This file is indexed.

/usr/share/gap/lib/mapphomo.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
#############################################################################
##
#W  mapphomo.gd                 GAP library                     Thomas Breuer
#W                                                         and Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the definitions of properties of mappings preserving
##  algebraic structure.
##
##  1. properties and attributes of gen. mappings that respect multiplication
##  2. properties and attributes of gen. mappings that respect addition
##  3. properties and attributes of gen. mappings that respect scalar mult.
##  4. properties and attributes of gen. mappings that respect multiplicative
##     and additive structure
##  5. properties and attributes of gen. mappings that transform
##     multiplication into addition
##  6. properties and attributes of gen. mappings that transform addition
##     into multiplication
##


#############################################################################
##
##  1. properties and attributes of gen. mappings that respect multiplication
##

#############################################################################
##
#P  RespectsMultiplication( <mapp> )
##
##  <#GAPDoc Label="RespectsMultiplication">
##  <ManSection>
##  <Prop Name="RespectsMultiplication" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsMultiplication"/> returns <K>true</K> if
##  <M>S</M> and <M>R</M> are magmas such that
##  <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
##  <M>(s_1 * s_2,r_1 * r_2) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="RespectsMultiplication"/> returns <K>true</K>
##  if and only if the equation
##  <C><A>s1</A>^<A>mapp</A> * <A>s2</A>^<A>mapp</A> =
##  (<A>s1</A> * <A>s2</A>)^<A>mapp</A></C>
##  holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsMultiplication", IsGeneralMapping );


#############################################################################
##
#P  RespectsOne( <mapp> )
##
##  <#GAPDoc Label="RespectsOne">
##  <ManSection>
##  <Prop Name="RespectsOne" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq <A>S</A> \times <A>R</A></M>,
##  where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsOne"/> returns <K>true</K> if
##  <A>S</A> and <A>R</A> are magmas-with-one such that
##  <M>( </M><C>One(<A>S</A>)</C><M>, </M><C>One(<A>R</A>)</C><M> ) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then <Ref Func="RespectsOne"/> returns
##  <K>true</K> if and only if the equation
##  <C>One( <A>S</A> )^<A>mapp</A> = One( <A>R</A> )</C>
##  holds.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsOne", IsGeneralMapping );


#############################################################################
##
#P  RespectsInverses( <mapp> )
##
##  <#GAPDoc Label="RespectsInverses">
##  <ManSection>
##  <Prop Name="RespectsInverses" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq <A>S</A> \times <A>R</A></M>,
##  where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsInverses"/> returns <K>true</K> if
##  <A>S</A> and <A>R</A> are magmas-with-inverses such that,
##  for <M>s \in <A>S</A></M> and <M>r \in <A>R</A></M>, 
##  <M>(s,r) \in F</M> implies <M>(s^{{-1}},r^{{-1}}) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then <Ref Func="RespectsInverses"/>
##  returns <K>true</K> if and only if the equation
##  <C>Inverse( <A>s</A> )^<A>mapp</A> = Inverse( <A>s</A>^<A>mapp</A> )</C>
##  holds for all <A>s</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsInverses", IsGeneralMapping );


#############################################################################
##
#M  RespectsOne( <mapp> )
##
InstallTrueMethod( RespectsOne,
    RespectsMultiplication and RespectsInverses );


#############################################################################
##
#P  IsGroupGeneralMapping( <mapp> )
#P  IsGroupHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsGroupGeneralMapping">
##  <ManSection>
##  <Prop Name="IsGroupGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsGroupHomomorphism" Arg='mapp'/>
##
##  <Description>
##  A <E>group general mapping</E> is a mapping which respects multiplication
##  and inverses.
##  If it is total and single valued it is called a
##  <E>group homomorphism</E>.
##  <P/>
##  Chapter&nbsp;<Ref Chap="Group Homomorphisms"/> explains
##  group homomorphisms in more detail.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsGroupGeneralMapping",
    IsGeneralMapping and RespectsMultiplication and RespectsInverses );

