/usr/share/gap/lib/fldabnum.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 | #############################################################################
##
#W fldabnum.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares operations for fields consisting of cyclotomics.
##
## Note that we must distinguish abelian number fields and fields
## that consist of cyclotomics.
## (The image of the natural embedding of the rational number field
## into a field of rational functions is of course an abelian number field
## but its elements are not cyclotomics since this would be a property given
## by their family.)
##
#T add rings of integers in abelian number fields!
#T (NumberRing, IsIntegralBasis, NormalBasis)
#############################################################################
##
## Abelian Number Fields
##
## <#GAPDoc Label="[1]{fldabnum}">
## An <E>abelian number field</E> is a field in characteristic zero
## that is a finite dimensional normal extension of its prime field
## such that the Galois group is abelian.
## In &GAP;, one implementation of abelian number fields is given by fields
## of cyclotomic numbers (see Chapter <Ref Chap="Cyclotomic Numbers"/>).
## Note that abelian number fields can also be constructed with
## the more general <Ref Func="AlgebraicExtension"/>,
## a discussion of advantages and disadvantages can be found
## in <Ref Sect="Internally Represented Cyclotomics"/>.
## The functions described in this chapter have been developed for fields
## whose elements are in the filter <Ref Func="IsCyclotomic"/>,
## they may or may not work well for abelian number fields consisting of
## other kinds of elements.
## <P/>
## Throughout this chapter, <M>&QQ;_n</M> will denote the cyclotomic field
## generated by the field <M>&QQ;</M> of rationals together with <M>n</M>-th
## roots of unity.
## <P/>
## In <Ref Sect="Construction of Abelian Number Fields"/>,
## constructors for abelian number fields are described,
## <Ref Sect="Operations for Abelian Number Fields"/> introduces operations
## for abelian number fields,
## <Ref Sect="Integral Bases of Abelian Number Fields"/> deals with the
## vector space structure of abelian number fields, and
## <Ref Sect="Galois Groups of Abelian Number Fields"/> describes field
## automorphisms of abelian number fields,
## <!-- % section about Gaussians here? -->
## <#/GAPDoc>
##
#############################################################################
##
#P IsNumberField( <F> )
##
## <#GAPDoc Label="IsNumberField">
## <ManSection>
## <Prop Name="IsNumberField" Arg='F'/>
##
## <Description>
## <Index>number field</Index>
## returns <K>true</K> if the field <A>F</A> is a finite dimensional
## extension of a prime field in characteristic zero,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsNumberField", IsField );
InstallSubsetMaintenance( IsNumberField,
IsField and IsNumberField, IsField );
InstallIsomorphismMaintenance( IsNumberField,
IsField and IsNumberField, IsField );
#############################################################################
##
#P IsAbelianNumberField( <F> )
##
## <#GAPDoc Label="IsAbelianNumberField">
## <ManSection>
## <Prop Name="IsAbelianNumberField" Arg='F'/>
##
## <Description>
## <Index>abelian number field</Index>
## returns <K>true</K> if the field <A>F</A> is a number field
## (see <Ref Func="IsNumberField"/>)
## that is a Galois extension of the prime field, with abelian Galois group
## (see <Ref Oper="GaloisGroup" Label="of field"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsAbelianNumberField", IsField );
InstallTrueMethod( IsNumberField, IsAbelianNumberField );
InstallSubsetMaintenance( IsAbelianNumberField,
IsField and IsAbelianNumberField, IsField );
InstallIsomorphismMaintenance( IsAbelianNumberField,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#m Conductor( <F> )
