This file is indexed.

/usr/share/gap/lib/float.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#############################################################################
##
#W  float.gd                       GAP library              Laurent Bartholdi
##
##
#Y  Copyright (C) 2011 Laurent Bartholdi
##
##  This file deals with general float functions
##

#############################################################################
##
#C  Floateans
##
DeclareCategory("IsFloat", IsScalar and IsCommutativeElement and IsZDFRE);
DeclareCategory("IsFloatInterval", IsFloat and IsCollection);
DeclareCategory("IsComplexFloat", IsFloat);
DeclareCategory("IsComplexFloatInterval", IsComplexFloat and IsFloatInterval);
DeclareCategoryFamily("IsFloat");
DeclareCategoryCollections("IsFloat");
DeclareCategoryCollections("IsFloatCollection");
DeclareConstructor("NewFloat",[IsFloat,IsObject]);
DeclareOperation("MakeFloat",[IsFloat,IsObject]);
#############################################################################

BindGlobal("DECLAREFLOATCREATOR", function(arg)
    DeclareConstructor("NewFloat",arg);
    DeclareOperation("MakeFloat",arg);
end);

BindGlobal("INSTALLFLOATCREATOR", function(arg)
    if Length(arg)=3 then
        InstallMethod(NewFloat,arg[1],arg[2],arg[3]);
        InstallMethod(MakeFloat,arg[1],arg[2],arg[3]);
    elif Length(arg)=4 then
        InstallMethod(NewFloat,arg[1],arg[2],arg[3],arg[4]);
        InstallMethod(MakeFloat,arg[1],arg[2],arg[3],arg[4]);
    else
        Error("INSTALLFLOATCREATOR only coded for 3-argument or 4-argument version");
    fi;        
end);

