This file is indexed.

/usr/share/gap/lib/invsgp.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#############################################################################
##
#W  invsgp.gd              GAP library                         J. D. Mitchell
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of operations for inverse semigroups.
##

DeclareSynonym("IsInverseMonoid", IsMonoid and IsInverseSemigroup);

DeclareOperation("IsInverseSubsemigroup", [IsSemigroup, IsSemigroup]);

DeclareGlobalFunction("InverseMonoid");
DeclareGlobalFunction("InverseSemigroup");

DeclareProperty("IsGeneratorsOfInverseSemigroup", IsListOrCollection);

DeclareAttribute("GeneratorsOfInverseMonoid", IsInverseSemigroup);
DeclareAttribute("GeneratorsOfInverseSemigroup", IsInverseSemigroup);

DeclareOperation("InverseMonoidByGenerators", [IsAssociativeElementCollection]);
DeclareOperation("InverseSemigroupByGenerators", [IsAssociativeElementCollection]);

DeclareOperation("InverseSubsemigroup",
[IsInverseSemigroup, IsAssociativeElementCollection]);
DeclareOperation("InverseSubsemigroupNC",
[IsInverseSemigroup, IsAssociativeElementCollection]);
DeclareOperation("InverseSubmonoid",
[IsInverseMonoid, IsAssociativeElementCollection]);
DeclareOperation("InverseSubmonoidNC",
[IsInverseMonoid, IsAssociativeElementCollection]);

DeclareAttribute("AsInverseSemigroup", IsCollection);
DeclareAttribute("AsInverseMonoid", IsCollection);
DeclareOperation("AsInverseSubsemigroup", [IsDomain, IsCollection]);
DeclareOperation("AsInverseSubmonoid", [IsDomain, IsCollection]);

DeclareAttribute("ReverseNaturalPartialOrder", IsInverseSemigroup);
DeclareAttribute("NaturalPartialOrder", IsInverseSemigroup);