/usr/share/gap/lib/gaussian.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | #############################################################################
##
#W gaussian.gi GAP library Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for Gaussian rationals and Gaussian integers.
##
## Gaussian rationals are elements of the form $a + b * I$ where $I$ is the
## square root of -1 and $a,b$ are rationals.
## Note that $I$ is written as `E(4)', i.e., as a fourth root of unity in
## {\GAP}.
## Gauss was the first to investigate such numbers, and already proved that
## the ring of integers of this field, i.e., the elements of the form
## $a + b * I$ where $a,b$ are integers, forms a Euclidean Ring.
## It follows that this ring is a Unique Factorization Domain.
##
#############################################################################
##
#M \in( <n>, GaussianIntegers ) . . . membership test for Gaussian integers
##
## Gaussian integers are of the form `<a> + <b> * E(4)', where <a> and <b>
## are integers.
##
InstallMethod( \in,
"for Gaussian integers",
IsElmsColls,
[ IsCyc, IsGaussianIntegers ],
function( cyc, GaussianIntegers )
return IsCycInt( cyc ) and 4 mod Conductor( cyc ) = 0;
end );
#############################################################################
##
#M Basis( GaussianIntegers ) . . . . . . . . . . . . . for Gaussian integers
##
InstallMethod( Basis,
"for Gaussian integers (delegate to `CanonicalBasis')",
[ IsGaussianIntegers ], CANONICAL_BASIS_FLAGS,
CanonicalBasis );
#############################################################################
##
#M CanonicalBasis( GaussianIntegers ) . . . . . . . . for Gaussian integers
##
DeclareRepresentation(
"IsCanonicalBasisGaussianIntegersRep", IsAttributeStoringRep,
[ "conductor", "zumbroichbase" ] );
InstallMethod( CanonicalBasis,
"for Gaussian integers",
[ IsGaussianIntegers ],
function( GaussianIntegers )
local B;
B:= Objectify( NewType( FamilyObj( GaussianIntegers ),
IsFiniteBasisDefault
and IsCanonicalBasis
and IsCanonicalBasisGaussianIntegersRep ),
#T generalize this to integral rings of cyclotomics!
rec() );
SetUnderlyingLeftModule( B, GaussianIntegers );
SetIsIntegralBasis( B, true );
SetBasisVectors( B, Immutable( [ 1, E(4) ] ) );
B!.conductor:= 4;
B!.zumbroichbase := [ 0, 1 ];
# Return the basis.
return B;
end );
#############################################################################
##
#M Coefficients( <B>, <z> ) . for the canon. basis of the Gaussian integers
##
InstallMethod( Coefficients,
"for canon. basis of Gaussian integers, and cyclotomic",
IsCollsElms,
[ IsBasis and IsCanonicalBasis and IsCanonicalBasisGaussianIntegersRep,
IsCyc ],
function( B, z )
local N,
coeffs,
F;
F:= UnderlyingLeftModule( B );
if not z in F then return fail; fi;
N:= B!.conductor;
# Get the Zumbroich basis representation of <z> in `N'-th roots.
coeffs:= CoeffsCyc( z, N );
if coeffs = fail then return fail; fi;
# Get the Zumbroich basis coefficients (basis $B_{n,1}$)
coeffs:= coeffs{ B!.zumbroichbase + 1 };
# Return the list of coefficients.
return coeffs;
end );
#############################################################################
##
#M Quotient( GaussianIntegers, <n>, <m> )
##
InstallMethod( Quotient,
"for Gaussian integers",
IsCollsElmsElms,
[ IsGaussianIntegers, IsCyc, IsCyc ],
function ( GaussianIntegers, x, y )
local q;
q := x / y;
if not IsCycInt( q ) then
q := fail;
fi;
return q;
end );