#############################################################################
##
#O Unary operations
##
## <#GAPDoc Label="FLOAT_UNARY">
## <ManSection>
##   <Heading>Mathematical operations</Heading>
##   <Oper Name="Cos" Arg="x"/>
##   <Oper Name="Sin" Arg="x"/>
##   <Oper Name="SinCos" Arg="x"/>
##   <Oper Name="Tan" Arg="x"/>
##   <Oper Name="Sec" Arg="x"/>
##   <Oper Name="Csc" Arg="x"/>
##   <Oper Name="Cot" Arg="x"/>
##   <Oper Name="Asin" Arg="x"/>
##   <Oper Name="Acos" Arg="x"/>
##   <Oper Name="Atan" Arg="x"/>
##   <Oper Name="Atan2" Arg="y x"/>
##   <Oper Name="Cosh" Arg="x"/>
##   <Oper Name="Sinh" Arg="x"/>
##   <Oper Name="Tanh" Arg="x"/>
##   <Oper Name="Sech" Arg="x"/>
##   <Oper Name="Csch" Arg="x"/>
##   <Oper Name="Coth" Arg="x"/>
##   <Oper Name="Asinh" Arg="x"/>
##   <Oper Name="Acosh" Arg="x"/>
##   <Oper Name="Atanh" Arg="x"/>
##   <Oper Name="Log" Arg="x"/>
##   <Oper Name="Log2" Arg="x"/>
##   <Oper Name="Log10" Arg="x"/>
##   <Oper Name="Log1p" Arg="x"/>
##   <Oper Name="Exp" Arg="x"/>
##   <Oper Name="Exp2" Arg="x"/>
##   <Oper Name="Exp10" Arg="x"/>
##   <Oper Name="Expm1" Arg="x"/>
##   <Oper Name="Cuberoot" Arg="x"/>
##   <Oper Name="Square" Arg="x"/>
##   <Oper Name="Hypothenuse" Arg="x y"/>
##   <Oper Name="Ceil" Arg="x"/>
##   <Oper Name="Floor" Arg="x"/>
##   <Oper Name="Round" Arg="x"/>
##   <Oper Name="Trunc" Arg="x"/>
##   <Oper Name="Frac" Arg="x"/>
##   <Oper Name="SignFloat" Arg="x"/>
##   <Oper Name="Argument" Arg="x"/>
##   <Oper Name="Erf" Arg="x"/>
##   <Oper Name="Zeta" Arg="x"/>
##   <Oper Name="Gamma" Arg="x"/>
##   <Oper Name="ComplexI" Arg="x"/>
##   <Description>
##     Usual mathematical functions.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="EqFloat" Arg="x y"/>
##   <Returns>Whether the floateans <A>x</A> and <A>y</A> are equal</Returns>
##   <Description>
##     This function compares two floating-point numbers, and returns
##     <K>true</K> if they are equal, and <K>false</K> otherwise; with the
##     exception that <K>NaN</K> is always considered to be different from
##     itself.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="PrecisionFloat" Arg="x"/>
##   <Returns>The precision of <A>x</A></Returns>
##   <Description>
##     This function returns the precision, counted in number of binary digits,
##     of the floating-point number <A>x</A>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Heading>Interval operations</Heading>
##   <Oper Name="Sup" Arg="interval"/>
##   <Oper Name="Inf" Arg="interval"/>
##   <Oper Name="Mid" Arg="interval"/>
##   <Oper Name="AbsoluteDiameter" Arg="interval"/>
##   <Oper Name="RelativeDiameter" Arg="interval"/>
##   <Oper Name="Overlaps" Arg="interval1 interval2"/>
##   <Oper Name="IsDisjoint" Arg="interval1 interval2"/>
##   <Oper Name="IncreaseInterval" Arg="interval delta"/>
##   <Oper Name="BlowupInterval" Arg="interval ratio"/>
##   <Oper Name="BisectInterval" Arg="interval"/>
##   <Description>
##     Most are self-explanatory.
##     <C>BlowupInterval</C> returns an interval with same midpoint but 
##     relative diameter increased by <A>ratio</A>; <C>IncreaseInterval</C>
##     returns an interval with same midpoint but absolute diameter increased
##     by <A>delta</A>; <C>BisectInterval</C> returns a list of two intervals
##     whose union equals <A>interval</A>.
##   </Description>  
## </ManSection>
##
## <ManSection>
##   <Prop Name="IsPInfinity" Arg="x"/>
##   <Prop Name="IsNInfinity" Arg="x"/>
##   <Prop Name="IsXInfinity" Arg="x"/>
##   <Prop Name="IsFinite" Arg="x" Label="float"/>
##   <Prop Name="IsNaN" Arg="x"/>
##   <Description>
##     Returns <K>true</K> if the floating-point number <A>x</A> is
##     respectively <M>+\infty</M>, <M>-\infty</M>, <M>\pm\infty</M>,
##     finite, or `not a number', such as the result of <C>0.0/0.0</C>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Var Name="FLOAT" Label="constants"/>
##   <Description>
##     This record contains useful floating-point constants: <List>
##     <Mark>DECIMAL_DIG</Mark> <Item>Maximal number of useful digits;</Item>
##     <Mark>DIG</Mark> <Item>Number of significant digits;</Item>
##     <Mark>VIEW_DIG</Mark> <Item>Number of digits to print in short view;</Item>
##     <Mark>EPSILON</Mark> <Item>Smallest number such that <M>1\neq1+\epsilon</M>;</Item>
##     <Mark>MANT_DIG</Mark> <Item>Number of bits in the mantissa;</Item>
##     <Mark>MAX</Mark> <Item>Maximal representable number;</Item>
##     <Mark>MAX_10_EXP</Mark> <Item>Maximal decimal exponent;</Item>
##     <Mark>MAX_EXP</Mark> <Item>Maximal binary exponent;</Item>
##     <Mark>MIN</Mark> <Item>Minimal positive representable number;</Item>
##     <Mark>MIN_10_EXP</Mark> <Item>Minimal decimal exponent;</Item>
##     <Mark>MIN_EXP</Mark> <Item>Minimal exponent;</Item>
##     <Mark>INFINITY</Mark> <Item>Positive infinity;</Item>
##     <Mark>NINFINITY</Mark> <Item>Negative infinity;</Item>
##     <Mark>NAN</Mark> <Item>Not-a-number,</Item>
##     </List>
##     as well as mathematical constants <C>E</C>, <C>LOG2E</C>, <C>LOG10E</C>,
##     <C>LN2</C>, <C>LN10</C>, <C>PI</C>, <C>PI_2</C>, <C>PI_4</C>,
##     <C>1_PI</C>, <C>2_PI</C>, <C>2_SQRTPI</C>, <C>SQRT2</C>, <C>SQRT1_2</C>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Cos",IsFloat);
DeclareAttribute("Sin",IsFloat);
DeclareAttribute("Tan",IsFloat);
DeclareAttribute("Sec",IsFloat);
DeclareAttribute("Csc",IsFloat);
DeclareAttribute("Cot",IsFloat);
DeclareAttribute("Asin",IsFloat);
DeclareAttribute("Acos",IsFloat);
DeclareAttribute("Atan",IsFloat);
DeclareAttribute("Cosh",IsFloat);
DeclareAttribute("Sinh",IsFloat);
DeclareAttribute("Tanh",IsFloat);
DeclareAttribute("Sech",IsFloat);
DeclareAttribute("Csch",IsFloat);
DeclareAttribute("Coth",IsFloat);
DeclareAttribute("Asinh",IsFloat);
DeclareAttribute("Acosh",IsFloat);
DeclareAttribute("Atanh",IsFloat);
DeclareOperation("Log",[IsFloat]);
DeclareAttribute("Log2",IsFloat);
DeclareAttribute("Log10",IsFloat);
DeclareAttribute("Log1p",IsFloat);
DeclareAttribute("Exp",IsFloat);
DeclareAttribute("Exp2",IsFloat);
DeclareAttribute("Exp10",IsFloat);
DeclareAttribute("Expm1",IsFloat);
DeclareAttribute("CubeRoot",IsFloat);
DeclareAttribute("Square",IsFloat);
DeclareAttribute("Ceil",IsFloat);
DeclareAttribute("Floor",IsFloat);
DeclareAttribute("Round",IsFloat);
DeclareAttribute("Trunc",IsFloat);
DeclareOperation("Atan2", [IsFloat,IsFloat]);
DeclareAttribute("FrExp", IsFloat);
DeclareOperation("LdExp", [IsFloat,IsInt]);
DeclareAttribute("Argument", IsFloat);
DeclareAttribute("AbsoluteValue", IsFloat);
#DeclareAttribute("Norm", IsFloat); #already defined
DeclareOperation("Hypothenuse", [IsFloat,IsFloat]);
DeclareAttribute("Frac",IsFloat);
DeclareAttribute("SinCos",IsFloat);
DeclareAttribute("Erf",IsFloat);
DeclareAttribute("Zeta",IsFloat);
DeclareAttribute("Gamma",IsFloat);
DeclareAttribute("ComplexI",IsFloat);