DeclareSynonymAttr( "IsGroupHomomorphism",
    IsGroupGeneralMapping and IsMapping );


#############################################################################
##
#A  KernelOfMultiplicativeGeneralMapping( <mapp> )
##
##  <#GAPDoc Label="KernelOfMultiplicativeGeneralMapping">
##  <ManSection>
##  <Attr Name="KernelOfMultiplicativeGeneralMapping" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping.
##  Then <Ref Func="KernelOfMultiplicativeGeneralMapping"/> returns
##  the set of all elements in the source of <A>mapp</A> that have
##  the identity of the range in their set of images.
##  <P/>
##  (This is a monoid if <A>mapp</A> respects multiplication and one,
##  and if the source of <A>mapp</A> is associative.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "KernelOfMultiplicativeGeneralMapping",
    IsGeneralMapping );


#############################################################################
##
#A  CoKernelOfMultiplicativeGeneralMapping( <mapp> )
##
##  <#GAPDoc Label="CoKernelOfMultiplicativeGeneralMapping">
##  <ManSection>
##  <Attr Name="CoKernelOfMultiplicativeGeneralMapping" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping.
##  Then <Ref Func="CoKernelOfMultiplicativeGeneralMapping"/> returns
##  the set of all elements in the range of <A>mapp</A> that have
##  the identity of the source in their set of preimages.
##  <P/>
##  (This is a monoid if <A>mapp</A> respects multiplication and one,
##  and if the range of <A>mapp</A> is associative.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoKernelOfMultiplicativeGeneralMapping",
    IsGeneralMapping );


#############################################################################
##
##  2. properties and attributes of gen. mappings that respect addition
##

#############################################################################
##
#P  RespectsAddition( <mapp> )
##
##  <#GAPDoc Label="RespectsAddition">
##  <ManSection>
##  <Prop Name="RespectsAddition" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsAddition"/> returns <K>true</K> if
##  <M>S</M> and <M>R</M> are additive magmas such that
##  <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
##  <M>(s_1 + s_2,r_1 + r_2) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then <Ref Func="RespectsAddition"/>
##  returns <K>true</K> if and only if the equation
##  <C><A>s1</A>^<A>mapp</A> + <A>s2</A>^<A>mapp</A> =
##  (<A>s1</A>+<A>s2</A>)^<A>mapp</A></C>
##  holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsAddition", IsGeneralMapping );


#############################################################################
##
#P  RespectsZero( <mapp> )
##
##  <#GAPDoc Label="RespectsZero">
##  <ManSection>
##  <Prop Name="RespectsZero" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq <A>S</A> \times <A>R</A></M>,
##  where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsZero"/> returns <K>true</K> if
##  <A>S</A> and <A>R</A> are additive-magmas-with-zero such that
##  <M>( </M><C>Zero(<A>S</A>)</C><M>,
##  </M><C>Zero(<A>R</A>)</C><M> ) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then <Ref Func="RespectsZero"/> returns
##  <K>true</K> if and only if the equation
##  <C>Zero( <A>S</A> )^<A>mapp</A> = Zero( <A>R</A> )</C>
##  holds.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsZero", IsGeneralMapping );


#############################################################################
##
#P  RespectsAdditiveInverses( <mapp> )
##
##  <#GAPDoc Label="RespectsAdditiveInverses">
##  <ManSection>
##  <Prop Name="RespectsAdditiveInverses" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsAdditiveInverses"/> returns <K>true</K> if
##  <M>S</M> and <M>R</M> are additive-magmas-with-inverses such that
##  <M>(s,r) \in F</M> implies <M>(-s,-r) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="RespectsAdditiveInverses"/> returns <K>true</K>
##  if and only if the equation
##  <C>AdditiveInverse( <A>s</A> )^<A>mapp</A> =
##  AdditiveInverse( <A>s</A>^<A>mapp</A> )</C>
##  holds for all <A>s</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsAdditiveInverses", IsGeneralMapping );


#############################################################################
##
#M  RespectsZero( <mapp> )
##
InstallTrueMethod( RespectsZero,
    RespectsAddition and RespectsAdditiveInverses );