##
## The attribute is defined in `cyclotom.g'.
##
InstallIsomorphismMaintenance( Conductor,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#M IsFieldControlledByGaloisGroup( <cycfield> )
##
## For finite fields and abelian number fields
## (independent of the representation of their elements),
## we know the Galois group and have a method for `Conjugates' that does
## not use `MinimalPolynomial'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup,
IsField and IsAbelianNumberField );
#############################################################################
##
#P IsCyclotomicField( <F> )
##
## <#GAPDoc Label="IsCyclotomicField">
## <ManSection>
## <Prop Name="IsCyclotomicField" Arg='F'/>
##
## <Description>
## returns <K>true</K> if the field <A>F</A> is a <E>cyclotomic field</E>,
## i.e., an abelian number field
## (see <Ref Func="IsAbelianNumberField"/>)
## that can be generated by roots of unity.
## <P/>
## <Example><![CDATA[
## gap> IsNumberField( CF(9) ); IsAbelianNumberField( Field( [ ER(3) ] ) );
## true
## true
## gap> IsNumberField( GF(2) );
## false
## gap> IsCyclotomicField( CF(9) );
## true
## gap> IsCyclotomicField( Field( [ Sqrt(-3) ] ) );
## true
## gap> IsCyclotomicField( Field( [ Sqrt(3) ] ) );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCyclotomicField", IsField );
InstallTrueMethod( IsAbelianNumberField, IsCyclotomicField );
InstallIsomorphismMaintenance( IsCyclotomicField,
IsField and IsCyclotomicField, IsField );
#############################################################################
##
#A GaloisStabilizer( <F> )
##
## <#GAPDoc Label="GaloisStabilizer">
## <ManSection>
## <Attr Name="GaloisStabilizer" Arg='F'/>
##
## <Description>
## Let <A>F</A> be an abelian number field
## (see <Ref Func="IsAbelianNumberField"/>) with conductor <M>n</M>,
## say.
## (This means that the <M>n</M>-th cyclotomic field is the smallest
## cyclotomic field containing <A>F</A>,
## see <Ref Func="Conductor" Label="for a cyclotomic"/>.)
## <Ref Func="GaloisStabilizer"/> returns the set of all those integers
## <M>k</M> in the range <M>[ 1 .. n ]</M> such that the field automorphism
## induced by raising <M>n</M>-th roots of unity to the <M>k</M>-th power
## acts trivially on <A>F</A>.
## <P/>
## <Example><![CDATA[
## gap> r5:= Sqrt(5);
## E(5)-E(5)^2-E(5)^3+E(5)^4
## gap> GaloisCyc( r5, 4 ) = r5; GaloisCyc( r5, 2 ) = r5;
## true
## false
## gap> GaloisStabilizer( Field( [ r5 ] ) );
## [ 1, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GaloisStabilizer", IsAbelianNumberField );
InstallIsomorphismMaintenance( GaloisStabilizer,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#V Rationals . . . . . . . . . . . . . . . . . . . . . . field of rationals
#P IsRationals( <obj> )
