/usr/share/gap/lib/invsgp.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | #############################################################################
##
#W invsgp.gd GAP library J. D. Mitchell
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for inverse semigroups.
##
InstallImmediateMethod(GeneratorsOfSemigroup,
IsInverseSemigroup and HasGeneratorsOfInverseSemigroup, 0,
function(s)
local gens, f;
gens:=ShallowCopy(GeneratorsOfInverseSemigroup(s));
Append(gens, List(gens, x-> x^-1));
MakeImmutable(gens);
return gens;
end);
#
InstallMethod(IsInverseSubsemigroup, "for a semigroup and a semigroup",
[IsSemigroup, IsSemigroup],
function(s, t)
return IsSubsemigroup(s, t) and IsInverseSemigroup(t);
end);
#
InstallMethod(AsInverseMonoid, "for an inverse monoid",
[IsInverseMonoid], 100, IdFunc );
#
InstallMethod(AsInverseMonoid, "for an inverse semigroup",
[IsInverseSemigroup],
function(s)
local gens, pos;
if One(s)=fail then
return fail;
fi;
gens:=ShallowCopy(GeneratorsOfInverseSemigroup(s));
pos:=Position(gens, One(s));
if pos<>fail then
Remove(gens, pos);
fi;
return InverseMonoid(gens);
end);
#
InstallOtherMethod(IsInverseSemigroup, "for an object", [IsObject], ReturnFalse);
#
InstallMethod(\.,"for an inverse semigroup with generators and pos int",
[IsInverseSemigroup and HasGeneratorsOfInverseSemigroup, IsPosInt],
function(s, n)
s:=GeneratorsOfInverseSemigroup(s);
n:=NameRNam(n);
n:=Int(n);
if n=fail or Length(s)<n then
Error("the second argument should be a positive integer not greater than",
" the number of generators of the semigroup in the first argument");
fi;
return s[n];
end);
#
InstallMethod(\., "for an inverse monoid with generators and pos int",
[IsInverseMonoid and HasGeneratorsOfInverseMonoid, IsPosInt],
function(s, n)
s:=GeneratorsOfInverseMonoid(s);
n:=NameRNam(n);
n:=Int(n);
if n=fail or Length(s)<n then
Error("usage: the second argument should be a pos int not greater than",
" the number of generators of the semigroup in the first argument");
fi;
return s[n];
end);
#
InstallGlobalFunction(InverseMonoid,
function( arg )
local out, i;
if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1]))
then
Error("usage: cannot create an inverse monoid with no generators,");
return;
fi;
if IsAssociativeElement(arg[1]) or IsAssociativeElementCollection(arg[1])
or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
out:=[];
for i in [1..Length(arg)] do
if IsAssociativeElement(arg[i])
and IsGeneratorsOfInverseSemigroup([arg[i]]) then
Add(out, arg[i]);
elif IsAssociativeElementCollection(arg[i])
and IsGeneratorsOfInverseSemigroup(arg[i]) then
#if HasGeneratorsOfInverseMonoid(arg[i]) then
# Append(out, GeneratorsOfInverseMonoid(arg[i]));
if HasGeneratorsOfInverseSemigroup(arg[i]) then
Append(out, GeneratorsOfInverseSemigroup(arg[i]));
#elif HasGeneratorsOfMonoid(arg[i]) then
# Append(out, GeneratorsOfMonoid(arg[i]));
elif HasGeneratorsOfSemigroup(arg[i]) then
Append(out, GeneratorsOfSemigroup(arg[i]));
else
Append(out, AsList(arg[i]));
fi;
elif i=Length(arg) and IsRecord(arg[i]) then
return InverseMonoidByGenerators(out, arg[i]);
else
if not IsEmpty(arg[i]) then
Error( "usage: InverseMonoid(<gen>,...), InverseMonoid(<gens>),"
, "InverseMonoid(<D>)," );
return;
fi;
fi;
od;
return InverseMonoidByGenerators(out);
fi;
Error( "usage: InverseMonoid(<gen>,...),InverseMonoid(<gens>),",
"InverseMonoid(<D>),");
return;
end);
#
InstallGlobalFunction(InverseSemigroup,
function( arg )
local out, i;
if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1]))
then
