/usr/share/gap/lib/float.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | #############################################################################
##
#W float.gi GAP library Steve Linton
## Laurent Bartholdi
##
##
#Y Copyright (C) 2011 The GAP Group
##
## This file deals with floats, and sets up a default interface, within GAP,
## to deal with floateans.
##
#############################################################################
## a category describing the "fields" of floating-point numbers
## we must put it here, because float.gd is read too early for "IsAlgebra"
## this is used mainly to create polynomials
DeclareCategory("IsFloatPseudoField", IsAlgebra);
## these things should also be in float.gd, but require IsRationalFunction
DeclareCategory("IsFloatRationalFunction", IsRationalFunction);
DeclareSynonym("IsFloatPolynomial", IsFloatRationalFunction and IsPolynomial);
DeclareSynonym("IsFloatUnivariatePolynomial", IsFloatRationalFunction and IsUnivariatePolynomial);
DeclareOperation("RootsFloatOp", [IsList,IsFloat]);
DeclareGlobalFunction("RootsFloat");
DeclareOperation("Value", [IsFloatRationalFunction,IsFloat]);
DeclareOperation("ValueInterval", [IsFloatRationalFunction,IsFloat]);
#############################################################################
MAX_FLOAT_LITERAL_CACHE_SIZE := 0; # cache all float literals by default.
FLOAT_DEFAULT_REP := fail;
FLOAT_STRING := fail;
FLOAT := fail; # holds the constants
BindGlobal("EAGER_FLOAT_LITERAL_CONVERTERS", rec());
InstallGlobalFunction(SetFloats, function(arg)
local i, r, prec, install;
r := fail;
prec := fail;
install := true;
for i in [1..Length(arg)] do
if IsRecord(arg[i]) and i=1 then
r := arg[1];
elif IsBool(arg[i]) then
install := arg[i];
elif IsPosInt(arg[i]) then
prec := arg[i];
else
r := fail;
break;
fi;
od;
while r=fail do
Error("SetFloats requires a record, and optional precision(posint) and install(bool), not ",arg);
od;
if install then
if IsBound(r.filter) then
FLOAT_DEFAULT_REP := r.filter;
fi;
if IsBound(r.constants) then
FLOAT := r.constants;
fi;
if IsBound(r.creator) then
FLOAT_STRING := r.creator;
fi;
fi;
if IsBound(r.creator) and IsBound(r.eager) then
EAGER_FLOAT_LITERAL_CONVERTERS.([r.eager]) := r.creator;
fi;
UNBIND_GLOBAL("FLOAT_LITERAL_CACHE");
if prec<>fail then
r.constants.MANT_DIG := prec;
if IsBound(r.constants.recompute) then
r.constants.recompute(r.constants,prec);
fi;
fi;
end);
################################################################
# creators
################################################################
InstallGlobalFunction(Float, function(obj)
if not IsString(obj) and IsList(obj) then
return List(obj,Float);
else
return NewFloat(FLOAT_DEFAULT_REP,obj);
fi;
end);
BindGlobal("INSTALLFLOATCONSTRUCTORS", function(arg)
local filter, float, constants, i;
if IsRecord(arg[1]) then
filter := arg[1].filter;
else
filter := arg[1];
fi;
InstallMethod(NewFloat, [filter,IsRat], -1, function(filter,obj)
return NewFloat(filter,NumeratorRat(obj))/NewFloat(filter,DenominatorRat(obj));
end);
InstallMethod(NewFloat, [filter,IsInfinity], -1, function(filter,obj)
return Inverse(NewFloat(filter,0));
end);
InstallMethod(NewFloat, [filter,IsList], -1, function(filter,mantexp)
if mantexp[1]=0 then
if mantexp[2]=0 then return NewFloat(filter,0);
elif mantexp[2]=1 then return Inverse(-Inverse(NewFloat(filter,0)));
elif mantexp[2]=2 then return Inverse(NewFloat(filter,0));
elif mantexp[2]=3 then return -Inverse(NewFloat(filter,0));
else return NewFloat(filter,0)/NewFloat(filter,0);