##
## <#GAPDoc Label="Rationals">
## <ManSection>
## <Var Name="Rationals"/>
## <Prop Name="IsRationals" Arg='obj'/>
##
## <Description>
## <Ref Var="Rationals"/> is the field <M>&QQ;</M> of rational integers,
## as a set of cyclotomic numbers,
## see Chapter <Ref Chap="Cyclotomic Numbers"/> for basic operations,
## Functions for the field <Ref Var="Rationals"/> can be found in the
## chapters <Ref Chap="Fields and Division Rings"/>
## and <Ref Chap="Abelian Number Fields"/>.
## <P/>
## <Ref Prop="IsRationals"/> returns <K>true</K> for a prime field that
## consists of cyclotomic numbers
## –for example the &GAP; object <Ref Var="Rationals"/>–
## and <K>false</K> for all other &GAP; objects.
## <P/>
## <Example><![CDATA[
## gap> Size( Rationals ); 2/3 in Rationals;
## infinity
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable( "Rationals", "field of rationals" );
DeclareSynonym( "IsRationals",
IsCyclotomicCollection and IsField and IsPrimeField );
InstallTrueMethod( IsCyclotomicField, IsRationals );
#############################################################################
##
#V GaussianRationals . . . . . . . . . . . . . . field of Gaussian rationals
#C IsGaussianRationals( <obj> )
##
## <#GAPDoc Label="GaussianRationals">
## <ManSection>
## <Var Name="GaussianRationals"/>
## <Filt Name="IsGaussianRationals" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="GaussianRationals"/> is the field
## <M>&QQ;_4 = &QQ;(\sqrt{{-1}})</M> of Gaussian rationals,
## as a set of cyclotomic numbers,
## see Chapter <Ref Chap="Cyclotomic Numbers"/> for basic operations.
## This field can also be obtained as <C>CF(4)</C>
## (see <Ref Func="CyclotomicField" Label="for (subfield and) conductor"/>).
## <P/>
## The filter <Ref Func="IsGaussianRationals"/> returns <K>true</K> for the
## &GAP; object <Ref Var="GaussianRationals"/>,
## and <K>false</K> for all other &GAP; objects.
## <P/>
## (For details about the field of rationals,
## see Chapter <Ref Func="Rationals"/>.)
## <P/>
## <Example><![CDATA[
## gap> CF(4) = GaussianRationals;
## true
## gap> Sqrt(-1) in GaussianRationals;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable( "GaussianRationals",
"field of Gaussian rationals (identical with CF(4))" );
DeclareCategory( "IsGaussianRationals", IsCyclotomicCollection and IsField );
#T better?
#############################################################################
##
#V CYCLOTOMIC_FIELDS
##
## <ManSection>
## <Var Name="CYCLOTOMIC_FIELDS"/>
##
## <Description>
## At position <A>n</A>, the <A>n</A>-th cyclotomic field is stored.
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "CYCLOTOMIC_FIELDS",
"list, CYCLOTOMIC_FIELDS[n] = CF(n) if bound" );
InstallFlushableValue( CYCLOTOMIC_FIELDS,
[ Rationals,,, GaussianRationals ] );
#############################################################################
##
#F CyclotomicField( [<subfield>, ]<n> ) . create the <n>-th cyclotomic field
#F CyclotomicField( [<subfield>, ]<gens> )
#F CF( [<subfield>, ]<n> )
#F CF( [<subfield>, ]<gens> )
