/usr/share/gap/lib/grpffmat.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | #############################################################################
##
#W grpffmat.gd GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for matrix groups over finite fields.
##
#############################################################################
##
#C IsFFEMatrixGroup( <G> )
##
## <#GAPDoc Label="IsFFEMatrixGroup">
## <ManSection>
## <Filt Name="IsFFEMatrixGroup" Arg='G' Type='Category'/>
##
## <Description>
## tests whether all matrices in <A>G</A> have finite field element entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFFEMatrixGroup", IsFFECollCollColl and IsMatrixGroup );
#############################################################################
##
#M IsFinite( <ffe-mat-grp> )
##
## *Note:* The following implication only holds if there are no infinite
## dimensional matrices.
##
InstallTrueMethod( IsFinite,
IsFFEMatrixGroup and IsFinitelyGeneratedGroup );
#############################################################################
##
#F NicomorphismFFMatGroupOnFullSpace
##
## <ManSection>
## <Func Name="NicomorphismFFMatGroupOnFullSpace" Arg='obj'/>
##
## <Description>
## Compute the permutation action on the full vector space
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "NicomorphismFFMatGroupOnFullSpace" );
#############################################################################
##
#F ProjectiveActionOnFullSpace( <G>, <F>, <n> )
##
## <#GAPDoc Label="ProjectiveActionOnFullSpace">
## <ManSection>
## <Func Name="ProjectiveActionOnFullSpace" Arg='G, F, n'/>
##
## <Description>
## Let <A>G</A> be a group of <A>n</A> by <A>n</A> matrices over a field
## contained in the finite field <A>F</A>.
## <!-- why is <A>n</A> an argument?-->
## <!-- (it should be read off from the group!)-->
## <Ref Func="ProjectiveActionOnFullSpace"/> returns the image of the
## projective action of <A>G</A> on the full row space
## <M><A>F</A>^{<A>n</A>}</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ProjectiveActionOnFullSpace" );
#############################################################################
##
#F ConjugacyClassesOfNaturalGroup
##
## <ManSection>
## <Func Name="ConjugacyClassesOfNaturalGroup" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ConjugacyClassesOfNaturalGroup" );
#############################################################################
##
#F Phi2( <n> ) . . . . . . . . . . . . Modification of Euler's Phi function
##
## <ManSection>
## <Func Name="Phi2" Arg='n'/>
##
## <Description>
## This is needed for the computation of the class numbers of SL(n,q),
## PSL(n,q), SU(n,q) and PSU(n,q)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("Phi2");
#############################################################################
##
#F NrConjugacyClassesGL( <n>, <q> ) . . . . . . . . Class number for GL(n,q)
#F NrConjugacyClassesGU( <n>, <q> ) . . . . . . . . Class number for GU(n,q)
#F NrConjugacyClassesSL( <n>, <q> ) . . . . . . . . Class number for SL(n,q)
#F NrConjugacyClassesSU( <n>, <q> ) . . . . . . . . Class number for SU(n,q)
#F NrConjugacyClassesPGL( <n>, <q> ) . . . . . . . Class number for PGL(n,q)
#F NrConjugacyClassesPGU( <n>, <q> ) . . . . . . . Class number for PGU(n,q)
#F NrConjugacyClassesPSL( <n>, <q> ) . . . . . . . Class number for PSL(n,q)
#F NrConjugacyClassesPSU( <n>, <q> ) . . . . . . . Class number for PSU(n,q)
#F NrConjugacyClassesSLIsogeneous( <n>, <q>, <f> ) . . for SL(n,q) isogeneous
#F NrConjugacyClassesSUIsogeneous( <n>, <q>, <f> ) . . for SU(n,q) isogeneous
##
## <#GAPDoc Label="NrConjugacyClassesGL">
## <ManSection>
## <Func Name="NrConjugacyClassesGL" Arg='n, q'/>
## <Func Name="NrConjugacyClassesGU" Arg='n, q'/>
## <Func Name="NrConjugacyClassesSL" Arg='n, q'/>
## <Func Name="NrConjugacyClassesSU" Arg='n, q'/>
## <Func Name="NrConjugacyClassesPGL" Arg='n, q'/>
## <Func Name="NrConjugacyClassesPGU" Arg='n, q'/>
## <Func Name="NrConjugacyClassesPSL" Arg='n, q'/>
## <Func Name="NrConjugacyClassesPSU" Arg='n, q'/>
## <Func Name="NrConjugacyClassesSLIsogeneous" Arg='n, q, f'/>
## <Func Name="NrConjugacyClassesSUIsogeneous" Arg='n, q, f'/>
##
## <Description>
## The first of these functions compute for given positive integer <A>n</A>
## and prime power <A>q</A> the number of conjugacy classes in the classical
## groups GL( <A>n</A>, <A>q</A> ), GU( <A>n</A>, <A>q</A> ),
## SL( <A>n</A>, <A>q</A> ), SU( <A>n</A>, <A>q</A> ),
## PGL( <A>n</A>, <A>q</A> ), PGU( <A>n</A>, <A>q</A> ),
## PSL( <A>n</A>, <A>q</A> ), PSL( <A>n</A>, <A>q</A> ), respectively.
## (See also <Ref Attr="ConjugacyClasses" Label="attribute"/> and
## Section <Ref Sect="Classical Groups"/>.)
## <P/>
## For each divisor <A>f</A> of <A>n</A> there is a group of Lie type
## with the same order as SL( <A>n</A>, <A>q</A> ), such that its derived
## subgroup modulo its center is isomorphic to PSL( <A>n</A>, <A>q</A> ).
## The various such groups with fixed <A>n</A> and <A>q</A> are called
## <E>isogeneous</E>.
## (Depending on congruence conditions on <A>q</A> and <A>n</A> several of
## these groups may actually be isomorphic.)
## The function <Ref Func="NrConjugacyClassesSLIsogeneous"/> computes the
## number of conjugacy classes in this group.
## The extreme cases <A>f</A> <M>= 1</M> and <A>f</A> <M>= n</M> lead
## to the groups SL( <A>n</A>, <A>q</A> ) and PGL( <A>n</A>, <A>q</A> ),
## respectively.
## <P/>
## The function <Ref Func="NrConjugacyClassesSUIsogeneous"/> is the
## analogous one for the corresponding unitary groups.
## <P/>
## The formulae for the number of conjugacy classes are taken
## from <Cite Key="Mac81"/>.
## <P/>
## <Example><![CDATA[
## gap> NrConjugacyClassesGL(24,27);
## 22528399544939174406067288580609952
## gap> NrConjugacyClassesPSU(19,17);
## 15052300411163848367708
## gap> NrConjugacyClasses(SL(16,16));
## 1229782938228219920
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NrConjugacyClassesGL");
DeclareGlobalFunction("NrConjugacyClassesGU");
DeclareGlobalFunction("NrConjugacyClassesSL");
DeclareGlobalFunction("NrConjugacyClassesSU");
DeclareGlobalFunction("NrConjugacyClassesPGL");
DeclareGlobalFunction("NrConjugacyClassesPGU");
DeclareGlobalFunction("NrConjugacyClassesPSL");
DeclareGlobalFunction("NrConjugacyClassesPSU");
DeclareGlobalFunction("NrConjugacyClassesSLIsogeneous");
DeclareGlobalFunction("NrConjugacyClassesSUIsogeneous");
#############################################################################
##
#E
|