This file is indexed.

/usr/share/gap/lib/fitfree.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#############################################################################
##
#W  fitfree.gd                  GAP library                  Alexander Hulpke
##
##
#Y  Copyright (C) 2012 The GAP Group
##
##  This file contains functions using the trivial-fitting paradigm.
##

BindGlobal("OVERRIDENICE",Maximum(NICE_FLAGS,
	       RankFilter(WITH_HIDDEN_IMPS_FLAGS(FLAGS_FILTER(IsMatrixGroup
	       and IsFinite)))));

#############################################################################
##
#F  CanComputeFittingFree( <grp> ) . . . . .  TF approach is possible
##
##  <#GAPDoc Label="CanComputeFittingFree">
##  <ManSection>
##  <Func Name="CanComputeFittingFree" Arg='grp'/>
##
##  <Description>
##  This filter indicates whether algorithms using the TF-paradigm (Trivial
##  Fitting) can be used for a group, that is whether a method for
##  <Ref Func="FittingFreeLiftSetup"/> is available for <A>grp</A>.
##  Note that this filter may change its value from <K>false</K> to
##  <K>true</K>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "CanComputeFittingFree" );

# to satisfy method installation requirements
InstallTrueMethod(IsFinite,CanComputeFittingFree);
InstallTrueMethod(IsGroup,CanComputeFittingFree);

InstallTrueMethod(CanComputeFittingFree, IsPermGroup);



#############################################################################
##
#A  FittingFreeLiftSetup( <G> )
##
##  <#GAPDoc Label="FittingFreeLiftSetup">
##  <ManSection>
##  <Attr Name="FittingFreeLiftSetup" Arg='G'/>
##
##  <Description>
##  for a finite group <A>G</A>, this returns a record with the following
##  components:
##  <C>radical</C> The solvable radical <M>Rad(G)</M>.
##  <C>pcgs</C> A pcgs for <M>Rad(G)</M> that refines a
##  <M>G</M>-normal series
##  with elementary abelian factors.
##  <C>depths</C>
##  A list of indices in the pcgs, indicating the <M>G</M>-normal subgroups in
##  the series for the pcgs, including an entry for the trivial subgroup.
##  <C>pcisom</C>  An effective isomorphism from a supergroup of <M>Rad(G)</M> to a pc group
##  <C>factorhom</C> A epimorphism from <M>G</M> onto <M>G/Rad(G)</M>,
##  the image group being
##  represented in a way that decomposition into generators will work
##  efficiently. In particular, it is possible to use
##  <Ref Func="PreImagesRepresentative"/> to take the pre-image of elements
##  in the image. For a subgroup <M>U\le G</M>, it is possible to apply
##  <Ref Func="RestrictedMapping"> to the homomorphism to obtain a
##  corresponding homomorphism for <M>U</M>.
##
##  The redundancy amongst the components is deliberate, as the redundant
##  objects can be created at minimal extra cost and not doing so risks the
##  creation of duplicate objects by user code later on.
##  The record may hold other components that are germane to the recognition
##  setup. These components may not be modified by user code.
DeclareAttribute("FittingFreeLiftSetup",IsGroup);

#############################################################################
##
#F  FittingFreeSubgroupSetup( <G>, <U> )
##
##  <#GAPDoc Label="FittingFreeSubgroupSetup">
##  <ManSection>
##  <Attr Name="FittingFreeSubgroupSetup" Arg='G,U'/>
##
##  <Description>
##  for a subgroup <A>U</A> of a finite group <A>G</A>, for which
##  <Ref Func="FittingFreeLiftSetup"> has been computed, this function
##  computes a compatible setup for <A>U</A>. (This information is cached in
##  <A>U</A>
##  for further calculation later.)
##  It returns a record with the following
##  components:
##  <C>parentffs</C> The record returned by
##  <Ref Func="FittingFreeLiftSetup"> for <G>.
##  <C>rest</C> A restriction of 
##  the <C>factorhom</C> for <A>G</A> to <A>U</A>, defined on generators of
##  <A>U</A>.
##  <C>ker</C> The kernel of this map.
##  <C>pcgs</C> A pcgs for this kernel.
##  <C>serdepths</C>
##  For each depth step in the pcgs for the radical of <G>, as stored in
##  <C>parentffs</C>, this indicates the index in <C>pcgs</C> for <A>U</A>,
##  at which this depth is achieved.
##
##  The record may hold other components that are germane to the recognition
##  setup. These components may not be modified by user code.
DeclareGlobalFunction("FittingFreeSubgroupSetup");

