This file is indexed.

/usr/share/gap/lib/gprd.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#############################################################################
##
#W  gprd.gd                     GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#F  DirectProduct( <G>{, <H>} )
#O  DirectProductOp( <list>, <expl> )
##
##  <#GAPDoc Label="DirectProduct">
##  <ManSection>
##  <Func Name="DirectProduct" Arg='G[, H, ...]'/>
##  <Oper Name="DirectProductOp" Arg='list, expl'/>
##
##  <Description>
##  These functions construct the direct product of the groups given as
##  arguments.
##  <Ref Func="DirectProduct"/> takes an arbitrary positive number of
##  arguments and calls the operation <Ref Func="DirectProductOp"/>,
##  which takes exactly two arguments,
##  namely a nonempty list <A>list</A> of groups and one of these groups,
##  <A>expl</A>.
##  (This somewhat strange syntax allows the method selection to choose
##  a reasonable method for special cases, e.g., if all groups are
##  permutation groups or pc groups.)
##  <P/>
##  &GAP; will try to choose an efficient representation for the direct
##  product. For example the direct product of permutation groups will be a
##  permutation group again and the direct product of pc groups will be a pc
##  group.
##  <P/>
##  If the groups are in different representations a generic direct product
##  will be formed which may not be particularly efficient for many
##  calculations.
##  Instead it may be worth to convert all factors to a common representation
##  first, before forming the product.
##  <P/>
##  <Index Key="Embedding" Subkey="example for direct products">
##  <C>Embedding</C></Index>
##  <Index Key="Projection" Subkey="example for direct products">
##  <C>Projection</C></Index>
##  For a direct product <M>P</M>, calling
##  <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
##  <M>P</M> and <M>n</M> yields the homomorphism embedding the <M>n</M>-th
##  factor into <M>P</M>; calling
##  <Ref Func="Projection" Label="for a domain and a positive integer"/> with
##  <A>P</A> and <A>n</A> yields the projection of <M>P</M> onto the
##  <M>n</M>-th factor,
##  see&nbsp;<Ref Sect="Embeddings and Projections for Group Products"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));;
##  gap> d:=DirectProduct(g,g,g);
##  Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ])
##  gap> Size(d);
##  216
##  gap> e:=Embedding(d,2);
##  2nd embedding into Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), 
##    (7,8) ])
##  gap> Image(e,(1,2));
##  (4,5)
##  gap> Image(Projection(d,2),(1,2,3)(4,5)(8,9));
##  (1,2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DirectProduct" );
DeclareOperation( "DirectProductOp", [ IsList, IsGroup ] );

#############################################################################
##
#F  PcgsDirectProduct( <D>, <pcgsop>, <indsop>, <filter> )
##
##  <ManSection>
##  <Func Name="PcgsDirectProduct" Arg='D, pcgsop, indsop, filter'/>
##
##  <Description>
##  constructs a new pcgs from pcgses of the components of D, setting 
##  the necessary indices for the new pcgs and sets the property
##  specified by filter.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PcgsDirectProduct" );

#############################################################################
##
#O  SubdirectProduct(<G>, <H>, <Ghom>, <Hhom> )
##
##  <#GAPDoc Label="SubdirectProduct">
##  <ManSection>
##  <Oper Name="SubdirectProduct" Arg='G, H, Ghom, Hhom'/>
##
##  <Description>
##  constructs the subdirect product of <A>G</A> and <A>H</A> with respect to
##  the epimorphisms <A>Ghom</A> from <A>G</A> onto a group <M>A</M> and
##  <A>Hhom</A> from <A>H</A> onto the same group <M>A</M>.
##  <P/>
##  <Index Key="Projection" Subkey="example for subdirect products">
##  <C>Projection</C></Index>
##  For a subdirect product <M>P</M>, calling
##  <Ref Func="Projection" Label="for a domain and a positive integer"/> with
##  <M>P</M> and <M>n</M> yields the projection on the <M>n</M>-th factor.
##  (In general the factors do not embed into a subdirect product.)
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));
##  Group([ (1,2,3), (1,2) ])
##  gap> hom:=GroupHomomorphismByImagesNC(g,g,[(1,2,3),(1,2)],[(),(1,2)]);
##  [ (1,2,3), (1,2) ] -> [ (), (1,2) ]
##  gap> s:=SubdirectProduct(g,g,hom,hom);
##  Group([ (1,2,3), (1,2)(4,5), (4,5,6) ])
##  gap> Size(s);
##  18
##  gap> p:=Projection(s,2);
##  2nd projection of Group([ (1,2,3), (1,2)(4,5), (4,5,6) ])
##  gap> Image(p,(1,3,2)(4,5,6));
##  (1,2,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubdirectProduct");
DeclareOperation( "SubdirectProductOp",
    [ IsGroup, IsGroup, IsGroupHomomorphism, IsGroupHomomorphism ] );