fi;
fi;
return NewFloat(filter,mantexp[1])*2^(mantexp[2]-LogInt(AbsoluteValue(mantexp[1]),2)-1);
end);
InstallMethod(NewFloat, [filter,filter], -1, function(filter,obj)
return obj; # floats are immutable, no harm to return the same one
end);
InstallMethod(MakeFloat, [filter,IsRat], -1, function(filter,obj)
return MakeFloat(filter,NumeratorRat(obj))/MakeFloat(filter,DenominatorRat(obj));
end);
InstallMethod(MakeFloat, [filter,IsInfinity], -1, function(filter,obj)
return Inverse(MakeFloat(filter,0));
end);
InstallMethod(MakeFloat, [filter,IsList], -1, function(filter,mantexp)
if mantexp[1]=0 then
if mantexp[2]=0 then return MakeFloat(filter,0);
elif mantexp[2]=1 then return Inverse(-Inverse(MakeFloat(filter,0)));
elif mantexp[2]=2 then return Inverse(MakeFloat(filter,0));
elif mantexp[2]=3 then return -Inverse(MakeFloat(filter,0));
else return MakeFloat(filter,0)/MakeFloat(filter,0);
fi;
fi;
return MakeFloat(filter,mantexp[1])*2^(mantexp[2]-LogInt(AbsoluteValue(mantexp[1]),2)-1);
end);
InstallMethod(MakeFloat, [filter,filter], -1, function(filter,obj)
return obj; # floats are immutable, no harm to return the same one
end);
if IsRecord(arg[1]) and IsBound(arg[1].constants) then
float := arg[1].constants;
constants := [["E","2.7182818284590452354"],
["LOG2E", "1.4426950408889634074"],
["LOG10E", "0.43429448190325182765"],
["LN2", "0.69314718055994530942"],
["LN10", "2.30258509299404568402"],
["PI", "3.14159265358979323846"],
["2PI", "6.28318530717958647692"],
["PI_2", "1.57079632679489661923"],
["PI_4", "0.78539816339744830962"],
["1_PI", "0.31830988618379067154"],
["2_PI", "0.63661977236758134308"],
["2_SQRTPI", "1.12837916709551257390"],
["SQRT2", "1.41421356237309504880"],
["SQRT1_2", "0.70710678118654752440"]];
for i in constants do
if not IsBound(float.(i[1])) then
float.(i[1]) := NewFloat(filter,i[2]);
fi;
od;
fi;
end);
################################################################
# inner converter from string to float
################################################################
BindGlobal("CONVERT_FLOAT_LITERAL", function(s)
local i,l,f,s1,s2;
f:= FLOAT_STRING(s);
if f<>fail then return f; fi;
l := LENGTH(s);
s1 := "";
for i in [1..LENGTH(s)] do
if s[i] in ".0123456789eE+-" then
s1[i] := s[i];
elif s[i] in "dDqQ" then
s1[i] := 'e';
else
s1 := fail; break;
fi;
od;
if s1<>fail then
f := FLOAT_STRING(s1);
if f<>fail then return f; fi;
fi;
return fail; # conversion failure; signal the kernel that something went wrong
end);
BindGlobal("CONVERT_FLOAT_LITERAL_EAGER", function(s,mark)
local f;
if mark = '\000' then
return CONVERT_FLOAT_LITERAL(s);
else
if not IsBound(EAGER_FLOAT_LITERAL_CONVERTERS.([mark])) then
Error("Unknown float literal conversion ",mark);
else
f := EAGER_FLOAT_LITERAL_CONVERTERS.([mark]);
if not IsFunction(f) then
Error("Float literal conversion for ",mark," bound to non-function");
fi;
return f(s);
fi;
fi;
end);
################################################################
# zeros
################################################################
InstallGlobalFunction(RootsFloat, function(arg)
local l;
if Length(arg)=1 and IsList(arg[1]) then
l := arg[1];
elif ForAll(arg,IsFloat) then
l := arg;
elif Length(arg)=1 and IsUnivariatePolynomial(arg[1]) then
l := CoefficientsOfUnivariatePolynomial(arg[1]);
else
Error("RootsFloat: expected coefficients, a list of coefficients, or a polynomial, not ",arg);
fi;
if Length(l)=0 then return []; fi;
return RootsFloatOp(l,l[1]);
end);
#############################################################################
