This file is indexed.

/usr/share/gap/lib/grpffmat.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#############################################################################
##
#W  grpffmat.gd                 GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for matrix groups over finite fields.
##


#############################################################################
##
#C  IsFFEMatrixGroup( <G> )
##
##  <#GAPDoc Label="IsFFEMatrixGroup">
##  <ManSection>
##  <Filt Name="IsFFEMatrixGroup" Arg='G' Type='Category'/>
##
##  <Description>
##  tests whether all matrices in <A>G</A> have finite field element entries.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFFEMatrixGroup", IsFFECollCollColl and IsMatrixGroup );


#############################################################################
##
#M  IsFinite( <ffe-mat-grp> )
##
##  *Note:*  The following implication only holds  if  there are no  infinite
##  dimensional matrices.
##
InstallTrueMethod( IsFinite,
    IsFFEMatrixGroup and IsFinitelyGeneratedGroup );


#############################################################################
##
#F  NicomorphismFFMatGroupOnFullSpace
##
##  <ManSection>
##  <Func Name="NicomorphismFFMatGroupOnFullSpace" Arg='obj'/>
##
##  <Description>
##  Compute the permutation action on the full vector space
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "NicomorphismFFMatGroupOnFullSpace" );


#############################################################################
##
#F  ProjectiveActionOnFullSpace( <G>, <F>, <n> )
##
##  <#GAPDoc Label="ProjectiveActionOnFullSpace">
##  <ManSection>
##  <Func Name="ProjectiveActionOnFullSpace" Arg='G, F, n'/>
##
##  <Description>
##  Let <A>G</A> be a group of <A>n</A> by <A>n</A> matrices over a field
##  contained in the finite field <A>F</A>.
##  <!-- why is <A>n</A> an argument?-->
##  <!-- (it should be read off from the group!)-->
##  <Ref Func="ProjectiveActionOnFullSpace"/> returns the image of the
##  projective action of <A>G</A> on the full row space
##  <M><A>F</A>^{<A>n</A>}</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ProjectiveActionOnFullSpace" );


#############################################################################
##
#F  ConjugacyClassesOfNaturalGroup
##
##  <ManSection>
##  <Func Name="ConjugacyClassesOfNaturalGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ConjugacyClassesOfNaturalGroup" );


#############################################################################
##
#F  Phi2( <n> ) . . . . . . . . . . . .  Modification of Euler's Phi function
##
##  <ManSection>
##  <Func Name="Phi2" Arg='n'/>
##
##  <Description>
##  This is needed for the computation of the class numbers of SL(n,q),
##  PSL(n,q), SU(n,q) and PSU(n,q)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("Phi2");

#############################################################################
##
#F  NrConjugacyClassesGL( <n>, <q> ) . . . . . . . . Class number for GL(n,q)
#F  NrConjugacyClassesGU( <n>, <q> ) . . . . . . . . Class number for GU(n,q)
#F  NrConjugacyClassesSL( <n>, <q> ) . . . . . . . . Class number for SL(n,q)
#F  NrConjugacyClassesSU( <n>, <q> ) . . . . . . . . Class number for SU(n,q)
#F  NrConjugacyClassesPGL( <n>, <q> ) . . . . . . .  Class number for PGL(n,q)
#F  NrConjugacyClassesPGU( <n>, <q> ) . . . . . . .  Class number for PGU(n,q)
#F  NrConjugacyClassesPSL( <n>, <q> ) . . . . . . .  Class number for PSL(n,q)
#F  NrConjugacyClassesPSU( <n>, <q> ) . . . . . . .  Class number for PSU(n,q)
#F  NrConjugacyClassesSLIsogeneous( <n>, <q>, <f> ) . . for SL(n,q) isogeneous
#F  NrConjugacyClassesSUIsogeneous( <n>, <q>, <f> ) . . for SU(n,q) isogeneous
##
##  <#GAPDoc Label="NrConjugacyClassesGL">
##  <ManSection>
##  <Func Name="NrConjugacyClassesGL" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesGU" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesSL" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesSU" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesPGL" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesPGU" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesPSL" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesPSU" Arg='n, q'/>
##  <Func Name="NrConjugacyClassesSLIsogeneous" Arg='n, q, f'/>
##  <Func Name="NrConjugacyClassesSUIsogeneous" Arg='n, q, f'/>
##
##  <Description>
##  The first of these functions compute for given positive integer <A>n</A>
##  and prime power <A>q</A> the number of conjugacy classes in the classical
##  groups GL( <A>n</A>, <A>q</A> ), GU( <A>n</A>, <A>q</A> ),
##  SL( <A>n</A>, <A>q</A> ), SU( <A>n</A>, <A>q</A> ),
##  PGL( <A>n</A>, <A>q</A> ), PGU( <A>n</A>, <A>q</A> ),
##  PSL( <A>n</A>, <A>q</A> ), PSL( <A>n</A>, <A>q</A> ), respectively.
##  (See also <Ref Attr="ConjugacyClasses" Label="attribute"/>  and
##  Section&nbsp;<Ref Sect="Classical Groups"/>.)
##  <P/>
##  For each divisor <A>f</A> of <A>n</A> there is a group of Lie type
##  with the same order as SL( <A>n</A>, <A>q</A> ), such that its derived
##  subgroup modulo its center is isomorphic to PSL( <A>n</A>, <A>q</A> ).
##  The various such groups with fixed <A>n</A> and <A>q</A> are called
##  <E>isogeneous</E>.
##  (Depending on congruence conditions on <A>q</A> and <A>n</A> several of
##  these groups may actually be isomorphic.)
##  The function <Ref Func="NrConjugacyClassesSLIsogeneous"/> computes the
##  number of conjugacy classes in this group.
##  The extreme cases <A>f</A> <M>= 1</M> and <A>f</A> <M>= n</M> lead
##  to the groups SL( <A>n</A>, <A>q</A> ) and PGL( <A>n</A>, <A>q</A> ),
##  respectively.
##  <P/>
##  The function <Ref Func="NrConjugacyClassesSUIsogeneous"/> is the
##  analogous one for the corresponding unitary groups.
##  <P/>
##  The formulae for the number of conjugacy classes are taken
##  from&nbsp;<Cite Key="Mac81"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> NrConjugacyClassesGL(24,27);
##  22528399544939174406067288580609952
##  gap> NrConjugacyClassesPSU(19,17);
##  15052300411163848367708
##  gap> NrConjugacyClasses(SL(16,16));
##  1229782938228219920
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NrConjugacyClassesGL");
DeclareGlobalFunction("NrConjugacyClassesGU");
DeclareGlobalFunction("NrConjugacyClassesSL");
DeclareGlobalFunction("NrConjugacyClassesSU");
DeclareGlobalFunction("NrConjugacyClassesPGL");
DeclareGlobalFunction("NrConjugacyClassesPGU");
DeclareGlobalFunction("NrConjugacyClassesPSL");
DeclareGlobalFunction("NrConjugacyClassesPSU");
DeclareGlobalFunction("NrConjugacyClassesSLIsogeneous");
DeclareGlobalFunction("NrConjugacyClassesSUIsogeneous");


#############################################################################
##
#E