#############################################################################
##
#P  IsAdditiveGroupGeneralMapping( <mapp> )
#P  IsAdditiveGroupHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsAdditiveGroupGeneralMapping">
##  <ManSection>
##  <Prop Name="IsAdditiveGroupGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsAdditiveGroupHomomorphism" Arg='mapp'/>
##
##  <Description>
##  <Ref Prop="IsAdditiveGroupGeneralMapping"/>
##  specifies whether a general mapping <A>mapp</A> respects
##  addition (see <Ref Prop="RespectsAddition"/>) and respects
##  additive inverses (see <Ref Prop="RespectsAdditiveInverses"/>).
##  <P/>
##  <Ref Prop="IsAdditiveGroupHomomorphism"/> is a synonym for the meet of
##  <Ref Prop="IsAdditiveGroupGeneralMapping"/> and <Ref Prop="IsMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsAdditiveGroupGeneralMapping",
    IsGeneralMapping and RespectsAddition and RespectsAdditiveInverses );

DeclareSynonymAttr( "IsAdditiveGroupHomomorphism",
    IsAdditiveGroupGeneralMapping and IsMapping );


#############################################################################
##
#A  KernelOfAdditiveGeneralMapping( <mapp> )
##
##  <#GAPDoc Label="KernelOfAdditiveGeneralMapping">
##  <ManSection>
##  <Attr Name="KernelOfAdditiveGeneralMapping" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping.
##  Then <Ref Func="KernelOfAdditiveGeneralMapping"/> returns
##  the set of all elements in the source of <A>mapp</A> that have
##  the zero of the range in their set of images.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "KernelOfAdditiveGeneralMapping", IsGeneralMapping );


#############################################################################
##
#A  CoKernelOfAdditiveGeneralMapping( <mapp> )
##
##  <#GAPDoc Label="CoKernelOfAdditiveGeneralMapping">
##  <ManSection>
##  <Attr Name="CoKernelOfAdditiveGeneralMapping" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping.
##  Then <Ref Func="CoKernelOfAdditiveGeneralMapping"/> returns
##  the set of all elements in the range of <A>mapp</A> that have
##  the zero of the source in their set of preimages.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoKernelOfAdditiveGeneralMapping", IsGeneralMapping );


#############################################################################
##
##  3. properties and attributes of gen. mappings that respect scalar mult.
##

#############################################################################
##
#P  RespectsScalarMultiplication( <mapp> )
##
##  <#GAPDoc Label="RespectsScalarMultiplication">
##  <ManSection>
##  <Prop Name="RespectsScalarMultiplication" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping, with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsScalarMultiplication"/> returns <K>true</K> if
##  <M>S</M> and <M>R</M> are left modules with the left acting domain
##  <M>D</M> of <M>S</M> contained in the left acting domain of <M>R</M>
##  and such that
##  <M>(s,r) \in F</M> implies <M>(c * s,c * r) \in F</M> for all
##  <M>c \in D</M>, and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="RespectsScalarMultiplication"/> returns
##  <K>true</K> if and only if the equation
##  <C><A>c</A> * <A>s</A>^<A>mapp</A> =
##  (<A>c</A> * <A>s</A>)^<A>mapp</A></C>
##  holds for all <A>c</A> in <M>D</M> and <A>s</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "RespectsScalarMultiplication", IsGeneralMapping );

InstallTrueMethod( RespectsAdditiveInverses, RespectsScalarMultiplication );


#############################################################################
##
#P  IsLeftModuleGeneralMapping( <mapp> )
#P  IsLeftModuleHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsLeftModuleGeneralMapping">
##  <ManSection>
##  <Prop Name="IsLeftModuleGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsLeftModuleHomomorphism" Arg='mapp'/>
##
##  <Description>
##  <Ref Prop="IsLeftModuleGeneralMapping"/>
##  specifies whether a general mapping <A>mapp</A> satisfies the property
##  <Ref Prop="IsAdditiveGroupGeneralMapping"/> and respects scalar 
##  multiplication (see <Ref Prop="RespectsScalarMultiplication"/>).
##  <P/>
##  <Ref Prop="IsLeftModuleHomomorphism"/> is a synonym for the meet of
##  <Ref Prop="IsLeftModuleGeneralMapping"/> and <Ref Prop="IsMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsLeftModuleGeneralMapping",
    IsAdditiveGroupGeneralMapping and RespectsScalarMultiplication );

