/usr/share/gap/lib/grpramat.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | #############################################################################
##
#W grpramat.gd GAP Library Franz Gähler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for matrix groups over the rationals
##
#############################################################################
##
#C IsCyclotomicMatrixGroup( <G> )
##
## <#GAPDoc Label="IsCyclotomicMatrixGroup">
## <ManSection>
## <Filt Name="IsCyclotomicMatrixGroup" Arg='G' Type='Category'/>
##
## <Description>
## tests whether all matrices in <A>G</A> have cyclotomic entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsCyclotomicMatrixGroup", IsCyclotomicCollCollColl and IsMatrixGroup );
#############################################################################
##
#P IsRationalMatrixGroup( <G> )
##
## <#GAPDoc Label="IsRationalMatrixGroup">
## <ManSection>
## <Prop Name="IsRationalMatrixGroup" Arg='G'/>
##
## <Description>
## tests whether all matrices in <A>G</A> have rational entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsRationalMatrixGroup", IsCyclotomicMatrixGroup );
#############################################################################
##
#P IsIntegerMatrixGroup( <G> )
##
## <#GAPDoc Label="IsIntegerMatrixGroup">
## <ManSection>
## <Prop Name="IsIntegerMatrixGroup" Arg='G'/>
##
## <Description>
## tests whether all matrices in <A>G</A> have integer entries.
## <!-- Not <C>IsIntegralMatrixGroup</C> to avoid confusion with matrix groups of-->
## <!-- integral cyclotomic numbers. -->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsIntegerMatrixGroup", IsCyclotomicMatrixGroup );
#############################################################################
##
#P IsNaturalGLnZ( <G> )
##
## <#GAPDoc Label="IsNaturalGLnZ">
## <ManSection>
## <Prop Name="IsNaturalGLnZ" Arg='G'/>
##
## <Description>
## tests whether <A>G</A> is <M>GL_n(&ZZ;)</M> in its natural representation
## by <M>n \times n</M> integer matrices.
## (The dimension <M>n</M> will be read off the generating matrices.)
## <Example><![CDATA[
## gap> IsNaturalGLnZ( GL( 2, Integers ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsNaturalGLnZ", IsNaturalGL and IsIntegerMatrixGroup );
#############################################################################
##
#P IsNaturalSLnZ( <G> )
##
## <#GAPDoc Label="IsNaturalSLnZ">
## <ManSection>
## <Prop Name="IsNaturalSLnZ" Arg='G'/>
##
## <Description>
## tests whether <A>G</A> is <M>SL_n(&ZZ;)</M> in its natural representation
## by <M>n \times n</M> integer matrices.
## (The dimension <M>n</M> will be read off the generating matrices.)
## <Example><![CDATA[
## gap> IsNaturalSLnZ( SL( 2, Integers ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsNaturalSLnZ", IsNaturalSL and IsIntegerMatrixGroup );
#############################################################################
##
#A ZClassRepsQClass( G ) . . . . . . . . . . . Z-class reps in Q-class of G
##
## <#GAPDoc Label="ZClassRepsQClass">
## <ManSection>
## <Attr Name="ZClassRepsQClass" Arg='G'/>
##
## <Description>
## The conjugacy class in <M>GL_n(&QQ;)</M> of the finite integer matrix
## group <A>G</A> splits into finitely many conjugacy classes in
## <M>GL_n(&ZZ;)</M>.
## <C>ZClassRepsQClass( <A>G</A> )</C> returns representative groups for these.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ZClassRepsQClass", IsCyclotomicMatrixGroup );
#############################################################################
##
#A NormalizerInGLnZ( G ) . . . . . . . . . . . . . . . . . NormalizerInGLnZ
##
## <#GAPDoc Label="NormalizerInGLnZ">
## <ManSection>
## <Attr Name="NormalizerInGLnZ" Arg='G'/>
##
## <Description>
## is an attribute used to store the normalizer of <A>G</A> in
## <M>GL_n(&ZZ;)</M>, where <A>G</A> is an integer matrix group of dimension
## <A>n</A>. This attribute
## is used by <C>Normalizer( GL( n, Integers ), G )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormalizerInGLnZ", IsCyclotomicMatrixGroup );
#############################################################################
##
#A CentralizerInGLnZ( G ) . . . . . . . . . . . . . . . . .CentralizerInGLnZ
##
## <#GAPDoc Label="CentralizerInGLnZ">
## <ManSection>
## <Attr Name="CentralizerInGLnZ" Arg='G'/>
##
## <Description>
## is an attribute used to store the centralizer of <A>G</A> in
## <M>GL_n(&ZZ;)</M>, where <A>G</A> is an integer matrix group of dimension
## <A>n</A>. This attribute
## is used by <C>Centralizer( GL( n, Integers ), G )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CentralizerInGLnZ", IsCyclotomicMatrixGroup );