# This attribute is used for groups treated by constructive recognition and
# a composition tree. It is declared in the library such that the function
# FittingFreeSubgroupSetup can maintain it.
DeclareAttribute("RecogDecompinfoHomomorphism",IsMapping,"mutable");

#############################################################################
##
#F  SubgroupByFittingFreeData( <G>, <gens>, <imgs>, <ipcgs> )
##
##  <#GAPDoc Label="SubgroupByFittingFreeData">
##  <ManSection>
##  <Attr Name="SubgroupByFittingFreeData" Arg='G,U'/>
##
##  <Description>
##  For a finite group <A>G</A>, for which
##  <Ref Func="FittingFreeLiftSetup"> <A>ffs</A> has been computed,
##  this function returns a subgroup <A>U</A> build from data compatible with
##  <A>ffs</A>: <A>U</A> is the subgroup generated by <A>gens</A> and
##  <A>ipcgs</A>.
##  <A>ipcgs</A> is an induced Pcgs for <M>U\cap Rad(G)</M>, with respect to
##  the Pcgs stored in <A>ffs</A>. <A>imgs</A> are images of <A>gens</A>
##  under <A>ffs<C>.factorhom</C></A>.
DeclareGlobalFunction("SubgroupByFittingFreeData");

# Utility function: function(pcgs,gens,ignoredepths)
# for forming an induced modulo pcgs after correction on the lowest level
# We will be in the situation that an IGS has been corrected only on the
# lowest level, i.e. the inly obstacle to being an IGS is on the lowest
# level. Thus the situation is that of a vector space and we do not need to
# consider commutators and powers, but simply do a Gaussian elimination.
DeclareGlobalFunction("TFMakeInducedPcgsModulo");

# Utility function: Orbit algorithms when acting with a GPCGS
DeclareGlobalFunction("OrbitsRepsAndStabsVectorsMultistage");
DeclareGlobalFunction("OrbitMinimumMultistage");

# utility function: Evaluate the homomorphism to radical factor ``by hand''.
DeclareGlobalFunction("TFEvalRFHom");

#############################################################################
##
#F  FittingFreeElementarySeries( <G>, [<A>, <wholesocle>])
##
##  <#GAPDoc Label="FittingFreeElementarySeries">
##  <ManSection>
##  <Attr Name="FittingFreeElementarySeries" Arg='G,A,wholesocle'/>
##
##  <Description>
##  For a finite group <A>G</A>, for which
##  <Ref Func="FittingFreeLiftSetup"> <A>ffs</A> has been computed,
##  this function returns a subgroup series with elementary factors, each
##  invariant under action by <A>A</A> if given,
##  compatible with radical, socle factor and pker.
##  If <A>wholesocle</A> is given and set to true the socles are not split
##  up according to isomorphism types, but are kept whole.
DeclareGlobalFunction("FittingFreeElementarySeries");

#############################################################################
##
#A  DirectFactorsFittingFreeSocle( <G> )
##
##  <#GAPDoc Label="DirectFactorsFittingFreeSocle">
##  <ManSection>
##  <Attr Name="DirectFactorsFittingFreeSocle" Arg='G'/>
##
##  <Description>
##  for a finite fitting-free group <A>G</A>, this function retuns a list of
##  the direct factors of the socle of <A>G</A>. If <A>G</A> is not
##  fitting-free then <K>fail</K> is returned.
DeclareAttribute("DirectFactorsFittingFreeSocle",IsGroup);

#############################################################################
##
#F  HallViaRadical( <G>, <pi> )
##
DeclareGlobalFunction("HallViaRadical");