DeclareSynonymAttr( "IsLeftModuleHomomorphism",
    IsLeftModuleGeneralMapping and IsMapping );


#############################################################################
##
#O  IsLinearMapping( <F>, <mapp> )
##
##  <#GAPDoc Label="IsLinearMapping">
##  <ManSection>
##  <Oper Name="IsLinearMapping" Arg='F, mapp'/>
##
##  <Description>
##  For a field <A>F</A> and a general mapping <A>mapp</A>,
##  <Ref Func="IsLinearMapping"/> returns <K>true</K> if <A>mapp</A> is an
##  <A>F</A>-linear mapping, and <K>false</K> otherwise.
##  <P/>
##  A mapping <M>f</M> is a linear mapping (or vector space homomorphism)
##  if the source and range are vector spaces over the same division ring
##  <M>D</M>, and if
##  <M>f( a + b ) = f(a) + f(b)</M> and <M>f( s * a ) = s * f(a)</M> hold
##  for all elements <M>a</M>, <M>b</M> in the source of <M>f</M>
##  and <M>s \in D</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsLinearMapping", [ IsDomain, IsGeneralMapping ] );


#############################################################################
##
##  4. properties and attributes of gen. mappings that respect multiplicative
##     and additive structure
##

#############################################################################
##
#P  IsRingGeneralMapping( <mapp> )
#P  IsRingHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsRingGeneralMapping">
##  <ManSection>
##  <Prop Name="IsRingGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsRingHomomorphism" Arg='mapp'/>
##
##  <Description>
##  <Ref Prop="IsRingGeneralMapping"/> specifies whether a general mapping
##  <A>mapp</A> satisfies the property 
##  <Ref Prop="IsAdditiveGroupGeneralMapping"/> and respects multiplication 
##  (see <Ref Prop="RespectsMultiplication"/>).
##  <P/>
##  <Ref Prop="IsRingHomomorphism"/> is a synonym for the meet of
##  <Ref Prop="IsRingGeneralMapping"/> and <Ref Prop="IsMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingGeneralMapping",
    IsGeneralMapping and RespectsMultiplication
    and IsAdditiveGroupGeneralMapping );

DeclareSynonymAttr( "IsRingHomomorphism",
    IsRingGeneralMapping and IsMapping );


#############################################################################
##
#P  IsRingWithOneGeneralMapping( <mapp> )
#P  IsRingWithOneHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsRingWithOneGeneralMapping">
##  <ManSection>
##  <Prop Name="IsRingWithOneGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsRingWithOneHomomorphism" Arg='mapp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingWithOneGeneralMapping",
    IsRingGeneralMapping and RespectsOne );

DeclareSynonymAttr( "IsRingWithOneHomomorphism",
    IsRingWithOneGeneralMapping and IsMapping );


#############################################################################
##
#P  IsAlgebraGeneralMapping( <mapp> )
#P  IsAlgebraHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsAlgebraGeneralMapping">
##  <ManSection>
##  <Prop Name="IsAlgebraGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsAlgebraHomomorphism" Arg='mapp'/>
##
##  <Description>
##  <Ref Prop="IsAlgebraGeneralMapping"/> specifies whether a general 
##  mapping <A>mapp</A> satisfies both properties 
##  <Ref Prop="IsRingGeneralMapping"/> and 
##  (see <Ref Prop="IsLeftModuleGeneralMapping"/>).
##  <P/>
##  <Ref Prop="IsAlgebraHomomorphism"/> is a synonym for the meet of
##  <Ref Prop="IsAlgebraGeneralMapping"/> and <Ref Prop="IsMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsAlgebraGeneralMapping",
    IsRingGeneralMapping and IsLeftModuleGeneralMapping );

