/usr/share/gap/lib/gprd.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | #############################################################################
##
#W gprd.gd GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F DirectProduct( <G>{, <H>} )
#O DirectProductOp( <list>, <expl> )
##
## <#GAPDoc Label="DirectProduct">
## <ManSection>
## <Func Name="DirectProduct" Arg='G[, H, ...]'/>
## <Oper Name="DirectProductOp" Arg='list, expl'/>
##
## <Description>
## These functions construct the direct product of the groups given as
## arguments.
## <Ref Func="DirectProduct"/> takes an arbitrary positive number of
## arguments and calls the operation <Ref Func="DirectProductOp"/>,
## which takes exactly two arguments,
## namely a nonempty list <A>list</A> of groups and one of these groups,
## <A>expl</A>.
## (This somewhat strange syntax allows the method selection to choose
## a reasonable method for special cases, e.g., if all groups are
## permutation groups or pc groups.)
## <P/>
## &GAP; will try to choose an efficient representation for the direct
## product. For example the direct product of permutation groups will be a
## permutation group again and the direct product of pc groups will be a pc
## group.
## <P/>
## If the groups are in different representations a generic direct product
## will be formed which may not be particularly efficient for many
## calculations.
## Instead it may be worth to convert all factors to a common representation
## first, before forming the product.
## <P/>
## <Index Key="Embedding" Subkey="example for direct products">
## <C>Embedding</C></Index>
## <Index Key="Projection" Subkey="example for direct products">
## <C>Projection</C></Index>
## For a direct product <M>P</M>, calling
## <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
## <M>P</M> and <M>n</M> yields the homomorphism embedding the <M>n</M>-th
## factor into <M>P</M>; calling
## <Ref Func="Projection" Label="for a domain and a positive integer"/> with
## <A>P</A> and <A>n</A> yields the projection of <M>P</M> onto the
## <M>n</M>-th factor,
## see <Ref Sect="Embeddings and Projections for Group Products"/>.
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3),(1,2));;
## gap> d:=DirectProduct(g,g,g);
## Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ])
## gap> Size(d);
## 216
## gap> e:=Embedding(d,2);
## 2nd embedding into Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9),
## (7,8) ])
## gap> Image(e,(1,2));
## (4,5)
## gap> Image(Projection(d,2),(1,2,3)(4,5)(8,9));
## (1,2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DirectProduct" );
DeclareOperation( "DirectProductOp", [ IsList, IsGroup ] );
#############################################################################
##
#F PcgsDirectProduct( <D>, <pcgsop>, <indsop>, <filter> )
##
## <ManSection>
## <Func Name="PcgsDirectProduct" Arg='D, pcgsop, indsop, filter'/>
##
## <Description>
## constructs a new pcgs from pcgses of the components of D, setting
## the necessary indices for the new pcgs and sets the property
## specified by filter.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PcgsDirectProduct" );
#############################################################################
##
#O SubdirectProduct(<G>, <H>, <Ghom>, <Hhom> )