## Default methods
#############################################################################
InstallMethod( AbsoluteValue, "for floats", [ IsFloat ], -1,
function ( x )
if x < Zero(x) then return -x; else return x; fi;
end );
InstallMethod( Norm, "for floats", [ IsFloat ], -1,
function ( x )
return x*x;
end );
InstallMethod( Argument, "for floats", [ IsFloat ], -1,
function ( x )
return Zero(x);
end );
InstallMethod( SignFloat, "for floats", [ IsFloat ], -1,
function ( x )
if x < Zero(x) then return -1; elif IsZero(x) then return 0; else return 1; fi;
end );
InstallMethod( Exp2, "for floats", [ IsFloat ], -1,
function ( x )
return Exp(Log(MakeFloat(x,2))*x);
end );
InstallMethod( Exp10, "for floats", [ IsFloat ], -1,
function ( x )
return Exp(Log(MakeFloat(x,10))*x);
end );
InstallMethod( Expm1, "for floats", [ IsFloat ], -1,
function ( x )
return Exp(x)-MakeFloat(x,1);
end );
InstallMethod( Log2, "for floats", [ IsFloat ], -1,
function ( x )
return Log(x) / Log(MakeFloat(x,2));
end );
InstallMethod( Log10, "for floats", [ IsFloat ], -1,
function ( x )
return Log(x) / Log(MakeFloat(x,10));
end );
InstallMethod( Log1p, "for floats", [ IsFloat ], -1,
function ( x )
return Log(MakeFloat(x,1)+x);
end );
InstallMethod( Sec, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Cos(x));
end );
InstallMethod( Csc, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Sin(x));
end );
InstallMethod( Cot, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Tan(x));
end );
InstallMethod( Sech, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Cosh(x));
end );
InstallMethod( Csch, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Sinh(x));
end );
InstallMethod( Coth, "for floats", [ IsFloat ], -1,
function ( x )
return Inverse(Tanh(x));
end );
InstallMethod( CubeRoot, "for floats", [ IsFloat ], -1,
function ( x )
if x>Zero(x) then
return Exp(Log(x)/3);
elif IsZero(x) then
return x;
else
return -Exp(Log(-x)/3);
fi;
end );
InstallMethod( Square, "for floats", [ IsFloat ], -1,
function ( x )
return x*x;
end );
InstallMethod( Hypothenuse, "for floats", [ IsFloat, IsFloat ], -1,
function ( x, y )
return Sqrt(x*x+y*y);
end );
InstallMethod( Ceil, "for floats", [ IsFloat ], -1,
function ( x )
return -Floor(-x);
end );
InstallMethod( Round, "for floats", [ IsFloat ], -1,
function ( x )
return Floor(x+MakeFloat(x,1/2));
end );
InstallMethod( Trunc, "for floats", [ IsFloat ], -1,
function ( x )
if x>Zero(x) then
return Floor(x);
else
return -Floor(-x);
fi;
end );
InstallMethod( Frac, "for floats", [ IsFloat ], -1,
function ( x )
return x-Floor(x);
end );
InstallMethod( SinCos, "for floats", [ IsFloat ], -1,
function ( x )
return [Sin(x), Cos(x)];
end );
InstallMethod( Hypothenuse, "for floats", [ IsFloat, IsFloat ], -1,
function ( x, y )
return Sqrt(x*x+y*y);
end );
InstallMethod( FrExp, "for floats", [ IsFloat ], -1,
function(obj)
local m, e, s;
if IsZero(obj) then return [0,0]; fi;
if obj>Zero(obj) then s := 1; else s := -1; obj := -obj; fi;
e := Int(Log2(obj))+1;
m := obj/2^e;
return [m,e];
end);
InstallMethod( LdExp, "for floats", [ IsFloat, IsInt ], -1,
function(m,e)
return m*2^e;
end);
InstallMethod( ExtRepOfObj, "for floats", [ IsFloat ], -1,
function(obj)
local p, v, sgn;
if IsZero(obj) then # special treatment for 0 and -0
if 1/obj > Zero(obj) then
return [0,0];
else
return [0,1];
fi;
elif IsPInfinity(obj) then
return [0,2];
elif IsNInfinity(obj) then
return [0,3];
elif IsNaN(obj) then
return [0,4];
fi;
p := FrExp(obj);
v := p[1];
while v mod One(v) <> Zero(v) do v := 2*v; od;