##
## <#GAPDoc Label="CyclotomicField">
## <ManSection>
## <Func Name="CyclotomicField" Arg='[subfield, ]n'
## Label="for (subfield and) conductor"/>
## <Func Name="CyclotomicField" Arg='[subfield, ]gens'
## Label="for (subfield and) generators"/>
## <Func Name="CF" Arg='[subfield, ]n'
## Label="for (subfield and) conductor"/>
## <Func Name="CF" Arg='[subfield, ]gens'
## Label="for (subfield and) generators"/>
##
## <Description>
## The first version creates the <A>n</A>-th cyclotomic field <M>&QQ;_n</M>.
## The second version creates the smallest cyclotomic field containing the
## elements in the list <A>gens</A>.
## In both cases the field can be generated as an extension of a designated
## subfield <A>subfield</A>
## (cf. <Ref Sect="Integral Bases of Abelian Number Fields"/>).
## <P/>
## <Ref Func="CyclotomicField" Label="for (subfield and) conductor"/> can be
## abbreviated to <Ref Func="CF" Label="for (subfield and) conductor"/>,
## this form is used also when &GAP; prints cyclotomic fields.
## <P/>
## Fields constructed with the one argument version of
## <Ref Func="CF" Label="for (subfield and) conductor"/>
## are stored in the global list <C>CYCLOTOMIC_FIELDS</C>,
## so repeated calls of
## <Ref Func="CF" Label="for (subfield and) conductor"/> just fetch these
## field objects after they have been created once.
## <!-- The cache can be flushed by ...-->
## <P/>
## <Example><![CDATA[
## gap> CyclotomicField( 5 ); CyclotomicField( [ Sqrt(3) ] );
## CF(5)
## CF(12)
## gap> CF( CF(3), 12 ); CF( CF(4), [ Sqrt(7) ] );
## AsField( CF(3), CF(12) )
## AsField( GaussianRationals, CF(28) )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CyclotomicField" );
DeclareSynonym( "CF", CyclotomicField );
#############################################################################
##
#V ABELIAN_NUMBER_FIELDS
##
## <ManSection>
## <Var Name="ABELIAN_NUMBER_FIELDS"/>
##
## <Description>
## At position <A>n</A>, those fields with conductor <A>n</A> are stored
## that are not cyclotomic fields.
## The list for cyclotomic fields is <C>CYCLOTOMIC_FIELDS</C>.
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "ABELIAN_NUMBER_FIELDS",
"list of lists, at position [1][n] stabilizers, at [2][n] the fields" );
InstallFlushableValue( ABELIAN_NUMBER_FIELDS, [ [], [] ] );
#############################################################################
##
#F AbelianNumberField( <n>, <stab> ) . . . . create an abelian number field
##
## <#GAPDoc Label="AbelianNumberField">
## <ManSection>
## <Func Name="AbelianNumberField" Arg='n, stab'/>
## <Func Name="NF" Arg='n, stab'/>
##
## <Description>
## For a positive integer <A>n</A> and a list <A>stab</A> of prime residues
## modulo <A>n</A>,
## <Ref Func="AbelianNumberField"/> returns the fixed field of the group
## described by <A>stab</A> (cf. <Ref Func="GaloisStabilizer"/>),
## in the <A>n</A>-th cyclotomic field.
## <Ref Func="AbelianNumberField"/> is mainly thought for internal use
## and for printing fields in a standard way;
## <Ref Func="Field" Label="for several generators"/>
## (cf. also <Ref Sect="Operations for Abelian Number Fields"/>)
## is probably more suitable if one knows generators of the field in
## question.
## <P/>
## <Ref Func="AbelianNumberField"/> can be abbreviated to <Ref Func="NF"/>,
## this form is used also when &GAP; prints abelian number fields.
## <P/>
## Fields constructed with <Ref Func="NF"/> are stored in the global list
## <C>ABELIAN_NUMBER_FIELDS</C>,
## so repeated calls of <Ref Func="NF"/> just fetch these field objects
## after they have been created once.
## <!-- The cache can be flushed by ...-->
## <P/>
## <Example><![CDATA[
## gap> NF( 7, [ 1 ] );
## CF(7)
## gap> f:= NF( 7, [ 1, 2 ] ); Sqrt(-7); Sqrt(-7) in f;
## NF(7,[ 1, 2, 4 ])
## E(7)+E(7)^2-E(7)^3+E(7)^4-E(7)^5-E(7)^6
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AbelianNumberField" );
DeclareSynonym( "NF", AbelianNumberField );
DeclareSynonym( "NumberField", AbelianNumberField );