#############################################################################
##
## RightAction or LeftAction
##
## <#GAPDoc Label="[1]{grpramat}">
## In &GAP;, matrices by convention act on row vectors from the right,
## whereas in crystallography the convention is to act on column vectors
## from the left. The definition of certain algebraic objects important
## in crystallography implicitly depends on which action is assumed.
## This holds true in particular for quadratic forms invariant under
## a matrix group. In a similar way, the representation of affine
## crystallographic groups, as they are provided by the &GAP; package
## <Package>CrystGap</Package>, depends on which action is assumed.
## Crystallographers are used to the action from the left,
## whereas the action from the right is the natural one for &GAP;.
## For this reason, a number of functions which are important in
## crystallography, and whose result depends on which action is assumed,
## are provided in two versions,
## one for the usual action from the right, and one for the
## crystallographic action from the left.
## <P/>
## For every such function, this fact is explicitly mentioned.
## The naming scheme is as follows: If <C>SomeThing</C> is such a function,
## there will be functions <C>SomeThingOnRight</C> and <C>SomeThingOnLeft</C>,
## assuming action from the right and from the left, respectively.
## In addition, there is a generic function <C>SomeThing</C>, which returns
## either the result of <C>SomeThingOnRight</C> or <C>SomeThingOnLeft</C>,
## depending on the global variable <Ref Var="CrystGroupDefaultAction"/>.
## <#/GAPDoc>
##
#############################################################################
##
#V CrystGroupDefaultAction
##
## <#GAPDoc Label="CrystGroupDefaultAction">
## <ManSection>
## <Var Name="CrystGroupDefaultAction"/>
##
## <Description>
## can have either of the two values <C>RightAction</C> and <C>LeftAction</C>.
## The initial value is <C>RightAction</C>. For functions which have
## variants OnRight and OnLeft, this variable determines which
## variant is returned by the generic form. The value of
## <Ref Var="CrystGroupDefaultAction"/> can be changed with with the
## function <Ref Func="SetCrystGroupDefaultAction"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable( "CrystGroupDefaultAction" );
BindGlobal( "LeftAction", Immutable( "LeftAction" ) );
BindGlobal( "RightAction", Immutable( "RightAction" ) );
#############################################################################
##
#F SetCrystGroupDefaultAction( <action> ) . . . . .RightAction or LeftAction
##
## <#GAPDoc Label="SetCrystGroupDefaultAction">
## <ManSection>
## <Func Name="SetCrystGroupDefaultAction" Arg='action'/>
##
## <Description>
## allows one to set the value of the global variable
## <Ref Var="CrystGroupDefaultAction"/>.
## Only the arguments <C>RightAction</C> and <C>LeftAction</C> are allowed.
## Initially, the value of <Ref Var="CrystGroupDefaultAction"/> is
## <C>RightAction</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SetCrystGroupDefaultAction" );
#############################################################################
##
#P IsBravaisGroup( <G> ) . . . . . . . . . . . . . . . . . . .IsBravaisGroup
##
## <#GAPDoc Label="IsBravaisGroup">
## <ManSection>
## <Prop Name="IsBravaisGroup" Arg='G'/>
##
## <Description>
## test whether <A>G</A> coincides with its Bravais group
## (see <Ref Func="BravaisGroup"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsBravaisGroup", IsCyclotomicMatrixGroup );
#############################################################################
##
#A BravaisGroup( <G> ) . . . . . . . . Bravais group of integer matrix group
##
## <#GAPDoc Label="BravaisGroup">
## <ManSection>
## <Attr Name="BravaisGroup" Arg='G'/>
##
## <Description>
## returns the Bravais group of a finite integer matrix group <A>G</A>.
## If <M>C</M> is the cone of positive definite quadratic forms <M>Q</M>
## invariant under <M>g \mapsto g Q g^{tr}</M> for all <M>g \in <A>G</A></M>,
## then the Bravais group of <A>G</A> is the maximal subgroup of
## <M>GL_n(&ZZ;)</M> leaving the forms in that same cone invariant.
## Alternatively, the Bravais group of <A>G</A>
## can also be defined with respect to the action <M>g \mapsto g^{tr} Q g</M>
## on positive definite quadratic forms <M>Q</M>. This latter definition
## is appropriate for groups <A>G</A> acting from the right on row vectors,
## whereas the former definition is appropriate for groups acting from
## the left on column vectors. Both definitions yield the same
## Bravais group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BravaisGroup", IsCyclotomicMatrixGroup );
#############################################################################
##
#A BravaisSubgroups( <G> ) . . . . . . . .Bravais subgroups of Bravais group
##
## <#GAPDoc Label="BravaisSubgroups">
## <ManSection>
## <Attr Name="BravaisSubgroups" Arg='G'/>
##
## <Description>
## returns the subgroups of the Bravais group of <A>G</A>, which are
## themselves Bravais groups.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BravaisSubgroups", IsCyclotomicMatrixGroup );
#############################################################################
##
#A BravaisSupergroups( <G> ) . . . . . .Bravais supergroups of Bravais group
##
## <#GAPDoc Label="BravaisSupergroups">
## <ManSection>
## <Attr Name="BravaisSupergroups" Arg='G'/>
##
## <Description>
## returns the subgroups of <M>GL_n(&ZZ;)</M> that contain the Bravais group
## of <A>G</A> and are Bravais groups themselves.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BravaisSupergroups", IsCyclotomicMatrixGroup );
#############################################################################
##
#A NormalizerInGLnZBravaisGroup( <G> ) . norm. of Bravais group of G in GLnZ
##
## <#GAPDoc Label="NormalizerInGLnZBravaisGroup">
## <ManSection>
## <Attr Name="NormalizerInGLnZBravaisGroup" Arg='G'/>
##
## <Description>
## returns the normalizer of the Bravais group of <A>G</A> in the
## appropriate <M>GL_n(&ZZ;)</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormalizerInGLnZBravaisGroup", IsCyclotomicMatrixGroup );
#############################################################################
##
#A InvariantLattice( G )
##
## <#GAPDoc Label="InvariantLattice">
## <ManSection>
## <Attr Name="InvariantLattice" Arg='G'/>
##
## <Description>
## returns a matrix <M>B</M>, whose rows form a basis of a
## <M>&ZZ;</M>-lattice that is invariant under the rational matrix group
## <A>G</A> acting from the right.
## It returns <K>fail</K> if the group is not unimodular. The columns of the
## inverse of <M>B</M> span a <M>&ZZ;</M>-lattice invariant under <A>G</A>
## acting from the left.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "InvariantLattice", IsCyclotomicMatrixGroup );
#############################################################################
##
#E
|