return [Int(v),p[2]];
end);
InstallMethod( ObjByExtRep, "for floats", [ IsFloatFamily, IsCyclotomicCollection ], -1,
function(fam,obj)
if obj[1]=0 then
if obj[2]=0 then
return 0.0; # 0
elif obj[2]=1 then
return 1/(-(1.0/0.0)); # -0
elif obj[2]=2 then
return 1.0/0.0; # inf
elif obj[2]=3 then
return -1.0/0.0; # -inf
elif obj[2]=4 then
return 0.0/0.0; # NaN
elif obj[2]=5 then
return -0.0/0.0; # -NaN
else
Error("Unknown external float representation ",obj);
fi;
fi;
return LdExp(Float(obj[1]),obj[2]-LogInt(AbsInt(obj[1]),2)-1);
end);
InstallMethod( ViewObj, "for floats", [ IsFloat ],
function ( x )
Print(ViewString(x));
end);
InstallMethod( Display, "for floats", [ IsFloat ],
function ( x )
Print(DisplayString(x));
end);
InstallMethod( PrintObj, "for floats", [ IsFloat ],
function ( x )
Print(String(x));
end);
InstallMethod( DisplayString, "for floats", [ IsFloat ], f->Concatenation(String(f),"\n"));
InstallMethod( ViewString, "for floats", [ IsFloat ], String );
InstallMethod( IsPInfinity, "for floats", [ IsFloat ], -1,
x->x=x+x and x>-x);
InstallMethod( IsNInfinity, "for floats", [ IsFloat ], -1,
x->x=x+x and x<-x);
InstallMethod( IsXInfinity, "for floats", [ IsFloat ], -1,
x->x=x+x and x<>-x);
InstallMethod( IsFinite, "for floats", [ IsFloat ], -1,
x->not IsXInfinity(x) and not IsNaN(x));
InstallMethod( IsNaN, "for floats", [ IsFloat ], -1, # IEEE754, not GAP standard
x->x<>x+Zero(x));
InstallMethod( EqFloat, "for floats", [ IsFloat, IsFloat ], -1,
function(x,y)
return (not IsNaN(x)) and x=y;
end);
InstallMethod( Zero, "for floats", [ IsFloat ], -1,
function(x)
return MakeFloat(x,0);
end);
InstallMethod( One, "for floats", [ IsFloat ], -1,
function(x)
return MakeFloat(x,1);
end);
#############################################################################
##
#M Rat( x ) . . . . . . . . . . . . . . . . . . . . . . . . . . . for macfloats
##
InstallOtherMethod( Rat, "for floats", [ IsFloat ],
function ( x )
local M, a_i, i, sign, maxdenom, maxpartial;
i := 0; M := [[1,0],[0,1]];
maxdenom := ValueOption("maxdenom");
maxpartial := ValueOption("maxpartial");
if maxpartial=fail then maxpartial := 10000; fi;
if maxdenom=fail then maxdenom := 10^QuoInt(FLOAT.DECIMAL_DIG,2); fi;
if x < Zero(x) then sign := -1; x := -x; else sign := 1; fi;
repeat
a_i := Int(x);
if i >= 1 and a_i > maxpartial then break; fi;
M := M * [[a_i,1],[1,0]];
if x = Float(a_i) then break; fi;
x := One(x) / (x - a_i);
i := i+1;
until M[2][1] > maxdenom;
return sign * M[1][1]/M[2][1];
end );
InstallOtherMethod( Rat, "for float intervals", [ IsFloatInterval ],
function ( x )
local M, a;
if x < Zero(x) then
M := [[-1,0],[0,1]]; x := -x;
else
M := [[1,0],[0,1]];
fi;
repeat
a := Int(Sup(x));
M := M * [[a,1],[1,0]];
x := x-a;
if Zero(x) in x then break; fi;
x := Inverse(x);
until AbsoluteDiameter(x) >= One(x);
return M[1][1]/M[2][1];
end);
BindGlobal("CYC_FLOAT_DEGREE", function(x,n,prec)
local i, m, b, phi;
phi := Phi(n);
m := IdentityMat(phi+1);
b := [];
for i in [1..phi] do
Add(m[i],Int(LdExp(Cos(FLOAT.2PI*(i-1)/n),prec)));
Add(m[i],Int(LdExp(Sin(FLOAT.2PI*(i-1)/n),prec)));
b[i] := E(n)^(i-1);
od;
Add(m[phi+1],Int(LdExp(RealPart(x),prec)));
Add(m[phi+1],Int(LdExp(ImaginaryPart(x),prec)));
m := First(LLLReducedBasis(m).basis,r->r[phi+1]<>0);
return -b*m{[1..phi]}/m[phi+1];
end);
BindGlobal("CYC_FLOAT", function(x,prec)
local n, len, e, minlen, minn, mine;
n := 2;
minlen := infinity;
repeat
e := CYC_FLOAT_DEGREE(x,n,prec);
len := n*Norm(DenominatorCyc(e)*e)^2;
if len < minlen then
Info(InfoWarning,2,"Degree ",n,": ",e);