DeclareSynonymAttr( "IsAlgebraHomomorphism",
    IsAlgebraGeneralMapping and IsMapping );


#############################################################################
##
#P  IsAlgebraWithOneGeneralMapping( <mapp> )
#P  IsAlgebraWithOneHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsAlgebraWithOneGeneralMapping">
##  <ManSection>
##  <Prop Name="IsAlgebraWithOneGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsAlgebraWithOneHomomorphism" Arg='mapp'/>
##
##  <Description>
##  <Ref Prop="IsAlgebraWithOneGeneralMapping"/>
##  specifies whether a general mapping <A>mapp</A> satisfies both 
##  properties <Ref Prop="IsAlgebraGeneralMapping"/> and 
##  <Ref Prop="RespectsOne"/>.
##  <P/>
##  <Ref Prop="IsAlgebraWithOneHomomorphism"/> is a synonym for the meet of
##  <Ref Prop="IsAlgebraWithOneGeneralMapping"/> and <Ref Prop="IsMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsAlgebraWithOneGeneralMapping",
    IsAlgebraGeneralMapping and RespectsOne );

DeclareSynonymAttr( "IsAlgebraWithOneHomomorphism",
    IsAlgebraWithOneGeneralMapping and IsMapping );


#############################################################################
##
#P  IsFieldHomomorphism( <mapp> )
##
##  <#GAPDoc Label="IsFieldHomomorphism">
##  <ManSection>
##  <Prop Name="IsFieldHomomorphism" Arg='mapp'/>
##
##  <Description>
##  A general mapping is a field homomorphism if and only if it is
##  a ring homomorphism with source a field.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsFieldHomomorphism", IsGeneralMapping );

InstallTrueMethod( IsAlgebraHomomorphism, IsFieldHomomorphism );


#############################################################################
##
#F  InstallEqMethodForMappingsFromGenerators( <IsStruct>,
#F                           <GeneratorsOfStruct>, <respects>, <infostring> )
##
##  <ManSection>
##  <Func Name="InstallEqMethodForMappingsFromGenerators"
##   Arg='IsStruct, GeneratorsOfStruct, respects, infostring'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
InstallEqMethodForMappingsFromGenerators := function( IsStruct,
    GeneratorsOfStruct, respects, infostring )

    InstallMethod( \=,
        Concatenation( "method for two s.v. gen. mappings", infostring ),
        IsIdenticalObj,
        [ IsGeneralMapping and IsSingleValued and respects,
          IsGeneralMapping and IsSingleValued and respects ],
        0,
        function( map1, map2 )
        local preim, gen;
        if   not IsStruct( Source( map1 ) ) then
          TryNextMethod();
        elif     HasIsInjective( map1 ) and HasIsInjective( map2 )
             and IsInjective( map1 ) <> IsInjective( map2 ) then
          return false;
        elif     HasIsSurjective( map1 ) and HasIsSurjective( map2 )
             and IsSurjective( map1 ) <> IsSurjective( map2 ) then
          return false;
        elif     HasIsTotal( map1 ) and HasIsTotal( map2 )
             and IsTotal( map1 ) <> IsTotal( map2 ) then
          return false;
        elif    Source( map1 ) <> Source( map2 )
             or Range ( map1 ) <> Range ( map2 ) then
          return false;
        fi;

        preim:= PreImagesRange( map1 );
        if not IsStruct( preim ) then
          TryNextMethod();
        fi;
        for gen in GeneratorsOfStruct( preim ) do
          if    ImagesRepresentative( map1, gen )
             <> ImagesRepresentative( map2, gen ) then
            return false;
          fi;
        od;
        return true;
        end );