#############################################################################
##
## <#GAPDoc Label="[2]{fldabnum}">
## Each abelian number field is naturally a vector space over <M>&QQ;</M>.
## Moreover, if the abelian number field <M>F</M> contains the <M>n</M>-th
## cyclotomic field <M>&QQ;_n</M> then <M>F</M> is a vector space over
## <M>&QQ;_n</M>.
## In &GAP;, each field object represents a vector space object over a
## certain subfield <M>S</M>, which depends on the way <M>F</M> was
## constructed.
## The subfield <M>S</M> can be accessed as the value of the attribute
## <Ref Func="LeftActingDomain"/>.
## <P/>
## The return values of <Ref Func="NF"/> and of the one argument
## versions of <Ref Func="CF" Label="for (subfield and) conductor"/>
## represent vector spaces over <M>&QQ;</M>,
## and the return values of the two argument version of
## <Ref Func="CF" Label="for (subfield and) conductor"/>
## represent vector spaces over the field that is given as the first
## argument.
## For an abelian number field <A>F</A> and a subfield <A>S</A> of <A>F</A>,
## a &GAP; object representing <A>F</A> as a vector space over <A>S</A> can
## be constructed using <Ref Func="AsField"/>.
## <P/>
## <Index Subkey="CanonicalBasis">cyclotomic fields</Index>
## Let <A>F</A> be the cyclotomic field <M>&QQ;_n</M>,
## represented as a vector space over the subfield <A>S</A>.
## If <A>S</A> is the cyclotomic field <M>&QQ;_m</M>,
## with <M>m</M> a divisor of <M>n</M>,
## then <C>CanonicalBasis( <A>F</A> )</C> returns the Zumbroich basis of
## <A>F</A> relative to <A>S</A>,
## which consists of the roots of unity <C>E(<A>n</A>)</C>^<A>i</A>
## where <A>i</A> is an element of the list
## <C>ZumbroichBase( <A>n</A>, <A>m</A> )</C>
## (see <Ref Func="ZumbroichBase"/>).
## If <A>S</A> is an abelian number field that is not a cyclotomic field
## then <C>CanonicalBasis( <A>F</A> )</C> returns a normal <A>S</A>-basis
## of <A>F</A>, i.e., a basis that is closed under the field automorphisms
## of <A>F</A>.
## <P/>
## <Index Subkey="CanonicalBasis">abelian number fields</Index>
## Let <A>F</A> be the abelian number field
## <C>NF( <A>n</A>, <A>stab</A> )</C>, with conductor
## <A>n</A>, that is itself not a cyclotomic field,
## represented as a vector space over the subfield <A>S</A>.
## If <A>S</A> is the cyclotomic field <M>&QQ;_m</M>,
## with <M>m</M> a divisor of <M>n</M>,
## then <C>CanonicalBasis( <A>F</A> )</C> returns the Lenstra basis of
## <A>F</A> relative to <A>S</A> that consists of the sums of roots of unity
## described by
## <C>LenstraBase( <A>n</A>, <A>stab</A>, <A>stab</A>, <A>m</A> )</C>
## (see <Ref Func="LenstraBase"/>).
## If <A>S</A> is an abelian number field that is not a cyclotomic field
## then <C>CanonicalBasis( <A>F</A> )</C> returns a normal <A>S</A>-basis
## of <A>F</A>.
## <P/>
## <Example><![CDATA[
## gap> f:= CF(8);; # a cycl. field over the rationals
## gap> b:= CanonicalBasis( f );; BasisVectors( b );
## [ 1, E(8), E(4), E(8)^3 ]
## gap> Coefficients( b, Sqrt(-2) );
## [ 0, 1, 0, 1 ]
## gap> f:= AsField( CF(4), CF(8) );; # a cycl. field over a cycl. field
## gap> b:= CanonicalBasis( f );; BasisVectors( b );
## [ 1, E(8) ]
## gap> Coefficients( b, Sqrt(-2) );
## [ 0, 1+E(4) ]
## gap> f:= AsField( Field( [ Sqrt(-2) ] ), CF(8) );;
## gap> # a cycl. field over a non-cycl. field
## gap> b:= CanonicalBasis( f );; BasisVectors( b );
## [ 1/2+1/2*E(8)-1/2*E(8)^2-1/2*E(8)^3,
## 1/2-1/2*E(8)+1/2*E(8)^2+1/2*E(8)^3 ]
## gap> Coefficients( b, Sqrt(-2) );
## [ E(8)+E(8)^3, E(8)+E(8)^3 ]
## gap> f:= Field( [ Sqrt(-2) ] ); # a non-cycl. field over the rationals
## NF(8,[ 1, 3 ])
## gap> b:= CanonicalBasis( f );; BasisVectors( b );
## [ 1, E(8)+E(8)^3 ]
## gap> Coefficients( b, Sqrt(-2) );
## [ 0, 1 ]
## ]]></Example>
## <#/GAPDoc>
##
#############################################################################
##
#F ZumbroichBase( <n>, <m> )