Error("usage: cannot create an inverse semigroup with no generators,");
return;
fi;
if IsAssociativeElement(arg[1]) or IsAssociativeElementCollection(arg[1])
or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
out:=[];
for i in [1..Length(arg)] do
if IsAssociativeElement(arg[i])
and IsGeneratorsOfInverseSemigroup([arg[i]]) then
Add(out, arg[i]);
elif IsAssociativeElementCollection(arg[i])
and IsGeneratorsOfInverseSemigroup(arg[i]) then
if HasGeneratorsOfInverseSemigroup(arg[i]) then
Append(out, GeneratorsOfInverseSemigroup(arg[i]));
elif HasGeneratorsOfSemigroup(arg[i]) then
Append(out, GeneratorsOfSemigroup(arg[i]));
else
Append(out, arg[i]);
fi;
elif i=Length(arg) and IsRecord(arg[i]) then
return InverseSemigroupByGenerators(out, arg[i]);
else
if not IsEmpty(arg[i]) then
Error( "usage: InverseSemigroup(<gen>,...), InverseSemigroup(<gens>),"
, "InverseSemigroup(<D>)," );
return;
fi;
fi;
od;
return InverseSemigroupByGenerators(out);
fi;
Error( "usage: InverseSemigroup(<gen>,...),InverseSemigroup(<gens>),",
"InverseSemigroup(<D>),");
return;
end);
#
InstallMethod(InverseMonoidByGenerators,
[IsAssociativeElementCollection],
function(gens)
local s, one, pos;
s:=Objectify( NewType (FamilyObj( gens ), IsMagmaWithOne and
IsInverseSemigroup and IsAttributeStoringRep), rec());
one:=One(gens);
SetOne(s, one);
pos:=Position(gens, one);
if pos<>fail then
SetGeneratorsOfInverseSemigroup(s, gens);
gens:=ShallowCopy(gens);
Remove(gens, pos);
SetGeneratorsOfInverseMonoid(s, gens);
else
SetGeneratorsOfInverseMonoid(s, gens);
gens:=ShallowCopy(gens);
Add(gens, one);
SetGeneratorsOfInverseSemigroup(s, gens);
fi;
return s;
end);
#
InstallMethod(InverseSemigroupByGenerators,
"for associative element with unique semigroup inverse collection",
[IsAssociativeElementCollection],
function(gens)
local s, pos;
s:=Objectify( NewType (FamilyObj( gens ), IsMagma and
IsInverseSemigroup and IsAttributeStoringRep), rec());
SetGeneratorsOfInverseSemigroup(s, AsList(gens));
if IsMultiplicativeElementWithOneCollection(gens) then
pos:=Position(gens, One(gens));
if pos<>fail then
SetFilterObj(s, IsMonoid);
gens:=ShallowCopy(gens);
Remove(gens, pos);
SetGeneratorsOfInverseMonoid(s, gens);
fi;
fi;
return s;
end);
#
InstallMethod(InverseSubsemigroupNC,
"for an inverse semigroup and element collection",
[IsInverseSemigroup, IsAssociativeElementCollection],
function(s, gens)
local t;
t:=InverseSemigroup(gens);
SetParent(t, s);
return t;
end);
#
InstallMethod(InverseSubsemigroup,
"for an inverse semigroup and element collection",
[IsInverseSemigroup, IsAssociativeElementCollection],
function(s, gens)
if ForAll(gens, x-> x in s) then
return InverseSubsemigroupNC(s, gens);
fi;
Error("the specified elements do not belong to the first argument,");
return;
end);
#
InstallMethod(InverseSubmonoidNC,
"for an inverse monoid and element collection",
[IsInverseMonoid, IsAssociativeElementCollection],
function(s, gens)
local t;
t:=InverseMonoid(gens);
SetParent(t, s);
return t;
end);
#
InstallMethod(InverseSubmonoid,
"for an inverse monoid and element collection",
[IsInverseMonoid, IsAssociativeElementCollection],
function(s, gens)
if ForAll(gens, x-> x in s) then
if One(s)<>One(gens) then
Append(gens, One(s));
fi;
return InverseSubmonoidNC(s, gens);
fi;
Error("the specified elements do not belong to the first argument,");
return;
end);
#
InstallMethod(IsSubsemigroup,
"for an inverse semigroup and inverse semigroup with generators",
[IsInverseSemigroup, IsInverseSemigroup and HasGeneratorsOfInverseSemigroup],
function(s, t)
return ForAll(GeneratorsOfInverseSemigroup(t), x-> x in s);