#############################################################################
##
#F  SubdirectDiagonalPerms(<l>,<m>)
##
##  <ManSection>
##  <Func Name="SubdirectDiagonalPerms" Arg='l,m'/>
##
##  <Description>
##  Let <A>l</A> and <A>m</A> be lists of permutations that are the images of
##  the same generating set <A>gens</A>.
##  This function returns permutations for the images
##  of <A>gens</A> under the subdirect product of the homomorphisms.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SubdirectDiagonalPerms");

#############################################################################
##
#O  SemidirectProduct(<G>, <alpha>, <N> )
#O  SemidirectProduct(<autgp>, <N> )
##
##  <#GAPDoc Label="SemidirectProduct">
##  <ManSection>
##  <Heading>SemidirectProduct</Heading>
##  <Oper Name="SemidirectProduct" Arg='G, alpha, N'
##   Label="for acting group, action, and a group"/>
##  <Oper Name="SemidirectProduct" Arg='autgp, N'
##   Label="for a group of automorphisms and a group"/>
##
##  <Description>
##  constructs the semidirect product of <A>N</A> with <A>G</A> acting via
##  <A>alpha</A>, which must be a homomorphism from <A>G</A> into a group of
##  automorphisms of <A>N</A>.
##  <P/>
##  If <A>N</A> is a group, <A>alpha</A> must be a homomorphism from <A>G</A>
##  into a group of automorphisms of <A>N</A>.
##  <P/>
##  If <A>N</A> is a full row space over a field <A>F</A>, <A>alpha</A> must
##  be a homomorphism from <A>G</A> into a matrix group of the right
##  dimension over a subfield of <A>F</A>, or into a permutation group
##  (in this case permutation matrices are taken).
##  <P/>
##  In the second variant, <A>autgp</A> must be a group of automorphism of
##  <A>N</A>, it is a shorthand for
##  <C>SemidirectProduct(<A>autgp</A>,IdentityMapping(<A>autgp</A>),<A>N</A>)</C>.
##  Note that (unless <A>autgrp</A> has been obtained by the operation
##  <Ref Func="AutomorphismGroup"/>)
##  you have to test <Ref Func="IsGroupOfAutomorphisms"/> for <A>autgrp</A>
##  to ensure that &GAP; knows that <A>autgrp</A> consists of
##  group automorphisms.
##  <Example><![CDATA[
##  gap> n:=AbelianGroup(IsPcGroup,[5,5]);
##  <pc group of size 25 with 2 generators>
##  gap> au:=DerivedSubgroup(AutomorphismGroup(n));;
##  gap> Size(au);
##  120
##  gap> p:=SemidirectProduct(au,n);
##  <permutation group with 5 generators>
##  gap> Size(p);
##  3000
##  gap> n:=Group((1,2),(3,4));;
##  gap> au:=AutomorphismGroup(n);;
##  gap> au:=First(Elements(au),i->Order(i)=3);;
##  gap> au:=Group(au);
##  <group with 1 generators>
##  