##
## <#GAPDoc Label="ZumbroichBase">
## <ManSection>
## <Func Name="ZumbroichBase" Arg='n, m'/>
##
## <Description>
## Let <A>n</A> and <A>m</A> be positive integers,
## such that <A>m</A> divides <A>n</A>.
## <Ref Func="ZumbroichBase"/> returns the set of exponents <M>i</M>
## for which <C>E(<A>n</A>)^</C><M>i</M> belongs to the (generalized)
## Zumbroich basis of the cyclotomic field <M>&QQ;_n</M>,
## viewed as a vector space over <M>&QQ;_m</M>.
## <P/>
## This basis is defined as follows.
## Let <M>P</M> denote the set of prime divisors of <A>n</A>,
## <M><A>n</A> = \prod_{{p \in P}} p^{{\nu_p}}</M>, and
## <M><A>m</A> = \prod_{{p \in P}} p^{{\mu_p}}</M>
## with <M>\mu_p \leq \nu_p</M>.
## Let <M>e_l =</M> <C>E</C><M>(l)</M> for any positive integer <M>l</M>,
## and
## <M>\{ e_{{n_1}}^j \}_{{j \in J}} \otimes \{ e_{{n_2}}^k \}_{{k \in K}} =
## \{ e_{{n_1}}^j \cdot e_{{n_2}}^k \}_{{j \in J, k \in K}}</M>.
## <P/>
## Then the basis is
## <Display Mode="M">
## B_{{n,m}} = \bigotimes_{{p \in P}}
## \bigotimes_{{k = \mu_p}}^{{\nu_p-1}}
## \{ e_{{p^{{k+1}}}}^j \}_{{j \in J_{{k,p}}}}
## </Display>
## where <M>J_{{k,p}} =</M>
## <Table Align="lcl">
## <Row>
## <Item><M>\{ 0 \}</M></Item>
## <Item>;</Item>
## <Item><M>k = 0, p = 2</M></Item>
## </Row>
## <Row>
## <Item><M>\{ 0, 1 \}</M></Item>
## <Item>;</Item>
## <Item><M>k > 0, p = 2</M></Item>
## </Row>
## <Row>
## <Item><M>\{ 1, \ldots, p-1 \}</M></Item>
## <Item>;</Item>
## <Item><M>k = 0, p \neq 2</M></Item>
## </Row>
## <Row>
## <Item><M>\{ -(p-1)/2, \ldots, (p-1)/2 \}</M></Item>
## <Item>;</Item>
## <Item><M>k > 0, p \neq 2</M></Item>
## </Row>
## </Table>
## <P/>
## <M>B_{{n,1}}</M> is equal to the basis of <M>&QQ;_n</M>
## over the rationals which is introduced in <Cite Key="Zum89"/>.
## Also the conversion of arbitrary sums of roots of unity into its
## basis representation, and the reduction to the minimal cyclotomic field
## are described in this thesis.
## (Note that the notation here is slightly different from that there.)
## <P/>
## <M>B_{{n,m}}</M> consists of roots of unity, it is an integral basis
## (that is, exactly the integral elements in <M>&QQ;_n</M> have integral
## coefficients w.r.t. <M>B_{{n,m}}</M>,
## cf. <Ref Func="IsIntegralCyclotomic"/>),
## it is a normal basis for squarefree <M>n</M>
## and closed under complex conjugation for odd <M>n</M>.
## <P/>
## <E>Note:</E>
## For <M><A>n</A> \equiv 2 \pmod 4</M>, we have
## <C>ZumbroichBase(<A>n</A>, 1) = 2 * ZumbroichBase(<A>n</A>/2, 1)</C> and
## <C>List( ZumbroichBase(<A>n</A>, 1), x -> E(<A>n</A>)^x ) =
## List( ZumbroichBase(<A>n</A>/2, 1), x -> E(<A>n</A>/2)^x )</C>.
## <P/>
## <Example><![CDATA[
## gap> ZumbroichBase( 15, 1 ); ZumbroichBase( 12, 3 );
## [ 1, 2, 4, 7, 8, 11, 13, 14 ]
## [ 0, 3 ]
## gap> ZumbroichBase( 10, 2 ); ZumbroichBase( 32, 4 );
## [ 2, 4, 6, 8 ]
## [ 0, 1, 2, 3, 4, 5, 6, 7 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ZumbroichBase" );
#############################################################################