##
## <#GAPDoc Label="SubdirectProduct">
## <ManSection>
## <Oper Name="SubdirectProduct" Arg='G, H, Ghom, Hhom'/>
##
## <Description>
## constructs the subdirect product of <A>G</A> and <A>H</A> with respect to
## the epimorphisms <A>Ghom</A> from <A>G</A> onto a group <M>A</M> and
## <A>Hhom</A> from <A>H</A> onto the same group <M>A</M>.
## <P/>
## <Index Key="Projection" Subkey="example for subdirect products">
## <C>Projection</C></Index>
## For a subdirect product <M>P</M>, calling
## <Ref Func="Projection" Label="for a domain and a positive integer"/> with
## <M>P</M> and <M>n</M> yields the projection on the <M>n</M>-th factor.
## (In general the factors do not embed into a subdirect product.)
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3),(1,2));
## Group([ (1,2,3), (1,2) ])
## gap> hom:=GroupHomomorphismByImagesNC(g,g,[(1,2,3),(1,2)],[(),(1,2)]);
## [ (1,2,3), (1,2) ] -> [ (), (1,2) ]
## gap> s:=SubdirectProduct(g,g,hom,hom);
## Group([ (1,2,3), (1,2)(4,5), (4,5,6) ])
## gap> Size(s);
## 18
## gap> p:=Projection(s,2);
## 2nd projection of Group([ (1,2,3), (1,2)(4,5), (4,5,6) ])
## gap> Image(p,(1,3,2)(4,5,6));
## (1,2,3)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubdirectProduct");
DeclareOperation( "SubdirectProductOp",
[ IsGroup, IsGroup, IsGroupHomomorphism, IsGroupHomomorphism ] );
#############################################################################
##
#F SubdirectDiagonalPerms(<l>,<m>)
##
## <ManSection>
## <Func Name="SubdirectDiagonalPerms" Arg='l,m'/>
##
## <Description>
## Let <A>l</A> and <A>m</A> be lists of permutations that are the images of
## the same generating set <A>gens</A>.
## This function returns permutations for the images
## of <A>gens</A> under the subdirect product of the homomorphisms.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("SubdirectDiagonalPerms");
#############################################################################
##
#O SemidirectProduct(<G>, <alpha>, <N> )
#O SemidirectProduct(<autgp>, <N> )