gap> IsGroupOfAutomorphisms(au);
##  true
##  gap> SemidirectProduct(au,n);
##  <pc group with 3 generators>
##  gap> n:=AbelianGroup(IsPcGroup,[2,2]);
##  <pc group of size 4 with 2 generators>
##  gap> au:=AutomorphismGroup(n);
##  <group of size 6 with 2 generators>
##  gap> apc:=IsomorphismPcGroup(au);
##  CompositionMapping( Pcgs([ (2,3), (1,2,3) ]) -> 
##  [ f1, f2 ], <action isomorphism> )
##  gap> g:=Image(apc);
##  Group([ f1, f2 ])
##  gap> apci:=InverseGeneralMapping(apc);
##  [ f1*f2^2, f1*f2 ] -> [ Pcgs([ f1, f2 ]) -> [ f1*f2, f2 ], 
##    Pcgs([ f1, f2 ]) -> [ f2, f1 ] ]
##  gap> IsGroupHomomorphism(apci);
##  true
##  gap> p:=SemidirectProduct(g,apci,n);
##  <pc group of size 24 with 4 generators>
##  gap> IsomorphismGroups(p,Group((1,2,3,4),(1,2)));
##  [ f1, f2, f3, f4 ] -> [ (3,4), (1,4,3), (1,2)(3,4), (1,3)(2,4) ]
##  gap> SemidirectProduct(SU(3,3),GF(9)^3);
##  <matrix group of size 4408992 with 3 generators>
##  gap> SemidirectProduct(Group((1,2,3),(2,3,4)),GF(5)^4);
##  <matrix group of size 7500 with 3 generators>
##  gap> g:=Group((3,4,5),(1,2,3));;
##  gap> mats:=[[[Z(2^2),0*Z(2)],[0*Z(2),Z(2^2)^2]],
##  >          [[Z(2)^0,Z(2)^0], [Z(2)^0,0*Z(2)]]];;
##  gap> hom:=GroupHomomorphismByImages(g,Group(mats),[g.1,g.2],mats);;
##  gap> SemidirectProduct(g,hom,GF(4)^2);
##  <matrix group of size 960 with 3 generators>
##  gap> SemidirectProduct(g,hom,GF(16)^2);
##  <matrix group of size 15360 with 4 generators>
##  ]]></Example>
##  <P/>
##  <Index Key="Embedding" Subkey="example for semidirect products">
##  <C>Embedding</C></Index>
##  <Index Key="Projection" Subkey="example for semidirect products">
##  <C>Projection</C></Index>
##  For a semidirect product <M>P</M> of <A>G</A> with <A>N</A>, calling
##  <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
##  <M>P</M> and <C>1</C> yields the embedding of <A>G</A>, calling
##  <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
##  <M>P</M> and <C>2</C> yields the embedding of <A>N</A>; calling
##  <Ref Func="Projection" Label="for a domain and a positive integer"/> with
##  <A>P</A> yields the projection of <M>P</M> onto <A>G</A>,
##  see&nbsp;<Ref Sect="Embeddings and Projections for Group Products"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> Size(Image(Embedding(p,1)));
##  6
##  gap> Embedding(p,2);
##  [ f1, f2 ] -> [ f3, f4 ]
##  gap> Projection(p);
##  [ f1, f2, f3, f4 ] -> [ f1, f2, <identity> of ..., <identity> of ... ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemidirectProduct",
    [ IsGroup, IsGroupHomomorphism, IsObject ] );