##
#F LenstraBase( <n>, <stabilizer>, <super>, <m> )
##
## <#GAPDoc Label="LenstraBase">
## <ManSection>
## <Func Name="LenstraBase" Arg='n, stabilizer, super, m'/>
##
## <Description>
## Let <A>n</A> and <A>m</A> be positive integers
## such that <A>m</A> divides <A>n</A>,
## <A>stabilizer</A> be a list of prime residues modulo <A>n</A>,
## which describes a subfield of the <A>n</A>-th cyclotomic field
## (see <Ref Func="GaloisStabilizer"/>),
## and <A>super</A> be a list representing a supergroup of the group given by
## <A>stabilizer</A>.
## <P/>
## <Ref Func="LenstraBase"/> returns a list <M>[ b_1, b_2, \ldots, b_k ]</M>
## of lists, each <M>b_i</M> consisting of integers such that the elements
## <M>\sum_{{j \in b_i}} </M><C>E(n)</C><M>^j</M> form a basis of the
## abelian number field <C>NF( <A>n</A>, <A>stabilizer</A> )</C>,
## as a vector space over the <A>m</A>-th cyclotomic field
## (see <Ref Func="AbelianNumberField"/>).
## <P/>
## This basis is an integral basis,
## that is, exactly the integral elements in
## <C>NF( <A>n</A>, <A>stabilizer</A> )</C>
## have integral coefficients.
## (For details about this basis, see <Cite Key="Bre97"/>.)
## <P/>
## If possible then the result is chosen such that the group described by
## <A>super</A> acts on it,
## consistently with the action of <A>stabilizer</A>, i.e.,
## each orbit of <A>super</A> is a union of orbits of <A>stabilizer</A>.
## (A usual case is <A>super</A><C> = </C><A>stabilizer</A>,
## so there is no additional condition.
## <P/>
## <E>Note:</E>
## The <M>b_i</M> are in general not sets,
## since for <C><A>stabilizer</A> = <A>super</A></C>,
## the first entry is always an element of
## <C>ZumbroichBase( <A>n</A>, <A>m</A> )</C>;
## this property is used by <Ref Func="NF"/> and <Ref Func="Coefficients"/>
## (see <Ref Sect="Integral Bases of Abelian Number Fields"/>).
## <P/>
## <A>stabilizer</A> must not contain the stabilizer of a proper
## cyclotomic subfield of the <A>n</A>-th cyclotomic field, i.e.,
## the result must describe a basis for a field with conductor <A>n</A>.
## <P/>
## <Example><![CDATA[
## gap> LenstraBase( 24, [ 1, 19 ], [ 1, 19 ], 1 );
## [ [ 1, 19 ], [ 8 ], [ 11, 17 ], [ 16 ] ]
## gap> LenstraBase( 24, [ 1, 19 ], [ 1, 5, 19, 23 ], 1 );
## [ [ 1, 19 ], [ 5, 23 ], [ 8 ], [ 16 ] ]
## gap> LenstraBase( 15, [ 1, 4 ], PrimeResidues( 15 ), 1 );
## [ [ 1, 4 ], [ 2, 8 ], [ 7, 13 ], [ 11, 14 ] ]
## ]]></Example>
## <P/>
## The first two results describe two bases of the field
## <M>&QQ;_3(\sqrt{{6}})</M>,
## the third result describes a normal basis of <M>&QQ;_3(\sqrt{{5}})</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LenstraBase" );