##
## <#GAPDoc Label="SemidirectProduct">
## <ManSection>
## <Heading>SemidirectProduct</Heading>
## <Oper Name="SemidirectProduct" Arg='G, alpha, N'
## Label="for acting group, action, and a group"/>
## <Oper Name="SemidirectProduct" Arg='autgp, N'
## Label="for a group of automorphisms and a group"/>
##
## <Description>
## constructs the semidirect product of <A>N</A> with <A>G</A> acting via
## <A>alpha</A>, which must be a homomorphism from <A>G</A> into a group of
## automorphisms of <A>N</A>.
## <P/>
## If <A>N</A> is a group, <A>alpha</A> must be a homomorphism from <A>G</A>
## into a group of automorphisms of <A>N</A>.
## <P/>
## If <A>N</A> is a full row space over a field <A>F</A>, <A>alpha</A> must
## be a homomorphism from <A>G</A> into a matrix group of the right
## dimension over a subfield of <A>F</A>, or into a permutation group
## (in this case permutation matrices are taken).
## <P/>
## In the second variant, <A>autgp</A> must be a group of automorphism of
## <A>N</A>, it is a shorthand for
## <C>SemidirectProduct(<A>autgp</A>,IdentityMapping(<A>autgp</A>),<A>N</A>)</C>.
## Note that (unless <A>autgrp</A> has been obtained by the operation
## <Ref Func="AutomorphismGroup"/>)
## you have to test <Ref Func="IsGroupOfAutomorphisms"/> for <A>autgrp</A>
## to ensure that &GAP; knows that <A>autgrp</A> consists of
## group automorphisms.
## <Example><![CDATA[
## gap> n:=AbelianGroup(IsPcGroup,[5,5]);
## <pc group of size 25 with 2 generators>
## gap> au:=DerivedSubgroup(AutomorphismGroup(n));;
## gap> Size(au);
## 120
## gap> p:=SemidirectProduct(au,n);
## <permutation group with 5 generators>
## gap> Size(p);
## 3000
## gap> n:=Group((1,2),(3,4));;
## gap> au:=AutomorphismGroup(n);;
## gap> au:=First(Elements(au),i->Order(i)=3);;
## gap> au:=Group(au);
## <group with 1 generators>
## gap> IsGroupOfAutomorphisms(au);
## true
## gap> SemidirectProduct(au,n);
## <pc group with 3 generators>
## gap> n:=AbelianGroup(IsPcGroup,[2,2]);
## <pc group of size 4 with 2 generators>
## gap> au:=AutomorphismGroup(n);
## <group of size 6 with 2 generators>
## gap> apc:=IsomorphismPcGroup(au);
## CompositionMapping( Pcgs([ (2,3), (1,2,3) ]) ->
## [ f1, f2 ], <action isomorphism> )
## gap> g:=Image(apc);
## Group([ f1, f2 ])
## gap> apci:=InverseGeneralMapping(apc);
## [ f1*f2^2, f1*f2 ] -> [ Pcgs([ f1, f2 ]) -> [ f1*f2, f2 ],
## Pcgs([ f1, f2 ]) -> [ f2, f1 ] ]
## gap> IsGroupHomomorphism(apci);
## true
## gap> p:=SemidirectProduct(g,apci,n);
## <pc group of size 24 with 4 generators>
## gap> IsomorphismGroups(p,Group((1,2,3,4),(1,2)));
## [ f1, f2, f3, f4 ] -> [ (3,4), (1,4,3), (1,2)(3,4), (1,3)(2,4) ]
## gap> SemidirectProduct(SU(3,3),GF(9)^3);
## <matrix group of size 4408992 with 3 generators>
## gap> SemidirectProduct(Group((1,2,3),(2,3,4)),GF(5)^4);
## <matrix group of size 7500 with 3 generators>
## gap> g:=Group((3,4,5),(1,2,3));;
## gap> mats:=[[[Z(2^2),0*Z(2)],[0*Z(2),Z(2^2)^2]],
## > [[Z(2)^0,Z(2)^0], [Z(2)^0,0*Z(2)]]];;
## gap> hom:=GroupHomomorphismByImages(g,Group(mats),[g.1,g.2],mats);;
## gap> SemidirectProduct(g,hom,GF(4)^2);
## <matrix group of size 960 with 3 generators>
## gap> SemidirectProduct(g,hom,GF(16)^2);
## <matrix group of size 15360 with 4 generators>
## ]]></Example>
## <P/>
## <Index Key="Embedding" Subkey="example for semidirect products">
## <C>Embedding</C></Index>
## <Index Key="Projection" Subkey="example for semidirect products">
## <C>Projection</C></Index>
## For a semidirect product <M>P</M> of <A>G</A> with <A>N</A>, calling
## <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
## <M>P</M> and <C>1</C> yields the embedding of <A>G</A>, calling
## <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
## <M>P</M> and <C>2</C> yields the embedding of <A>N</A>; calling
## <Ref Func="Projection" Label="for a domain and a positive integer"/> with
## <A>P</A> yields the projection of <M>P</M> onto <A>G</A>,
## see <Ref Sect="Embeddings and Projections for Group Products"/>.
## <P/>
## <Example><![CDATA[
## gap> Size(Image(Embedding(p,1)));
## 6
## gap> Embedding(p,2);
## [ f1, f2 ] -> [ f3, f4 ]
## gap> Projection(p);
## [ f1, f2, f3, f4 ] -> [ f1, f2, <identity> of ..., <identity> of ... ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SemidirectProduct",
[ IsGroup, IsGroupHomomorphism, IsObject ] );
#############################################################################
##
#O WreathProduct(<G>, <H>[, <hom>] )