#############################################################################
##
#O  WreathProduct(<G>, <H>[, <hom>] )
##
##  <#GAPDoc Label="WreathProduct">
##  <ManSection>
##  <Oper Name="WreathProduct" Arg='G, H[, hom]'/>
##  <Oper Name="StandardWreathProduct" Arg='G, H'/>
##
##  <Description>
##  <C>WreathProduct</C>
##  constructs the wreath product of the group <A>G</A> with the group
##  <A>H</A>, acting as a permutation group.
##  <P/>
##  If a third argument <A>hom</A> is given, it must be
##  a homomorphism from <A>H</A> into a permutation group,
##  and the action of this group on its moved points is considered.
##  <P/>
##  If only two arguments are given, <A>H</A> must be a permutation group.
##  <P/>
##  <C>StandardWreathProduct</C> returns the wreath product for the (right
##  regular) permutation action of <A>H</A> on its elements.
##  <P/>
##  <Index Key="Embedding" Subkey="example for wreath products">
##  <C>Embedding</C></Index>
##  <Index Key="Projection" Subkey="example for wreath products">
##  <C>Projection</C></Index>
##  For a wreath product <M>W</M> of <A>G</A> with a permutation group
##  <M>P</M> of degree <M>n</M> and <M>1 \leq i \leq n</M> calling
##  <Ref Func="Embedding" Label="for a domain and a positive integer"/> with
##  <M>W</M> and <M>i</M> yields the embedding of <A>G</A> in the <M>i</M>-th
##  component of the direct product of the base group <M><A>G</A>^n</M> of
##  <M>W</M>.
##  For <M>i = n+1</M>,
##  <Ref Func="Embedding" Label="for a domain and a positive integer"/>
##  yields the embedding of <M>P</M> into <M>W</M>.  Calling
##  <Ref Func="Projection" Label="for a domain and a positive integer"/> with
##  <M>W</M> yields the projection onto the acting group <M>P</M>,
##  see&nbsp;<Ref Sect="Embeddings and Projections for Group Products"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));
##  Group([ (1,2,3), (1,2) ])
##  gap> p:=Group((1,2,3));
##  Group([ (1,2,3) ])
##  gap> w:=WreathProduct(g,p);
##  Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8), 
##    (1,4,7)(2,5,8)(3,6,9) ])
##  gap> Size(w);
##  648
##  gap> Embedding(w,1);
##  1st embedding into Group( [ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), 
##    (7,8), (1,4,7)(2,5,8)(3,6,9) ] )
##  gap> Image(Embedding(w,3));
##  Group([ (7,8,9), (7,8) ])
##  gap> Image(Embedding(w,4));
##  Group([ (1,4,7)(2,5,8)(3,6,9) ])
##  gap> Image(Projection(w),(1,4,8,2,6,7,3,5,9));
##  (1,2,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "WreathProduct", [ IsGroup, IsGroup ] );
DeclareOperation( "StandardWreathProduct", [ IsGroup, IsGroup ] );


#############################################################################
##
#F  WreathProductImprimitiveAction(<G>, <H> )
##
##  <#GAPDoc Label="WreathProductImprimitiveAction">
##  <ManSection>
##  <Func Name="WreathProductImprimitiveAction" Arg='G, H'/>
##
##  <Description>
##  For two permutation groups <A>G</A> and <A>H</A>,
##  this function constructs the wreath product of <A>G</A> and <A>H</A>
##  in the imprimitive action.
##  If <A>G</A> acts on <M>l</M> points and <A>H</A> on <M>m</M> points
##  this action will be on <M>l \cdot m</M> points,
##  it will be imprimitive with <M>m</M> blocks of size <M>l</M> each.
##  <P/>
##  The operations <Ref Func="Embedding" Label="for two domains"/>
##  and <Ref Func="Projection" Label="for two domains"/>
##  operate on this product as described for general wreath products.
##  <P/>
##  <Example><![CDATA[
##  gap> w:=WreathProductImprimitiveAction(g,p);;
##  gap> LargestMovedPoint(w);
##  9
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "WreathProductImprimitiveAction" );


#############################################################################
##
#F  WreathProductProductAction(<G>, <H> )
##
##  <#GAPDoc Label="WreathProductProductAction">
##  <ManSection>
##  <Func Name="WreathProductProductAction" Arg='G, H'/>
##
##  <Description>
##  For two permutation groups <A>G</A> and <A>H</A>,
##  this function constructs the wreath product in product action.
##  If <A>G</A> acts on <M>l</M> points and <A>H</A> on
##  <M>m</M> points this action will be on <M>l^m</M> points.
##  <P/>
##  The operations <Ref Func="Embedding" Label="for two domains"/>
##  and <Ref Func="Projection" Label="for two domains"/>
##  operate on this product as described for general wreath products.
##  <Example><![CDATA[
##  gap> w:=WreathProductProductAction(g,p);
##  <permutation group of size 648 with 7 generators>
##  gap> LargestMovedPoint(w);
##  27
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "WreathProductProductAction" );