#############################################################################
##
#V Cyclotomics . . . . . . . . . . . . . . . . . . domain of all cyclotomics
##
## <#GAPDoc Label="Cyclotomics">
## <ManSection>
## <Var Name="Cyclotomics"/>
##
## <Description>
## is the domain of all cyclotomics.
## <P/>
## <Example><![CDATA[
## gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;
## true
## true
## false
## ]]></Example>
## <P/>
## As the cyclotomics are field elements, the usual arithmetic operators
## <C>+</C>, <C>-</C>, <C>*</C> and <C>/</C> (and <C>^</C> to take powers by
## integers) are applicable.
## Note that <C>^</C> does <E>not</E> denote the conjugation of group
## elements, so it is <E>not</E> possible to explicitly construct groups of
## cyclotomics.
## (However, it is possible to compute the inverse and the multiplicative
## order of a nonzero cyclotomic.)
## Also, taking the <M>k</M>-th power of a root of unity <M>z</M> defines a
## Galois automorphism if and only if <M>k</M> is coprime to the conductor
## (see <Ref Func="Conductor" Label="for a cyclotomic"/>) of <M>z</M>.
## <P/>
## <Example><![CDATA[
## gap> E(5) + E(3); (E(5) + E(5)^4) ^ 2; E(5) / E(3); E(5) * E(3);
## -E(15)^2-2*E(15)^8-E(15)^11-E(15)^13-E(15)^14
## -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
## E(15)^13
## E(15)^8
## gap> Order( E(5) ); Order( 1+E(5) );
## 5
## infinity
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable( "Cyclotomics", "domain of all cyclotomics" );
#############################################################################
##
#F ANFAutomorphism( <F>, <k> ) . . automorphism of an abelian number field
##
## <#GAPDoc Label="ANFAutomorphism">
## <ManSection>
## <Func Name="ANFAutomorphism" Arg='F, k'/>
##
## <Description>
## Let <A>F</A> be an abelian number field and <A>k</A> be an integer
## that is coprime to the conductor
## (see <Ref Func="Conductor" Label="for a collection of cyclotomics"/>)
## of <A>F</A>.
## Then <Ref Func="ANFAutomorphism"/> returns the automorphism of <A>F</A>
## that is defined as the linear extension of the map that raises each root
## of unity in <A>F</A> to its <A>k</A>-th power.
## <P/>
## <Example><![CDATA[
## gap> f:= CF(25);
## CF(25)
## gap> alpha:= ANFAutomorphism( f, 2 );
## ANFAutomorphism( CF(25), 2 )
## gap> alpha^2;
## ANFAutomorphism( CF(25), 4 )
## gap> Order( alpha );
## 20
## gap> E(5)^alpha;
## E(5)^2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ANFAutomorphism" );
#############################################################################
##
#A ExponentOfPowering( <map> )
##
## <ManSection>
## <Attr Name="ExponentOfPowering" Arg='map'/>
##
## <Description>
## For a mapping <A>map</A> that raises each element of its preimage
## to the same positive power, <Ref Attr="ExponentOfPowering"/> returns
## the smallest positive number <M>n</M> with this property.
## <P/>
## Examples of such mappings are Frobenius automorphisms
## (see <Ref Sect="FrobeniusAutomorphism"/>).
## <P/>
## The action of a Galois automorphism of an abelian number field is given
## by the <M>&QQ;</M>-linear extension of raising each root of unity to
## the same power <M>n</M>, see <Ref Func="ANFAutomorphism"/>.
## For such a field automorphism, <Ref Attr="ExponentOfPowering"/> returns
## <M>n</M>.
## </Description>
## </ManSection>
##
DeclareAttribute( "ExponentOfPowering", IsMapping );
#############################################################################
##
#E
|