end);
#
InstallMethod(\=, "for an inverse semigroups with generators",
[IsInverseSemigroup and HasGeneratorsOfInverseSemigroup,
IsInverseSemigroup and HasGeneratorsOfInverseSemigroup],
function(s, t)
return ForAll(GeneratorsOfInverseSemigroup(s), x-> x in t)
and ForAll(GeneratorsOfInverseSemigroup(t), x-> x in s);
end);
#
#InstallMethod( PrintObj,
# "for a inverse semigroup",
# [ IsInverseSemigroup ],
# function( S )
# Print( "InverseSemigroup( ... )" );
# end );
InstallMethod( String,
"for a inverse semigroup",
[ IsInverseSemigroup ],
function( S )
return "InverseSemigroup( ... )";
end );
InstallMethod( PrintObj,
"for a inverse semigroup with known generators",
[ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
function( S )
Print( "InverseSemigroup( ", GeneratorsOfInverseSemigroup( S ), " )" );
end );
InstallMethod( String,
"for a inverse semigroup with known generators",
[ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
function( S )
return STRINGIFY( "InverseSemigroup( ",
GeneratorsOfInverseSemigroup( S ), " )" );
end );
InstallMethod( PrintString,
"for a inverse semigroup with known generators",
[ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
function( S )
return PRINT_STRINGIFY( "InverseSemigroup( ",
GeneratorsOfInverseSemigroup( S ), " )" );
end );
InstallMethod( ViewString,
"for a inverse semigroup",
[ IsInverseSemigroup ],
function( S )
return "<inverse semigroup>" ;
end );
InstallMethod( ViewString,
"for a inverse semigroup with generators",
[ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
function( S )
if Length(GeneratorsOfInverseSemigroup(S)) = 1 then
return STRINGIFY( "<inverse semigroup with ",
Length( GeneratorsOfInverseSemigroup( S ) ), " generator>" );
else
return STRINGIFY( "<inverse semigroup with ",
Length( GeneratorsOfInverseSemigroup( S ) ),
" generators>" );
fi;
end );
#
InstallMethod( String,
"for a inverse monoid",
[ IsInverseMonoid ],
function( S )
return "InverseMonoid( ... )";
end );
InstallMethod( PrintObj,
"for a inverse monoid with known generators",
[ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
function( S )
Print( "InverseMonoid( ", GeneratorsOfInverseMonoid( S ), " )" );
end );
InstallMethod( String,
"for a inverse monoid with known generators",
[ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
function( S )
return STRINGIFY( "InverseMonoid( ",
GeneratorsOfInverseMonoid( S ), " )" );
end );
InstallMethod( PrintString,
"for a inverse monoid with known generators",
[ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
function( S )
return PRINT_STRINGIFY( "InverseMonoid( ",
GeneratorsOfInverseMonoid( S ), " )" );
end );
InstallMethod( ViewString,
"for a inverse monoid",
[ IsInverseMonoid ],
function( S )
return "<inverse monoid>" ;
end );
InstallMethod( ViewString,
"for a inverse monoid with generators",
[ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
function( S )
if Length(GeneratorsOfInverseMonoid(S)) = 1 then
return STRINGIFY( "<inverse monoid with ",
Length( GeneratorsOfInverseMonoid( S ) ), " generator>" );
else
return STRINGIFY( "<inverse monoid with ",
Length( GeneratorsOfInverseMonoid( S ) ),
" generators>" );
fi;
end );
#
InstallMethod( AsInverseSemigroup,
"for an inverse semigroup",
[ IsInverseSemigroup ], 100,
IdFunc );
InstallMethod( AsInverseMonoid,
"for an inverse monoid",
[ IsInverseMonoid ], 100,
IdFunc );
#
InstallMethod( IsRegularSemigroupElement,
"for an inverse semigroup", IsCollsElms,
[IsInverseSemigroup, IsAssociativeElement],
function(s, x)
return x in s;
end);
#EOF
|