##
## <#GAPDoc Label="WreathProduct">
## <ManSection>
## <Oper Name="WreathProduct" Arg='G, H[, hom]'/>
## <Oper Name="StandardWreathProduct" Arg='G, H'/>
##
## <Description>
## <C>WreathProduct</C>
## constructs the wreath product of the group <A>G</A> with the group
## <A>H</A>, acting as a permutation group.
## <P/>
## If a third argument <A>hom</A> is given, it must be
## a homomorphism from <A>H</A> into a permutation group,
## and the action of this group on its moved points is considered.
## <P/>
## If only two arguments are given, <A>H</A> must be a permutation group.
## <P/>
## <C>StandardWreathProduct</C> returns the wreath product for the (right
## regular) permutation action of <A>H</A> on its elements.
## <P/>
## <Index Key="Embedding" Subkey="example for wreath products">
## <C>Embedding</C></Index>
## <Index Key="Projection" Subkey="example for wreath products">
## <C>Projection</C></Index>
## For a wreath product <M>W</M> of <A>G</A> with a permutation group
## <M>P</M> of degree <M>n</M> and <M>1 \leq i \leq n</M> calling
## <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
## <M>W</M> and <M>i</M> yields the embedding of <A>G</A> in the <M>i</M>-th
## component of the direct product of the base group <M><A>G</A>^n</M> of
## <M>W</M>.
## For <M>i = n+1</M>,
## <Ref Func="Embedding" Label="for a domain and a positive integer"/>
## yields the embedding of <M>P</M> into <M>W</M>. Calling
## <Ref Func="Projection" Label="for a domain and a positive integer"/> with
## <M>W</M> yields the projection onto the acting group <M>P</M>,
## see <Ref Sect="Embeddings and Projections for Group Products"/>.
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3),(1,2));
## Group([ (1,2,3), (1,2) ])
## gap> p:=Group((1,2,3));
## Group([ (1,2,3) ])
## gap> w:=WreathProduct(g,p);
## Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8),
## (1,4,7)(2,5,8)(3,6,9) ])
## gap> Size(w);
## 648
## gap> Embedding(w,1);
## 1st embedding into Group( [ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9),
## (7,8), (1,4,7)(2,5,8)(3,6,9) ] )
## gap> Image(Embedding(w,3));
## Group([ (7,8,9), (7,8) ])
## gap> Image(Embedding(w,4));
## Group([ (1,4,7)(2,5,8)(3,6,9) ])
## gap> Image(Projection(w),(1,4,8,2,6,7,3,5,9));
## (1,2,3)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "WreathProduct", [ IsGroup, IsGroup ] );
DeclareOperation( "StandardWreathProduct", [ IsGroup, IsGroup ] );
#############################################################################
##
#F WreathProductImprimitiveAction(<G>, <H> )
##
## <#GAPDoc Label="WreathProductImprimitiveAction">
## <ManSection>
## <Func Name="WreathProductImprimitiveAction" Arg='G, H'/>
##
## <Description>
## For two permutation groups <A>G</A> and <A>H</A>,
## this function constructs the wreath product of <A>G</A> and <A>H</A>
## in the imprimitive action.
## If <A>G</A> acts on <M>l</M> points and <A>H</A> on <M>m</M> points
## this action will be on <M>l \cdot m</M> points,
## it will be imprimitive with <M>m</M> blocks of size <M>l</M> each.
## <P/>
## The operations <Ref Func="Embedding" Label="for two domains"/>
## and <Ref Func="Projection" Label="for two domains"/>
## operate on this product as described for general wreath products.
## <P/>
## <Example><![CDATA[
## gap> w:=WreathProductImprimitiveAction(g,p);;
## gap> LargestMovedPoint(w);
## 9
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "WreathProductImprimitiveAction" );
#############################################################################
##
#F WreathProductProductAction(<G>, <H> )
##
## <#GAPDoc Label="WreathProductProductAction">
## <ManSection>
## <Func Name="WreathProductProductAction" Arg='G, H'/>
##
## <Description>
## For two permutation groups <A>G</A> and <A>H</A>,
## this function constructs the wreath product in product action.
## If <A>G</A> acts on <M>l</M> points and <A>H</A> on
## <M>m</M> points this action will be on <M>l^m</M> points.
## <P/>
## The operations <Ref Func="Embedding" Label="for two domains"/>
## and <Ref Func="Projection" Label="for two domains"/>
## operate on this product as described for general wreath products.
## <Example><![CDATA[
## gap> w:=WreathProductProductAction(g,p);
## <permutation group of size 648 with 7 generators>
## gap> LargestMovedPoint(w);
## 27
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "WreathProductProductAction" );
#############################################################################
##
#F SubdirectProducts( <G>, <H> )
