>.
## If it is an integer <A>d</A>, the new field is constructed as the
## polynomial extension w.r.t. the Conway polynomial
## (see <Ref Func="ConwayPolynomial"/>)
## of degree <A>d</A> over <M>S</M>.
## If it is an irreducible polynomial <A>pol</A> over <M>S</M>,
## the new field is constructed as polynomial extension of <M>S</M>
## with this polynomial;
## in this case, <A>pol</A> is accessible as the value of
## <Ref Func="DefiningPolynomial"/> for the new field,
## and a root of <A>pol</A> in the new field is accessible as the value of
## <Ref Func="RootOfDefiningPolynomial"/>.
## <P/>
## Note that the subfield over which a field was constructed determines over
## which field the Galois group, conjugates, norm, trace, minimal
## polynomial, and trace polynomial are computed
## (see <Ref Oper="GaloisGroup" Label="of field"/>,
## <Ref Func="Conjugates"/>, <Ref Func="Norm"/>,
## <Ref Attr="Trace" Label="for a field element"/>,
## <Ref Oper="MinimalPolynomial" Label="over a field"/>,
## <Ref Func="TracePolynomial"/>).
## <P/>
## The field is regarded as a vector space
## (see <Ref Chap="Vector Spaces"/>) over the given subfield,
## so this determines the dimension and the canonical basis of the field.
## <P/>
## <Example><![CDATA[
## gap> f1:= GF( 2^4 );
## GF(2^4)
## gap> Size( GaloisGroup ( f1 ) );
## 4
## gap> BasisVectors( Basis( f1 ) );
## [ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ]
## gap> f2:= GF( GF(4), 2 );
## AsField( GF(2^2), GF(2^4) )
## gap> Size( GaloisGroup( f2 ) );
## 2
## gap> BasisVectors( Basis( f2 ) );
## [ Z(2)^0, Z(2^4) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GaloisField" );
DeclareSynonym( "FiniteField", GaloisField );
DeclareSynonym( "GF", GaloisField );
#############################################################################
##
#A DegreeFFE( <z> )
#A DegreeFFE( <vec> )
#A DegreeFFE( <mat> )
##
## <#GAPDoc Label="DegreeFFE">
## <ManSection>
## <Oper Name="DegreeFFE" Arg='z' Label="for a FFE"/>
## <Oper Name="DegreeFFE" Arg='vec' Label="for a vector of FFEs"/>
## <Oper Name="DegreeFFE" Arg='mat' Label="for a matrix of FFEs"/>
##
## <Description>
## <Ref Func="DegreeFFE" Label="for a FFE"/> returns the degree of the
## smallest finite field <A>F</A> containing the element <A>z</A>,
## respectively all elements of the row vector <A>vec</A> over a finite
## field (see <Ref Chap="Row Vectors"/>),
## or the matrix <A>mat</A> over a finite field
## (see <Ref Chap="Matrices"/>).
## <P/>
## <Example><![CDATA[
## gap> DegreeFFE( Z( 16 )^10 );
## 2
## gap> DegreeFFE( Z( 16 )^11 );
## 4
## gap> DegreeFFE( [ Z(2^13), Z(2^10) ] );
## 130
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DegreeFFE", IsFFE );
#############################################################################
##
#O LogFFE( <z>, <r> )
##
## <#GAPDoc Label="LogFFE">
## <ManSection>
## <Oper Name="LogFFE" Arg='z, r'/>
##
## <Description>
## <Ref Func="LogFFE"/> returns the discrete logarithm of the element
## <A>z</A> in a finite field with respect to the root <A>r</A>.
## An error is signalled if <A>z</A> is zero.
## <K>fail</K> is returned if <A>z</A> is not a power of <A>r</A>.
## <P/>
## The <E>discrete logarithm</E> of the element <A>z</A> with respect to
## the root <A>r</A> is the smallest nonnegative integer <M>i</M> such that
## <M><A>r</A>^i = <A>z</A></M> holds.
## <P/>
## <Example><![CDATA[
## gap> LogFFE( Z(409)^116, Z(409) ); LogFFE( Z(409)^116, Z(409)^2 );
## 116
## 58
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LogFFE", [ IsFFE, IsFFE ] );
#############################################################################
##
#A IntFFE( <z> )