#############################################################################
##
#M StandardAssociateUnit( GaussianIntegers, <x> ) . . for Gaussian integers
##
## The standard associate of <x> is an associated element <y> of <x> that
## lies in the first quadrant of the complex plane.
## That is <y> is that element from `<x> * [1,-1,E(4),-E(4)]' that has
## positive real part and nonnegative imaginary part.
## (This is the generalization of `Abs' (see "Abs") for Gaussian integers.)
##
## This function returns the unit <z> equal to <y> / <x>. The default
## StandardAssociate method then uses this to compute the standard associate.
##
InstallMethod( StandardAssociateUnit,
"for Gaussian integers",
IsCollsElms,
[ IsGaussianIntegers, IsCyc ],
function ( GaussianIntegers, x )
if not IsGaussInt( x ) then
Error( "<x> must lie in <GaussianIntegers>" );
elif IsRat(x) and 0 <= x then
return 1;
elif IsRat(x) then
return -1;
elif 0 < COEFFS_CYC(x)[1] and 0 <= COEFFS_CYC(x)[2] then
return 1;
elif COEFFS_CYC(x)[1] <= 0 and 0 < COEFFS_CYC(x)[2] then
return -E(4);
elif COEFFS_CYC(x)[1] < 0 and COEFFS_CYC(x)[2] <= 0 then
return -1;
else
return E(4);
fi;
end );
#############################################################################
##
#M EuclideanDegree( GaussianIntegers, <n> )
##
InstallMethod( EuclideanDegree,
"for Gaussian integers",
IsCollsElms,
[ IsGaussianIntegers, IsCyc ],
function( GaussianIntegers, x )
if IsGaussInt( x ) then
return x * GaloisCyc( x, -1 );
else
Error( "<x> must lie in <GaussianIntegers>" );
fi;
end );
#############################################################################
##
#M EuclideanRemainder( GaussianIntegers, <n>, <m> )
##
InstallMethod( EuclideanRemainder,
"for Gaussian integers",
IsCollsElmsElms,
[ IsGaussianIntegers, IsCyc, IsCyc ],
function ( GaussianIntegers, x, y )
if IsGaussInt( x ) and IsGaussInt( y ) then
return x - RoundCyc( x/y ) * y;
else
Error( "<x> and <y> must lie in <GaussianIntegers>" );
fi;
end );
#############################################################################
##
#M EuclideanQuotient( GaussianIntegers, <x>, <y> )
##
InstallMethod( EuclideanQuotient,
"for Gaussian integers",
IsCollsElmsElms,
[ IsGaussianIntegers, IsCyc, IsCyc ],
function ( GaussianIntegers, x, y )
if IsGaussInt( x ) and IsGaussInt( y ) then
return RoundCyc( x/y );
else
Error( "<x> and <y> must lie in <GaussianIntegers>" );
fi;
end );
#############################################################################
##
#M QuotientRemainder( GaussianIntegers, <x>, <y> )
##
InstallMethod( QuotientRemainder,
"for Gaussian integers",
IsCollsElmsElms,
[ IsGaussianIntegers, IsCyc, IsCyc ],
function ( GaussianIntegers, x, y )
local q;
if IsGaussInt( x ) and IsGaussInt( y ) then
q := RoundCyc(x/y);
return [ q, x-q*y ];
else
Error( "<x> and <y> must lie in <GaussianIntegers>" );
fi;
end );
#############################################################################
##
#M IsPrime( GaussianIntegers, <n> )
##
InstallMethod( IsPrime,
"for Gaussian integers and integer",
IsCollsElms,
[ IsGaussianIntegers, IsInt ],
function ( GaussianIntegers, x )
return x mod 4 = 3 and IsPrimeInt( x );
end );
InstallMethod( IsPrime,
"for Gaussian integers and cyclotomic",
IsCollsElms,
[ IsGaussianIntegers, IsCyc ],
function ( GaussianIntegers, x )
if IsGaussInt( x ) then
return IsPrimeInt( x * GaloisCyc( x, -1 ) );
else
Error( "<x> must lie in <GaussianIntegers>" );
fi;
end );
#############################################################################
##
#M Factors( GaussianIntegers, <x> )
##
InstallMethod( Factors,
"for Gaussian integers",
IsCollsElms,
[ IsGaussianIntegers, IsCyc ],
function ( GaussianIntegers, x )
local facs, # factors (result)
prm, # prime factors of the norm
tsq; # representation of `prm' as $x^2 + y^2$
# handle trivial cases
if x in [ 0, 1, -1, E(4), -E(4) ] then
return [ x ];
elif not IsGaussInt( x ) then
Error( "<x> must lie in <GaussianIntegers>" );
fi;
# loop over all factors of the norm of x
facs := [];
for prm in Set( FactorsInt( EuclideanDegree( GaussianIntegers, x ) ) ) do
# $p = 2$ and primes $p = 1$ mod 4 split according to $p = x^2 + y^2$
if prm = 2 or prm mod 4 = 1 then
tsq := TwoSquares( prm );
while IsCycInt( x / (tsq[1]+tsq[2]*E(4)) ) do
Add( facs, (tsq[1]+tsq[2]*E(4)) );
x := x / (tsq[1]+tsq[2]*E(4));
od;
while IsCycInt( x / (tsq[2]+tsq[1]*E(4)) ) do
Add( facs, (tsq[2]+tsq[1]*E(4)) );
x := x / (tsq[2]+tsq[1]*E(4));
od;
# primes $p = 3$ mod 4 stay prime
else
while IsCycInt( x / prm ) do
Add( facs, prm );
x := x / prm;
od;
fi;
od;
Assert( 1, x in [ 1, -1, E(4), -E(4) ],
"'Factors' for Gaussian integers: Cofactor must be a unit\n" );
# the first factor takes the unit
facs[1] := x * facs[1];
# return the result
return facs;
end );
#T #############################################################################
#T ##
#T #F GaussianRationalsOps.CharPol(<GaussRat>,<x>) . . characteristic polynom
#T #F of a Gaussian rational
#T ##
#T GaussianRationalsOps.CharPol := function ( GaussRat, x )
#T return [ x * GaloisCyc(x,-1), -x-GaloisCyc(x,-1), 1 ];
#T end;
#T
#T
#T #############################################################################
#T ##
#T #F GaussianRationalsOps.MinPol(<GaussRat>,<x>) . . . . . . . minimal polynom
#T #F of a Gaussian rational
#T ##
#T GaussianRationalsOps.MinPol := function ( GaussRat, x )
#T if IsRat( x ) then
#T return [ -x, 1 ];
#T else
#T return [ x * GaloisCyc(x,-1), -x-GaloisCyc(x,-1), 1 ];
#T fi;
#T end;
#############################################################################
##
#E
|