DeclareAttribute("PrecisionFloat",IsFloat);
DeclareAttribute("SignFloat",IsFloat);

DeclareAttribute("Sup", IsFloat);
DeclareAttribute("Inf", IsFloat);
DeclareAttribute("Mid", IsFloat);
DeclareAttribute("AbsoluteDiameter", IsFloat);
DeclareAttribute("RelativeDiameter", IsFloat);
#DeclareOperation("Diameter", IsFloat);
DeclareOperation("Overlaps", [IsFloat,IsFloat]);
DeclareOperation("IsDisjoint", [IsFloat,IsFloat]);
DeclareOperation("EqFloat", [IsFloat,IsFloat]);
DeclareOperation("IncreaseInterval", [IsFloat,IsFloat]);
DeclareOperation("BlowupInterval", [IsFloat,IsFloat]);
DeclareOperation("BisectInterval", [IsFloat,IsFloat]);

DeclareProperty("IsPInfinity", IsFloat);
DeclareProperty("IsNInfinity", IsFloat);
DeclareProperty("IsXInfinity", IsFloat);
DeclareProperty("IsFinite", IsFloat);
DeclareProperty("IsNaN", IsFloat);
#############################################################################

#############################################################################
# roots
#############################################################################
#! document (LB)
#############################################################################

#############################################################################
##
#O Constructor
##
## <#GAPDoc Label="Float">
## <ManSection>
##   <Oper Name="Float" Arg="obj"/>
##   <Oper Name="NewFloat" Arg="filter, obj"/>
##   <Oper Name="MakeFloat" Arg="sample obj, obj"/>
##   <Returns>A new floating-point number, based on <A>obj</A></Returns>
##   <Description>
##     This function creates a new floating-point number.
##
##     <P/> If <A>obj</A> is a rational number, the created number is created
##     with sufficient precision so that the number can (usually) be converted
##     back to the original number (see <Ref Oper="Rat" BookName="ref"/> and
##     <Ref Oper="Rat"/>). For an integer, the precision, if unspecified, is
##     chosen sufficient so that <C>Int(Float(obj))=obj</C> always holds, but
##     at least 64 bits.
##
##     <P/> <A>obj</A> may also be a string, which may be of the form
##     <C>"3.14e0"</C> or <C>".314e1"</C> or <C>".314@1"</C> etc.
##
##     <P/> An option may be passed to specify, it bits, a desired precision.
##     The format is <C>Float("3.14":PrecisionFloat:=1000)</C> to create
##     a 1000-bit approximation of <M>3.14</M>.
##
##     <P/> In particular, if <A>obj</A> is already a floating-point number,
##     then <C>Float(obj:PrecisionFloat:=prec)</C> creates a copy of
##     <A>obj</A> with a new precision.
##     prec
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="Rat" Arg="f" Label="for floats"/>
##   <Returns>A rational approximation to <A>f</A></Returns>
##   <Description>
##     This command constructs a rational approximation to the
##     floating-point number <A>f</A>. Of course, it is not guaranteed to
##     return the original rational number <A>f</A> was created from, though
##     it returns the most `reasonable' one given the precision of
##     <A>f</A>.
##
##     <P/> Two options control the precision of the rational approximation:
##     In the form <C>Rat(f:maxdenom:=md,maxpartial:=mp)</C>, the rational
##     returned is such that the denominator is at most <A>md</A> and the
##     partials in its continued fraction expansion are at most <A>mp</A>.
##     The default values are <C>maxpartial:=10000</C> and
##     <C>maxdenom:=2^(precision/2)</C>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Func Name="SetFloats" Arg="rec [bits] [install]"/>
##   <Description>
##     Installs a new interface to floating-point numbers in &GAP;, optionally
##     with a desired precision <A>bits</A> in binary digits. The last
##     optional argument <A>install</A> is a boolean value; if false, it
##     only installs the eager handler and the precision for the floateans,
##     without making them the default.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("Float");
DeclareGlobalFunction("SetFloats");
#############################################################################

DeclareOperation("Cyc", [IsFloat, IsPosInt]);
DeclareOperation("Cyc", [IsFloat]);

# these variables are read-write
FLOAT := fail; # record holding all float information

# MAX_FLOAT_LITERAL_CACHE_SIZE := 1000; # this could be set to avoid saturating the cache, in case some code evaluates lots of function expressions

#############################################################################
##
#E