    InstallMethod(IsOne,
        Concatenation( "method for s.v. gen. mapping", infostring ),
        true,
        [ IsGeneralMapping and IsSingleValued and respects ],
        0,
        function( map )
        local preim, gen;
        if   not IsStruct( Source( map ) ) then
          TryNextMethod();
        elif     HasIsInjective( map ) and not IsInjective( map ) then
          return false;
        elif     HasIsSurjective( map ) and not IsSurjective( map ) then
          return false;
        elif     HasIsTotal( map ) and not IsTotal( map ) then
          return false;
        elif    Source( map ) <> Range( map ) then
          return false;
        fi;

        for gen in GeneratorsOfStruct( Source(map) ) do
          if    gen<>ImagesRepresentative( map, gen )  then
            return false;
          fi;
        od;
        return true;
        end );

end;


#############################################################################
##
##  5. properties and attributes of gen. mappings that transform
##     multiplication into addition
##

#############################################################################
##
#P  TransformsMultiplicationIntoAddition( <mapp> )
##
##  <ManSection>
##  <Prop Name="TransformsMultiplicationIntoAddition" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="TransformsMultiplicationIntoAddition"/> returns
##  <K>true</K> if <M>S</M> is a magma and <M>R</M> an additive magma
##  such that <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
##  <M>(s_1 * s_2,r_1 + r_2) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TransformsMultiplicationIntoAddition"/>
##  returns <K>true</K> if and only if the equation
##  <C><A>s1</A>^<A>mapp</A> + <A>s2</A>^<A>mapp</A> =
##  (<A>s1</A> * <A>s2</A>)^<A>mapp</A></C> holds for all
##  <A>s1</A>, <A>s2</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TransformsMultiplicationIntoAddition", IsGeneralMapping );


#############################################################################
##
#P  TranformsOneIntoZero( <mapp> )
##
##  <ManSection>
##  <Prop Name="TranformsOneIntoZero" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="TranformsOneIntoZero"/> returns <K>true</K> if
##  <M>S</M> is a magma-with-one and <M>R</M> an additive-magma-with-zero
##  such that
##  <M>( </M><C>One(</C><M>S</M><C>), Zero(</C><M>R</M><C>) )</C><M> \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TranformsOneIntoZero"/> returns <K>true</K>
##  if and only if the equation
##  <C>One( S )^<A>mapp</A> = Zero( R )</C>
##  holds.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TranformsOneIntoZero", IsGeneralMapping );


#############################################################################
##
#P  TransformsInversesIntoAdditiveInverses( <mapp> )
##
##  <ManSection>
##  <Prop Name="TransformsInversesIntoAdditiveInverses" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="RespectsInverses"/> returns <K>true</K> if
##  <M>S</M> and <M>R</M> are magmas-with-inverses such that
##  <M>S</M> is a magma-with-inverses
##  and <M>R</M> an additive-magma-with-inverses
##  such that <M>(s,r) \in F</M> implies <M>(s^{-1},-r) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TransformsInversesIntoAdditiveInverses"/>
##  returns <K>true</K> if and only if the equation
##  <C>Inverse( <A>s</A> )^<A>mapp</A> =
##  AdditiveInverse( <A>s</A>^<A>mapp</A> )</C>
##  holds for all <A>s</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TransformsInversesIntoAdditiveInverses", IsGeneralMapping );


#############################################################################
##
#M  RespectsOne( <mapp> )
##
InstallTrueMethod( TranformsOneIntoZero,
    TransformsMultiplicationIntoAddition and
    TransformsInversesIntoAdditiveInverses );


#############################################################################
##
#P  IsGroupToAdditiveGroupGeneralMapping( <mapp> )
#P  IsGroupToAdditiveGroupHomomorphism( <mapp> )
##
##  <ManSection>
##  <Prop Name="IsGroupToAdditiveGroupGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsGroupToAdditiveGroupHomomorphism" Arg='mapp'/>
##
##  <Description>
##  A <C>GroupToAdditiveGroupGeneralMapping</C> is a mapping which transforms
##  multiplication into addition and transforms
##  inverses into additive inverses. If it is total and single valued it is
##  called a group-to-additive-group
##  homomorphism.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsGroupToAdditiveGroupGeneralMapping",
    IsGeneralMapping and TransformsMultiplicationIntoAddition and
    TransformsInversesIntoAdditiveInverses );

