/usr/share/gap/lib/idealalg.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | #############################################################################
##
#W idealalg.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for (left/right/two-sided) ideals
## in algebras and algebras-with-one.
##
#############################################################################
##
#F IsLeftIdealFromGenerators( <AsStructA>, <AsStructS>, <GensA>, <GensS> )
##
BindGlobal( "IsLeftIdealFromGenerators",
function( AsStructA, AsStructS, GeneratorsA, GeneratorsS )
return function( A, S )
local inter, # intersection of left acting domains
gensS, # suitable generators of `S'
a, # loop over suitable generators of `A'
i; # loop over `gensS'
if not IsSubset( A, S ) then
return false;
elif LeftActingDomain( A ) <> LeftActingDomain( S ) then
inter:= Intersection2( LeftActingDomain( A ), LeftActingDomain( S ) );
return IsLeftIdeal( AsStructA( inter, A ), AsStructS( inter, S ) );
fi;
gensS:= GeneratorsS( S );
for a in GeneratorsA( A ) do
for i in gensS do
if not a * i in S then
return false;
fi;
od;
od;
return true;
end;
end );
#############################################################################
##
#F IsRightIdealFromGenerators( <AsStructA>, <AsStructS>, <GensA>, <GensS> )
##
BindGlobal( "IsRightIdealFromGenerators",
function( AsStructA, AsStructS, GeneratorsA, GeneratorsS )
return function( A, S )
local inter, # intersection of left acting domains
gensS, # suitable generators of `S'
a, # loop over suitable generators of `A'
i; # loop over `gensS'
if not IsSubset( A, S ) then
return false;
elif LeftActingDomain( A ) <> LeftActingDomain( S ) then
inter:= Intersection2( LeftActingDomain( A ), LeftActingDomain( S ) );
return IsRightIdeal( AsStructA( inter, A ), AsStructS( inter, S ) );
fi;
gensS:= GeneratorsS( S );
for a in GeneratorsA( A ) do
for i in gensS do
if not i * a in S then
return false;
fi;
od;
od;
return true;
end;
end );
#############################################################################
##
#M IsLeftIdealOp( <A>, <S> )
##
## Check whether the subalgebra <S> is a left ideal in <A>,
## i.e., whether <S> is contained in <A> and $a * i$ lies in <S>
## for all basis vectors $a$ of <A> and $s$ of <S>.
##
## For associative algebras(-with-one), we need to check only the products
## of algebra(-with-one) generators.
##
InstallOtherMethod( IsLeftIdealOp,
"for FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR, IsFreeLeftModule ], 0,
IsLeftIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftModule,
GeneratorsOfLeftModule ) );
InstallOtherMethod( IsLeftIdealOp,
"for associative FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR and IsAssociative, IsFreeLeftModule ], 0,
IsLeftIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftOperatorRing,
GeneratorsOfLeftModule ) );
InstallOtherMethod( IsLeftIdealOp,
"for associative FLMLOR-with-one and free left module",
IsIdenticalObj,
[ IsFLMLORWithOne and IsAssociative, IsFreeLeftModule ], 0,
IsLeftIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftOperatorRingWithOne,
GeneratorsOfLeftModule ) );
InstallMethod( IsLeftIdealOp,
"for associative FLMLOR and FLMLOR",
IsIdenticalObj,
[ IsFLMLOR and IsAssociative, IsFLMLOR ], 0,
IsLeftIdealFromGenerators( AsFLMLOR, AsFLMLOR,
GeneratorsOfLeftOperatorRing,
GeneratorsOfLeftOperatorRing ) );
#############################################################################
##
#M IsRightIdealOp( <A>, <S> )
##
## Check whether the subalgebra <S> is a right ideal in <A>,
## i.e., whether <S> is contained in <A> and $s * a$ lies in <S>
## for all basis vectors $a$ of <A> and $s$ of <S>.
##
## For associative algebras(-with-one), we need to check only the products
## of algebra(-with-one) generators.
##
InstallOtherMethod( IsRightIdealOp,
"for FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR, IsFreeLeftModule ], 0,
IsRightIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftModule,
GeneratorsOfLeftModule ) );
InstallOtherMethod( IsRightIdealOp,
"for associative FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR and IsAssociative, IsFreeLeftModule ], 0,
IsRightIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftOperatorRing,
GeneratorsOfLeftModule ) );
InstallOtherMethod( IsRightIdealOp,
"for associative FLMLOR-with-one and free left module",
IsIdenticalObj,
[ IsFLMLORWithOne and IsAssociative, IsFreeLeftModule ], 0,
IsRightIdealFromGenerators( AsFLMLOR, AsLeftModule,
GeneratorsOfLeftOperatorRingWithOne,
GeneratorsOfLeftModule ) );
InstallMethod( IsRightIdealOp,
"for associative FLMLOR and FLMLOR",
IsIdenticalObj,
[ IsFLMLOR and IsAssociative, IsFLMLOR ], 0,
IsRightIdealFromGenerators( AsFLMLOR, AsFLMLOR,
GeneratorsOfLeftOperatorRing,
GeneratorsOfLeftOperatorRing ) );
#############################################################################
##
#M IsTwoSidedIdealOp( <A>, <S> )