minlen := len;
minn := n;
mine := e;
fi;
n := n+1;
until n > 2*minn+4;
return mine;
end);
InstallMethod( Cyc, "for floats, degree", [ IsFloat, IsPosInt ], -1,
function(x,n)
local prec;
prec := ValueOption("bits");
if not IsPosInt(prec) then prec := PrecisionFloat(x); fi;
return CYC_FLOAT_DEGREE(x,n,prec);
end);
InstallMethod( Cyc, "for intervals, degree", [ IsFloatInterval, IsPosInt ], -1,
function(x,n)
local diam;
diam := AbsoluteDiameter(x);
if IsZero(diam) then
return CYC_FLOAT_DEGREE(Mid(x),n,PrecisionFloat(x));
else
return CYC_FLOAT_DEGREE(Mid(x),n,1+LogInt(1+Int(Inverse(diam)),2));
fi;
end);
InstallMethod( Cyc, "for floats", [ IsFloat ], -1,
function(x)
local n, len, e, minlen, minn, mine, prec;
prec := ValueOption("bits");
if not IsPosInt(prec) then prec := PrecisionFloat(x); fi;
return CYC_FLOAT(x,prec);
end);
InstallMethod( Cyc, "for intervals", [ IsFloatInterval ], -1,
function(x)
local diam;
diam := AbsoluteDiameter(x);
if IsZero(diam) then
return CYC_FLOAT(Mid(x),PrecisionFloat(x));
else
return CYC_FLOAT(Mid(x),1+LogInt(1+Int(Inverse(diam)),2));
fi;
end);
BindGlobal("FLOAT_MINIMALPOLYNOMIAL", function(x,n,ind,prec)
local z, i, m;
m := IdentityMat(n);
z := LdExp(One(x),prec);
for i in [1..n] do
Add(m[i],Int(RealPart(z)));
Add(m[i],Int(ImaginaryPart(z)));
z := z*x;
od;
m := LLLReducedBasis(m).basis[1];
return UnivariatePolynomialByCoefficients(CyclotomicsFamily,m{[n,n-1..1]},ind);
end);
InstallMethod( MinimalPolynomial, "for floats", [ IsRationals, IsFloat, IsPosInt ],
function(ring,x,ind)
local n, len, p, lastlen, lastp, prec;
prec := ValueOption("bits");
if not IsPosInt(prec) then
prec := PrecisionFloat(x);
if IsFloatInterval(x) then
p := AbsoluteDiameter(x);
if not IsZero(x) then
prec := 1+LogInt(1+Int(Inverse(p)),2);
fi;
fi;
fi;
if IsFloatInterval(x) then
x := Mid(x);
fi;
n := ValueOption("degree");
if IsPosInt(n) then
return FLOAT_MINIMALPOLYNOMIAL(x,n+1,ind,prec);
fi;
n := 1;
len := infinity;
p := fail;
repeat
lastlen := len;
lastp := p;
p := FLOAT_MINIMALPOLYNOMIAL(x,n+1,ind,prec);
len := (CoefficientsOfUnivariatePolynomial(p)^2)^n;
n := n+1;
until len > lastlen;
return lastp;
end);
################################################################
# rational functions
################################################################
# we need a new method, so that we keep track of the 0 and 1 of the
# specific pseudofield
InstallOtherMethod(RationalFunctionsFamily, "floats pseudofield",
[IsFloatPseudoField],
function(pf)
local fam;
# create a new family in the category <IsRationalFunctionsFamily>
fam := NewFamily("RationalFunctionsFamily(...)",
IsPolynomialFunction and IsPolynomialFunctionsFamilyElement
and IsFloatRationalFunction and IsRationalFunctionsFamilyElement,
CanEasilySortElements,
IsPolynomialFunctionsFamily and CanEasilySortElements and
IsRationalFunctionsFamily);
# default type for polynomials
fam!.defaultPolynomialType := NewType( fam,
IsPolynomial and IsPolynomialDefaultRep and
HasExtRepPolynomialRatFun);
# default type for univariate laurent polynomials
fam!.threeLaurentPolynomialTypes :=
[ NewType( fam,
IsLaurentPolynomial
and IsLaurentPolynomialDefaultRep and
HasIndeterminateNumberOfLaurentPolynomial and
HasCoefficientsOfLaurentPolynomial),
NewType( fam,
IsLaurentPolynomial
and IsLaurentPolynomialDefaultRep and
HasIndeterminateNumberOfLaurentPolynomial and
HasCoefficientsOfLaurentPolynomial and
IsConstantRationalFunction and IsUnivariatePolynomial),
NewType( fam,
IsLaurentPolynomial and IsLaurentPolynomialDefaultRep and