DeclareSynonymAttr( "IsGroupToAdditiveGroupHomomorphism",
    IsGroupToAdditiveGroupGeneralMapping and IsMapping );


#############################################################################
##
##  6. properties and attributes of gen. mappings that transform addition
##     into multiplication
##

#############################################################################
##
#P  TransformsAdditionIntoMultiplication( <mapp> )
##
##  <ManSection>
##  <Prop Name="TransformsAdditionIntoMultiplication" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="TransformsAdditionIntoMultiplication"/> returns
##  <K>true</K> if
##  <M>S</M> is an additive magma and <M>R</M> a magma such that
##  <M>(s_1,r_1), (s_2,r_2) \in F</M> implies <M>(s_1 + s_2,r_1 * r_2) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TransformsAdditionIntoMultiplication"/>
##  returns <K>true</K> if and only if the equation
##  <C><A>s1</A>^<A>mapp</A> * <A>s2</A>^<A>mapp</A> =
##  (<A>s1</A>+<A>s2</A>)^<A>mapp</A></C>
##  holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TransformsAdditionIntoMultiplication", IsGeneralMapping );


#############################################################################
##
#P  TransformsZeroIntoOne( <mapp> )
##
##  <ManSection>
##  <Prop Name="TransformsZeroIntoOne" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="TransformsZeroIntoOne"/> returns <K>true</K> if
##  <M>S</M> is an additive-magma-with-zero and <M>R</M> a magma-with-one
##  such that
##  <M>( </M><C>Zero(</C><M>S</M><C>), One(</C><M>R</M><C>) )</C><M> \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TransformsZeroIntoOne"/> returns <K>true</K>
##  if and only if the equation
##  <C>Zero( S )^<A>mapp</A> = One( R )</C>
##  holds.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TransformsZeroIntoOne", IsGeneralMapping );


#############################################################################
##
#P  TransformsAdditiveInversesIntoInverses( <mapp> )
##
##  <ManSection>
##  <Prop Name="TransformsAdditiveInversesIntoInverses" Arg='mapp'/>
##
##  <Description>
##  Let <A>mapp</A> be a general mapping with underlying relation
##  <M>F \subseteq S \times R</M>,
##  where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
##  respectively.
##  Then <Ref Func="TransformsAdditiveInversesIntoInverses"/> returns
##  <K>true</K> if <M>S</M> is an additive-magma-with-inverses and
##  <M>R</M> a magma-with-inverses such that
##  <M>(s,r) \in F</M> implies <M>(-s,r^{-1}) \in F</M>,
##  and <K>false</K> otherwise.
##  <P/>
##  If <A>mapp</A> is single-valued then
##  <Ref Func="TransformsAdditiveInversesIntoInverses"/>
##  returns <K>true</K> if and only if the equation
##  <C>AdditiveInverse( <A>s</A> )^<A>mapp</A> =
##  Inverse( <A>s</A>^<A>mapp</A> )</C> holds for all <A>s</A> in <M>S</M>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "TransformsAdditiveInversesIntoInverses", IsGeneralMapping );


#############################################################################
##
#M  TransformsAdditiveInversesIntoInverses( <mapp> )
##
InstallTrueMethod( TransformsAdditiveInversesIntoInverses,
    TransformsAdditionIntoMultiplication and
    TransformsAdditiveInversesIntoInverses );


#############################################################################
##
#P  IsAdditiveGroupToGroupGeneralMapping( <mapp> )
#P  IsAdditiveGroupToGroupHomomorphism( <mapp> )
##
##  <ManSection>
##  <Prop Name="IsAdditiveGroupToGroupGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsAdditiveGroupToGroupHomomorphism" Arg='mapp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsAdditiveGroupToGroupGeneralMapping",
    IsGeneralMapping and TransformsAdditionIntoMultiplication and
    TransformsAdditiveInversesIntoInverses );

DeclareSynonymAttr( "IsAdditiveGroupToGroupHomomorphism",
    IsAdditiveGroupToGroupGeneralMapping and IsMapping );


#############################################################################
##
#E