##
## Check whether the subspace or subalgebra $S$ is an ideal in $A$,
## i.e., whether $a s \in S$ and $s a \in S$
## for all basis vectors $a$ of $A$ and $s$ of $S$.
##
InstallOtherMethod( IsTwoSidedIdealOp,
"for commutative FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR and IsCommutative, IsFreeLeftModule ], 0,
IsLeftIdeal );
InstallOtherMethod( IsTwoSidedIdealOp,
"for anti-commutative FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR and IsAnticommutative, IsFreeLeftModule ], 0,
IsLeftIdeal );
InstallOtherMethod( IsTwoSidedIdealOp,
"for FLMLOR and free left module",
IsIdenticalObj,
[ IsFLMLOR, IsFreeLeftModule ], 0,
function( A, S )
return IsLeftIdeal( A, S ) and IsRightIdeal( A, S );
#T Check containment only once!
end );
#############################################################################
##
#M TwoSidedIdealByGenerators( <A>, <gens> ) . create an ideal in an algebra
#M LeftIdealByGenerators( <A>, <gens> ) . create a left ideal in an algebra
#M RightIdealByGenerators( <A>, <gens> ) . create right ideal in an algebra
##
## We need special methods to make ideals in algebras themselves algebras.
##
InstallMethod( TwoSidedIdealByGenerators,
"for FLMLOR and collection",
IsIdenticalObj,
[ IsFLMLOR, IsCollection ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfTwoSidedIdeal( I, gens );
SetLeftActingRingOfIdeal( I, A );
SetRightActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
InstallMethod( LeftIdealByGenerators,
"for FLMLOR and collection",
IsIdenticalObj,
[ IsFLMLOR, IsCollection ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfLeftIdeal( I, gens );
SetLeftActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
InstallMethod( RightIdealByGenerators,
"for FLMLOR and collection",
IsIdenticalObj,
[ IsFLMLOR, IsCollection ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfRightIdeal( I, gens );
SetRightActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
InstallMethod( TwoSidedIdealByGenerators,
"for FLMLOR and empty list",
true,
[ IsFLMLOR, IsList and IsEmpty ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsTrivial
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfTwoSidedIdeal( I, gens );
SetGeneratorsOfLeftModule( I, gens );
SetLeftActingRingOfIdeal( I, A );
SetRightActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
InstallMethod( LeftIdealByGenerators,
"for FLMLOR and empty list",
true,
[ IsFLMLOR, IsList and IsEmpty ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsTrivial
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfLeftIdeal( I, gens );
SetGeneratorsOfLeftModule( I, gens );
SetLeftActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
InstallMethod( RightIdealByGenerators,
"for FLMLOR and empty list",
true,
[ IsFLMLOR, IsList and IsEmpty ], 0,
function( A, gens )
local I, lad;
I:= Objectify( NewType( FamilyObj( A ),
IsFLMLOR
and IsTrivial
and IsAttributeStoringRep ),
rec() );
lad:= LeftActingDomain( A );
SetLeftActingDomain( I, lad );
SetGeneratorsOfRightIdeal( I, gens );
SetGeneratorsOfLeftModule( I, gens );
SetRightActingRingOfIdeal( I, A );
CheckForHandlingByNiceBasis( lad, gens, I, false );
return I;
end );