HasIndeterminateNumberOfLaurentPolynomial and
HasCoefficientsOfLaurentPolynomial and
IsUnivariatePolynomial)];
# default type for univariate rational functions
fam!.univariateRatfunType := NewType( fam,
IsUnivariateRationalFunctionDefaultRep and
HasIndeterminateNumberOfLaurentPolynomial and
HasCoefficientsOfUnivariateRationalFunction);
fam!.defaultRatFunType := NewType( fam,
IsRationalFunctionDefaultRep and
HasExtRepNumeratorRatFun and HasExtRepDenominatorRatFun);
# functions to add zipped lists
fam!.zippedSum := [ MONOM_GRLEX, \+ ];
# functions to multiply zipped lists
fam!.zippedProduct := [ MONOM_PROD,
MONOM_GRLEX, \+, \* ];
# set the one and zero coefficient
fam!.zeroCoefficient := Zero(pf);
fam!.oneCoefficient := One(pf);
fam!.oneCoefflist := Immutable([fam!.oneCoefficient]);
# set the coefficients
SetCoefficientsFamily( fam, FamilyObj(fam!.zeroCoefficient) );
SetCharacteristic( fam, 0 );
# and set one and zero
SetZero( fam, PolynomialByExtRepNC(fam,[]));
SetOne( fam, PolynomialByExtRepNC(fam,[[],fam!.oneCoefficient]));
# we will store separate `one's for univariate polynomials. This will
# allow to keep univariate calculations in this one indeterminate.
fam!.univariateOnePolynomials:=[];
fam!.univariateZeroPolynomials:=[];
# assign a names list
fam!.namesIndets := [];
# and return
return fam;
end);
InstallOtherMethod( UnivariatePolynomialByCoefficients, "ring",
[IsFloatPseudoField,IsList,IsInt],
function(r,cofs,ind)
return LaurentPolynomialByCoefficients(r,cofs,0,ind);
end );
InstallOtherMethod( LaurentPolynomialByCoefficients, "ring",
[IsFloatPseudoField,IsList,IsInt,IsInt],
function(r,cofs,val,ind)
local lc, fam;
lc := Length(cofs);
fam := RationalFunctionsFamily(r);
if lc > 0 and (IsZero( cofs[1] ) or IsZero( cofs[lc] )) then
cofs := ShallowCopy( cofs );
val := val + RemoveOuterCoeffs( cofs, fam!.zeroCoefficient );
fi;
return LaurentPolynomialByExtRepNC( fam, cofs, val, ind );
end );
InstallOtherMethod( UnivariateRationalFunctionByCoefficients, "ring",
[IsFloatPseudoField,IsList,IsList,IsInt],
function(r,ncof,dcof,val)
return UnivariateRationalFunctionByCoefficients(r,ncof,dcof,val,1);
end );
InstallOtherMethod( UnivariateRationalFunctionByCoefficients, "ring",
[IsFloatPseudoField,IsList,IsList,IsInt,IsInt],
function(r,ncof,dcof,val,ind)
local fam;
fam := RationalFunctionsFamily( r );
if Length( ncof ) > 0 and (IsZero( ncof[1] ) or IsZero( ncof[Length( ncof )] )) then
if not IsMutable( ncof ) then
ncof := ShallowCopy( ncof );
fi;
val := val + RemoveOuterCoeffs( ncof, fam!.zeroCoefficient );
fi;
if Length( dcof ) > 0 and (IsZero( dcof[1] ) or IsZero( dcof[Length( dcof )] )) then
if not IsMutable( dcof ) then
dcof := ShallowCopy( dcof );
fi;
val := val - RemoveOuterCoeffs( dcof, fam!.zeroCoefficient );
fi;
return UnivariateRationalFunctionByExtRepNC( fam, ncof, dcof, val, ind );
end );
InstallMethod( PolynomialRing,"indetlist", true, [ IsFloatPseudoField, IsList ],
1,
function( r, n )
local rfun, zero, one, ind, i, type, prng;
if IsPolynomialFunctionCollection(n) and ForAll(n,IsLaurentPolynomial) then
n:=List(n,IndeterminateNumberOfLaurentPolynomial);
fi;
if IsEmpty(n) or not IsInt(n[1]) then
TryNextMethod();
fi;
# get the rational functions of the elements family
rfun := RationalFunctionsFamily(r);
# cache univariate rings - they might be created often
if not IsBound(r!.univariateRings) then
r!.univariateRings:=[];
fi;
if Length(n)=1
# some bozo might put in a ridiculous number
and n[1]<10000
# only cache for the prime field
and IsField(r)
and IsBound(r!.univariateRings[n[1]]) then