#############################################################################
##
#F  SubdirectProducts( <G>, <H> )
##
##  <#GAPDoc Label="SubdirectProducts">
##  <ManSection>
##  <Func Name="SubdirectProducts" Arg='G, H'/>
##
##  <Description>
##  this function computes all subdirect products of <A>G</A> and <A>H</A> up
##  to conjugacy in the direct product of Parent(<A>G</A>) and
##  Parent(<A>H</A>).
##  The subdirect products are returned as subgroups of this direct product.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "InnerSubdirectProducts" );
DeclareGlobalFunction( "InnerSubdirectProducts2" );
DeclareGlobalFunction( "SubdirectProducts" );


#############################################################################
##
#F  FreeProduct( <G>{, <H>} )
#F  FreeProduct( list )
##
##  <#GAPDoc Label="FreeProduct">
##  <ManSection>
##  <Heading>FreeProduct</Heading>
##  <Func Name="FreeProduct" Arg='G[, H, ...]' Label="for several groups"/>
##  <Func Name="FreeProduct" Arg='list' Label="for a list"/>
##
##  <Description>
##  constructs a finitely presented group which is the free product of 
##  the groups given as arguments.
##  If the group arguments are not finitely presented groups,
##  then <Ref Func="IsomorphismFpGroup"/> must be defined for them.
##  <P/>
##  The operation <Ref Func="Embedding" Label="for two domains"/>
##  operates on this product.
##  <Example><![CDATA[
##  gap> g := DihedralGroup(8);;
##  gap> h := CyclicGroup(5);;
##  gap> fp := FreeProduct(g,h,h);
##  <fp group on the generators [ f1, f2, f3, f4, f5 ]>
##  gap> fp := FreeProduct([g,h,h]);
##  <fp group on the generators [ f1, f2, f3, f4, f5 ]>
##  gap> Embedding(fp,2);
##  [ f1 ] -> [ f4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("FreeProduct");
DeclareOperation( "FreeProductOp", [ IsList, IsGroup ] );


#############################################################################
##
#A  DirectProductInfo( <G> )
##
##  <ManSection>
##  <Attr Name="DirectProductInfo" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "DirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  SubdirectProductInfo( <G> )
##
##  <ManSection>
##  <Attr Name="SubdirectProductInfo" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "SubdirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  SemidirectProductInfo( <G> )
##
##  <ManSection>
##  <Attr Name="SemidirectProductInfo" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "SemidirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  WreathProductInfo( <G> )
##
##  <ManSection>
##  <Attr Name="WreathProductInfo" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "WreathProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  FreeProductInfo( <G> )
##
##  <ManSection>
##  <Attr Name="FreeProductInfo" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FreeProductInfo", IsGroup, "mutable" );

#############################################################################
##
#F  SubdirProdPcGroups( <G>,<gi>,<H>,<hi> )
##
##  <ManSection>
##  <Func Name="SubdirProdPcGroups" Arg='G,gi,H,hi'/>
##
##  <Description>
##  Let <A>G</A> and <A>H</A> be two pc groups which are both projections of a
##  subdirect product with generator images <A>gi</A> and <A>hi</A>. the function
##  returns a list <A>l</A> with <A>l</A>[1] a new pc group and <A>l</A>[2] a corresponding
##  generator images list.
##  <P/>
##  No parameter checking is done.
##  (This function is used in a variant of the SQ.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SubdirProdPcGroups" );

#############################################################################
##
#C  IsWreathProductElement
#C  IsWreathProductElementCollection
##
##  <ManSection>
##  <Filt Name="IsWreathProductElement" Arg='obj' Type='Category'/>
##  <Filt Name="IsWreathProductElementCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  categories for elements of generic wreath products: elements are stored
##  as list of base components and permutation.
##  </Description>
##  </ManSection>
##
DeclareCategory("IsWreathProductElement",
  IsMultiplicativeElementWithInverse and IsAssociativeElement);
DeclareCategoryCollections("IsWreathProductElement");

InstallTrueMethod(IsGeneratorsOfMagmaWithInverses,
  IsWreathProductElementCollection);

DeclareRepresentation("IsWreathProductElementDefaultRep",
  IsWreathProductElement and IsPositionalObjectRep,[]);


#############################################################################
##
#E