#############################################################################
##
#M GeneratorsOfLeftModule( <I> ) . . . . . . . . . . . . . . . for an ideal
#M GeneratorsOfLeftOperatorRing( <I> ) . . . . . . . . . . . . for an ideal
##
## We need methods to compute algebra or left module generators from the
## known (left/right/two-sided) ideal generators.
## For that, we use `MutableBasisOfClosureUnderAction' in the case that the
## acting algebra is known to be associative,
## and `MutableBasisOfIdealInNonassociativeAlgebra' otherwise.
##
## Note that by the call to `UseBasis', afterwards left module generators
## are known, also if `GeneratorsOfLeftOperatorRing' had been called.
##
LeftModuleGeneratorsForIdealFromGenerators := function( I, Igens, R, side )
local F, # left acting domain of `I'
maxdim, # upper bound for the dimension of `I'
mb, # mutable basis of `I'
gens; # left module generators of `I', result
F:= LeftActingDomain( I );
if not IsFLMLOR( R ) then
TryNextMethod();
elif not IsSubset( F, LeftActingDomain( R ) ) then
R:= AsFLMLOR( Intersection( F, LeftActingDomain( R ) ), R );
fi;
# Get an upper bound for the dimension of the ideal.
if HasDimension( R ) then
maxdim:= Dimension( R );
else
maxdim:= infinity;
fi;
if HasIsAssociative( R ) and IsAssociative( R ) then
# We may use `MutableBasisOfClosureUnderAction'.
mb:= MutableBasisOfClosureUnderAction(
F,
GeneratorsOfLeftOperatorRing( R ),
side,
Igens,
\*,
Zero( I ),
maxdim );
else
# We must use `MutableBasisOfIdealInNonassociativeAlgebra'.
mb:= MutableBasisOfIdealInNonassociativeAlgebra(
F,
GeneratorsOfLeftModule( R ),
Igens,
Zero( I ),
side,
maxdim );
fi;
gens:= BasisVectors( mb );
UseBasis( I, gens );
return gens;
end;
InstallMethod( GeneratorsOfLeftModule,
"for FLMLOR with known ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfTwoSidedIdeal ], 0,
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfTwoSidedIdeal( I ),
LeftActingRingOfIdeal( I ), "both" ) );
InstallMethod( GeneratorsOfLeftModule,
"for FLMLOR with known left ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfLeftIdeal ],
RankFilter( HasGeneratorsOfTwoSidedIdeal ),
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfLeftIdeal( I ),
LeftActingRingOfIdeal( I ), "left" ) );
InstallMethod( GeneratorsOfLeftModule,
"for FLMLOR with known right ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfRightIdeal ],
RankFilter( HasGeneratorsOfTwoSidedIdeal ),
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfRightIdeal( I ),
RightActingRingOfIdeal( I ), "right" ) );
InstallMethod( GeneratorsOfLeftOperatorRing,
"for FLMLOR with known ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfTwoSidedIdeal ], 0,
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfTwoSidedIdeal( I ),
LeftActingRingOfIdeal( I ), "both" ) );
InstallMethod( GeneratorsOfLeftOperatorRing,
"for FLMLOR with known left ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfLeftIdeal ],
RankFilter( HasGeneratorsOfTwoSidedIdeal ),
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfLeftIdeal( I ),
LeftActingRingOfIdeal( I ), "left" ) );
InstallMethod( GeneratorsOfLeftOperatorRing,
"for FLMLOR with known right ideal generators",
true,
[ IsFLMLOR and HasGeneratorsOfRightIdeal ],
RankFilter( HasGeneratorsOfTwoSidedIdeal ),
I -> LeftModuleGeneratorsForIdealFromGenerators( I,
GeneratorsOfRightIdeal( I ),
RightActingRingOfIdeal( I ), "right" ) );
#############################################################################
##
#M AsLeftIdeal( <R>, <S> ) . . . . . . . . . . . . . . . . . for two FLMLORs
#M AsRightIdeal( <R>, <S> ) . . . . . . . . . . . . . . . . for two FLMLORs
#M AsTwoSidedIdeal( <R>, <S> ) . . . . . . . . . . . . . . . for two FLMLORs
##
## The difference to the generic methods for two rings is that we need only
## algebra generators and not ring generators of <S>.
##
InstallMethod( AsLeftIdeal,
"for two FLMLORs",
IsIdenticalObj,
[ IsFLMLOR, IsFLMLOR ], 0,
function( R, S )
local I, gens;
if not IsLeftIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfLeftOperatorRing( S );
I:= LeftIdealByGenerators( R, gens );
SetGeneratorsOfLeftOperatorRing( I, gens );
fi;
return I;
end );
InstallMethod( AsRightIdeal,
"for two FLMLORs",
IsIdenticalObj,
[ IsRing, IsRing ], 0,
function( R, S )
local I, gens;
if not IsRightIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfLeftOperatorRing( S );
I:= RightIdealByGenerators( R, gens );
SetGeneratorsOfLeftOperatorRing( I, gens );
fi;
return I;
end );
InstallMethod( AsTwoSidedIdeal,
"for two FLMLORs",
IsIdenticalObj,
[ IsRing, IsRing ], 0,
function( R, S )
local I, gens;
if not IsTwoSidedIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfLeftOperatorRing( S );
I:= TwoSidedIdealByGenerators( R, gens );
SetGeneratorsOfLeftOperatorRing( I, gens );
fi;
return I;
end );
#############################################################################
##
#M IsFiniteDimensional( <I> ). . . . . . . . . . for an ideal in an algebra
##
InstallMethod( IsFiniteDimensional,
"for an ideal in an algebra",
true,
[ IsFLMLOR and HasLeftActingRingOfIdeal ], 0,
function( I )
if IsFiniteDimensional( LeftActingRingOfIdeal( I ) ) then
return true;
else
TryNextMethod();
fi;
end );
InstallMethod( IsFiniteDimensional,
"for an ideal in an algebra",
true,
[ IsFLMLOR and HasRightActingRingOfIdeal ], 0,
function( I )
if IsFiniteDimensional( RightActingRingOfIdeal( I ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#E
|