return r!.univariateRings[n[1]];
fi;
# first the indeterminates
zero := Zero(r);
one := One(r);
ind := [];
for i in n do
Add( ind, LaurentPolynomialByCoefficients(r,[one],1,i) );
od;
# construct a polynomial ring
type := IsPolynomialRing and IsAttributeStoringRep and IsFreeLeftModule and IsAlgebraWithOne;
if Length(n) = 1 then
type := type and IsUnivariatePolynomialRing and IsEuclideanRing;
#and IsAlgebraWithOne; # done above already
fi;
prng := Objectify( NewType( CollectionsFamily(rfun), type ), rec() );
# set the left acting domain
SetLeftActingDomain( prng, r );
# set the indeterminates
SetIndeterminatesOfPolynomialRing( prng, ind );
# set known properties
SetIsFinite( prng, false );
SetIsFiniteDimensional( prng, false );
SetSize( prng, infinity );
# set the coefficients ring
SetCoefficientsRing( prng, r );
# set one and zero
SetOne( prng, ind[1]^0 );
SetZero( prng, ind[1]*zero );
# set the generators left operator ring-with-one if the rank is one
if IsRingWithOne(r) then
SetGeneratorsOfLeftOperatorRingWithOne( prng, ind );
fi;
if Length(n)=1 and n[1]<10000
# only cache for the prime field
and IsField(r) then
r!.univariateRings[n[1]]:=prng;
fi;
# and return
return prng;
end );
InstallOtherMethod( Indeterminate, [IsFloatFamily,IsPosInt],
function(fam,ind)
Error("`Indeterminate(<family>,<ind>)' can not be used with floats; use `Indeterminate(<float pseudofield>,<ind>)'");
end);
InstallOtherMethod( Indeterminate,"number", true, [ IsFloatPseudoField,IsPosInt ],0,
function( r,n )
return LaurentPolynomialByCoefficients(r,[One(r)],1,n);
end);
InstallOtherMethod( Indeterminate,"number 1", true, [ IsFloatPseudoField ],0,
function( r )
return LaurentPolynomialByCoefficients(r,[One(r)],1,1);
end);
InstallOtherMethod( Indeterminate,"number, avoid", true, [ IsFloatPseudoField,IsList ],0,
function( r,a )
if not IsRationalFunction(a[1]) then
TryNextMethod();
fi;
return LaurentPolynomialByCoefficients(r,[One(r)],1,
GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[],a)[1]);
end);
InstallOtherMethod( Indeterminate,"number, name", true, [ IsFloatPseudoField,IsString ],0,
function( r,n )
if not IsString(n) then
TryNextMethod();
fi;
return LaurentPolynomialByCoefficients(r,[One(r)],1,
GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],[])[1]);
end);
InstallOtherMethod( Indeterminate,"number, name, avoid",true,
[ IsFloatPseudoField,IsString,IsList ],0,
function( r,n,a )
if not IsString(n) then
TryNextMethod();
fi;
return LaurentPolynomialByCoefficients(r,[One(r)],1,
GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],a)[1]);
end);
# we must avoid over/underflow here; hence the specific method
InstallOtherMethod(ReduceCoeffs, "for float vectors",
[IsFloatCollection, IsInt, IsFloatCollection, IsInt],
function (l1, n1, l2, n2)
local l, q, i, x;
if 0 = n2 then
Error("<l2> must be non-zero");
elif 0 = n1 then
return n1;
fi;
while 0 < n2 and IsZero(l2[n2]) do n2 := n2 - 1; od;
if 0 = n2 then
Error("<l2> must be non-zero");
fi;
while 0 < n1 and IsZero(l1[n1]) do n1 := n1 - 1; od;
while n1 >= n2 do
q := l1[n1] / l2[n2];
l := n1-n2;
for i in [ n1-n2+1 .. n1 ] do
x := l1[i] - q * l2[i-n1+n2];
if i=n1 or l1[i] - x/2 = l1[i] then # epsilon-small value
l1[i] := Zero(l1[i]);
else
l1[i] := x;
l := i;
fi;
od;
n1 := l;
od;
return n1;
end);
InstallMethod( Derivative, "for float laurent polynomial",
[IsFloatRationalFunction and IsUnivariateRationalFunction and IsLaurentPolynomial],
function(f)
local c, d, e, i, ind, fam;
ind := IndeterminateNumberOfUnivariateRationalFunction( f );