##
## <#GAPDoc Label="IntFFE">
## <ManSection>
## <Attr Name="IntFFE" Arg='z'/>
## <Meth Name="Int" Arg='z' Label="for a FFE"/>
##
## <Description>
## <Ref Attr="IntFFE"/> returns the integer corresponding to the element
## <A>z</A>, which must lie in a finite prime field.
## That is, <Ref Attr="IntFFE"/> returns the smallest nonnegative integer
## <M>i</M> such that <M>i</M><C> * One( </C><A>z</A><C> ) = </C><A>z</A>.
## <P/>
## The correspondence between elements from a finite prime field of
## characteristic <M>p</M> (for <M>p < 2^{16}</M>) and the integers
## between <M>0</M> and <M>p-1</M> is defined by
## choosing <C>Z(</C><M>p</M><C>)</C> the element corresponding to the
## smallest primitive root mod <M>p</M>
## (see <Ref Func="PrimitiveRootMod"/>).
## <P/>
## <Ref Attr="IntFFE"/> is installed as a method for the operation
## <Ref Func="Int"/> with argument a finite field element.
## <P/>
## <Example><![CDATA[
## gap> IntFFE( Z(13) ); PrimitiveRootMod( 13 );
## 2
## 2
## gap> IntFFE( Z(409) );
## 21
## gap> IntFFE( Z(409)^116 ); 21^116 mod 409;
## 311
## 311
## ]]></Example>
##
## See also <Ref Attr="IntFFESymm" Label="for a FFE"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IntFFE", IsFFE );
#############################################################################
##
#A IntFFESymm( <z> )
#A IntFFESymm( <vec> )
##
## <#GAPDoc Label="IntFFESymm">
## <ManSection>
## <Attr Name="IntFFESymm" Arg='z' Label="for a FFE"/>
## <Attr Name="IntFFESymm" Arg='vec' Label="for a vector of FFEs"/>
##
## <Description>
## For a finite prime field element <A>z</A>,
## <Ref Func="IntFFESymm" Label="for a FFE"/> returns the corresponding
## integer of smallest absolute value.
## That is, <Ref Func="IntFFESymm" Label="for a FFE"/> returns the integer
## <M>i</M> of smallest absolute value such that
## <M>i</M><C> * One( </C><A>z</A><C> ) = </C><A>z</A> holds.
## <P/>
## For a vector <A>vec</A> of FFEs, the operation returns the result of
## applying <Ref Func="IntFFESymm" Label="for a vector of FFEs"/>
## to every entry of the vector.
## <P/>
## The correspondence between elements from a finite prime field of
## characteristic <M>p</M> (for <M>p < 2^{16}</M>) and the integers
## between <M>-p/2</M> and <M>p/2</M> is defined by
## choosing <C>Z(</C><M>p</M><C>)</C> the element corresponding to the
## smallest positive primitive root mod <M>p</M>
## (see <Ref Func="PrimitiveRootMod"/>) and reducing results to the
## <M>-p/2 .. p/2</M> range.
## <P/>
## <Example><![CDATA[
## gap> IntFFE(Z(13)^2);IntFFE(Z(13)^3);
## 4
## 8
## gap> IntFFESymm(Z(13)^2);IntFFESymm(Z(13)^3);
## 4
## -5
## ]]></Example>
##
## See also <Ref Attr="IntFFE"/>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IntFFESymm", IsFFE );
#############################################################################
##
#O IntVecFFE( <vecffe> )
##
## <#GAPDoc Label="IntVecFFE">
## <ManSection>
## <Oper Name="IntVecFFE" Arg='vecffe'/>
##
## <Description>
## is the list of integers corresponding to the vector <A>vecffe</A> of
## finite field elements in a prime field (see <Ref Func="IntFFE"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IntVecFFE", [ IsRowVector and IsFFECollection ] );
#T Why is the function `IntFFE' not good enough to handle also row vectors
#T and perhaps matrices of FFEs, in analogy to `DegreeFFE'?
#############################################################################
##
#A AsInternalFFE( <ffe> )
##
## <#GAPDoc Label="AsInternalFFE">
## <ManSection>
## <Attr Name="AsInternalFFE" Arg='ffe'/>
##
## <Description>
## return an internal FFE equal to <A>ffe</A> if one exists, otherwise <C>fail</C>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsInternalFFE", IsFFE);
#############################################################################
##
#E
|