##
## <#GAPDoc Label="SubdirectProducts">
## <ManSection>
## <Func Name="SubdirectProducts" Arg='G, H'/>
##
## <Description>
## this function computes all subdirect products of <A>G</A> and <A>H</A> up
## to conjugacy in the direct product of Parent(<A>G</A>) and
## Parent(<A>H</A>).
## The subdirect products are returned as subgroups of this direct product.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InnerSubdirectProducts" );
DeclareGlobalFunction( "InnerSubdirectProducts2" );
DeclareGlobalFunction( "SubdirectProducts" );
#############################################################################
##
#F FreeProduct( <G>{, <H>} )
#F FreeProduct( list )
##
## <#GAPDoc Label="FreeProduct">
## <ManSection>
## <Heading>FreeProduct</Heading>
## <Func Name="FreeProduct" Arg='G[, H, ...]' Label="for several groups"/>
## <Func Name="FreeProduct" Arg='list' Label="for a list"/>
##
## <Description>
## constructs a finitely presented group which is the free product of
## the groups given as arguments.
## If the group arguments are not finitely presented groups,
## then <Ref Func="IsomorphismFpGroup"/> must be defined for them.
## <P/>
## The operation <Ref Func="Embedding" Label="for two domains"/>
## operates on this product.
## <Example><![CDATA[
## gap> g := DihedralGroup(8);;
## gap> h := CyclicGroup(5);;
## gap> fp := FreeProduct(g,h,h);
## <fp group on the generators [ f1, f2, f3, f4, f5 ]>
## gap> fp := FreeProduct([g,h,h]);
## <fp group on the generators [ f1, f2, f3, f4, f5 ]>
## gap> Embedding(fp,2);
## [ f1 ] -> [ f4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("FreeProduct");
DeclareOperation( "FreeProductOp", [ IsList, IsGroup ] );
#############################################################################
##
#A DirectProductInfo( <G> )
##
## <ManSection>
## <Attr Name="DirectProductInfo" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "DirectProductInfo", IsGroup, "mutable" );
#############################################################################
##
#A SubdirectProductInfo( <G> )
##
## <ManSection>
## <Attr Name="SubdirectProductInfo" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "SubdirectProductInfo", IsGroup, "mutable" );
#############################################################################
##
#A SemidirectProductInfo( <G> )
##
## <ManSection>
## <Attr Name="SemidirectProductInfo" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "SemidirectProductInfo", IsGroup, "mutable" );
#############################################################################
##
#A WreathProductInfo( <G> )
##
## <ManSection>
## <Attr Name="WreathProductInfo" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "WreathProductInfo", IsGroup, "mutable" );
#############################################################################
##
#A FreeProductInfo( <G> )
##
## <ManSection>
## <Attr Name="FreeProductInfo" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "FreeProductInfo", IsGroup, "mutable" );
#############################################################################
##
#F SubdirProdPcGroups( <G>,<gi>,<H>,<hi> )
##
## <ManSection>
## <Func Name="SubdirProdPcGroups" Arg='G,gi,H,hi'/>
##
## <Description>
## Let <A>G</A> and <A>H</A> be two pc groups which are both projections of a
## subdirect product with generator images <A>gi</A> and <A>hi</A>. the function
## returns a list <A>l</A> with <A>l</A>[1] a new pc group and <A>l</A>[2] a corresponding
## generator images list.
## <P/>
## No parameter checking is done.
## (This function is used in a variant of the SQ.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SubdirProdPcGroups" );
#############################################################################
##
#C IsWreathProductElement
#C IsWreathProductElementCollection
##
## <ManSection>
## <Filt Name="IsWreathProductElement" Arg='obj' Type='Category'/>
## <Filt Name="IsWreathProductElementCollection" Arg='obj' Type='Category'/>
##
## <Description>
## categories for elements of generic wreath products: elements are stored
## as list of base components and permutation.
## </Description>
## </ManSection>
##
DeclareCategory("IsWreathProductElement",
IsMultiplicativeElementWithInverse and IsAssociativeElement);
DeclareCategoryCollections("IsWreathProductElement");
InstallTrueMethod(IsGeneratorsOfMagmaWithInverses,
IsWreathProductElementCollection);
DeclareRepresentation("IsWreathProductElementDefaultRep",
IsWreathProductElement and IsPositionalObjectRep,[]);
#############################################################################
##
#E
|