fam := FamilyObj(f);
e := CoefficientsOfLaurentPolynomial( f );
c := e[1];
if Length( c ) = 0 then
return f;
fi;
e := e[2];
d := [ ];
for i in [ 1 .. Length(c) ] do
d[i] := (i + e - 1) * c[i];
od;
e := e-1 + RemoveOuterCoeffs(d, fam!.zeroCoefficient);
return LaurentPolynomialByExtRepNC( fam, d, e, ind );
end );
#############################################################################
##
#M \<, \+, ... for float and rat
##
# we say that all floateans are after all rationals, to sort them
BindGlobal("COMPARE_FLOAT_ANY", function(x,y)
local z;
if IsFloat(x) then z := y; else z := x; fi;
Error("Comparison of float and ",z," is not supported. Please refer to the manual section on floats for details");
end);
InstallMethod( \<, "for rational and float", [ IsRat, IsFloat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \<, "for float and rational", [ IsFloat, IsRat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \<, "for floats", [ IsFloat, IsFloat ], -1,
function(x,y) return x < MakeFloat(x,y); end);
InstallMethod( \=, "for rational and float", [ IsRat, IsFloat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \=, "for float and rational", [ IsFloat, IsRat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \=, "for floats", [ IsFloat, IsFloat ], -1,
function(x,y) return x = MakeFloat(x,y); end);
InstallMethod( \+, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return MakeFloat(y,x) + y; end );
InstallMethod( \+, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y ) return x + MakeFloat(x,y); end );
InstallMethod( \+, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return x + MakeFloat(x,y); end );
InstallMethod( \-, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return MakeFloat(y,x) - y; end );
InstallMethod( \-, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y ) return x - MakeFloat(x,y); end );
InstallMethod( \-, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return x - MakeFloat(x,y); end );
InstallMethod( \*, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return MakeFloat(y,x) * y; end );
InstallMethod( \*, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y ) return x * MakeFloat(x,y); end );
InstallMethod( \*, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return x * MakeFloat(x,y); end );
InstallMethod( \/, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return MakeFloat(y,x) / y; end );
InstallMethod( \/, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y ) return x / MakeFloat(x,y); end );
InstallMethod( \/, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return x / MakeFloat(x,y); end );
InstallMethod( LQUO, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return LQUO(MakeFloat(y,x),y); end );
InstallMethod( LQUO, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y ) return LQUO(x,MakeFloat(x,y)); end );
InstallMethod( LQUO, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return LQUO(x,MakeFloat(x,y)); end );
InstallOtherMethod( \/, "for empty list", [ IsEmpty, IsFloat ],
function ( x, y ) return x; end );
InstallMethod( \^, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
function ( x, y ) return MakeFloat(y,x) ^ y; end );
InstallMethod( \^, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
function ( x, y )
if IsInt(y) then TryNextMethod(); fi;
return x ^ MakeFloat(x,y);
end );
InstallMethod( \^, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
function ( x, y ) return x ^ MakeFloat(x,y); end );
#############################################################################
##
#E
|