/usr/share/gap/lib/mapping.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 | #############################################################################
##
#W mapping.gd GAP library Thomas Breuer
#W & Martin Schönert
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for general mappings.
##
#############################################################################
##
## <#GAPDoc Label="[1]{mapping}">
## A <E>general mapping</E> <M>F</M> in &GAP; is described by
## its source <M>S</M>, its range <M>R</M>, and a subset <M>Rel</M> of the
## direct product <M>S \times R</M>,
## which is called the underlying relation of <M>F</M>.
## <M>S</M>, <M>R</M>, and <M>Rel</M> are generalized domains
## (see <Ref Chap="Domains"/>).
## The corresponding attributes for general mappings are
## <Ref Func="Source"/>, <Ref Func="Range" Label="of a general mapping"/>,
## and <Ref Func="UnderlyingRelation"/>.
## <!-- what about the family predicates if the source/range is not a -->
## <!-- collection? -->
## <P/>
## Note that general mappings themselves are <E>not</E> domains.
## One reason for this is that two general mappings with same underlying
## relation are regarded as equal only if also the sources are equal and
## the ranges are equal.
## Other, more technical, reasons are that general mappings and domains
## have different basic operations, and that general mappings are
## arithmetic objects
## (see <Ref Sect="Arithmetic Operations for General Mappings"/>);
## both should not apply to domains.
## <P/>
## Each element of an underlying relation of a general mapping lies in the
## category of direct product elements
## (see <Ref Func="IsDirectProductElement"/>).
## <P/>
## For each <M>s \in S</M>, the set <M>\{ r \in R | (s,r) \in Rel \}</M>
## is called the set of <E>images</E> of <M>s</M>.
## Analogously, for <M>r \in R</M>,
## the set <M>\{ s \in S | (s,r) \in Rel \}</M>
## is called the set of <E>preimages</E> of <M>r</M>.
## <P/>
## The <E>ordering</E> of general mappings via <C><</C> is defined
## by the ordering of source, range, and underlying relation.
## Specifically, if the source and range domains of <A>map1</A> and
## <A>map2</A> are the same, then one considers the union of the preimages
## of <A>map1</A> and <A>map2</A> as a strictly ordered set.
## The smaller of <A>map1</A> and <A>map2</A> is the one whose image is
## smaller on the first point of this sequence where they differ.
## <#/GAPDoc>
##
## <#GAPDoc Label="[2]{mapping}">
## <Ref Func="Source"/> and <Ref Func="Range" Label="of a general mapping"/>
## are basic operations for general mappings.
## <Ref Func="UnderlyingRelation"/> is secondary, its default method sets up
## a domain that delegates tasks to the general mapping.
## (Note that this allows one to handle also infinite relations by generic
## methods if source or range of the general mapping is finite.)
## <P/>
## The distinction between basic operations and secondary operations for
## general mappings may be a little bit complicated.
## Namely, each general mapping must be in one of the two categories
## <Ref Func="IsNonSPGeneralMapping"/>, <Ref Func="IsSPGeneralMapping"/>.
## (The category <Ref Func="IsGeneralMapping"/> is defined as the disjoint
## union of these two.)
## <P/>
## For general mappings of the first category, <Ref Func="ImagesElm"/> and
## <Ref Func="PreImagesElm"/> are basic operations.
## (Note that in principle it is possible to delegate
## from <Ref Func="PreImagesElm"/> to <Ref Func="ImagesElm"/>.)
## Methods for the secondary operations <Ref Func="ImageElm"/>,
## <Ref Func="PreImageElm"/>, <Ref Func="ImagesSet"/>,
## <Ref Func="PreImagesSet"/>, <Ref Func="ImagesRepresentative"/>,
## and <Ref Func="PreImagesRepresentative"/> may use
## <Ref Func="ImagesElm"/> and <Ref Func="PreImagesElm"/>, respectively,
## and methods for <Ref Func="ImagesElm"/>, <Ref Func="PreImagesElm"/>
## must <E>not</E> call the secondary operations.
## In particular, there are no generic methods for
## <Ref Func="ImagesElm"/> and <Ref Func="PreImagesElm"/>.
## <P/>
## Methods for <Ref Func="ImagesSet"/> and <Ref Func="PreImagesSet"/> must
## <E>not</E> use <Ref Func="PreImagesRange"/> and
## <Ref Func="ImagesSource"/>, e.g.,
## compute the intersection of the set in question with the preimage of the
## range resp. the image of the source.
## <P/>
## For general mappings of the second category (which means structure
## preserving general mappings), the situation is different.
## The set of preimages under a group homomorphism, for example, is either
## empty or can be described as a coset of the (multiplicative) kernel.
## So it is reasonable to have <Ref Func="ImagesRepresentative"/>,
## <Ref Func="PreImagesRepresentative"/>,
## <Ref Func="KernelOfMultiplicativeGeneralMapping"/>, and
## <Ref Func="CoKernelOfMultiplicativeGeneralMapping"/> as basic operations
## here, and to make <Ref Func="ImagesElm"/> and <Ref Func="PreImagesElm"/>
## secondary operations that may delegate to these.
## <P/>
## In order to avoid infinite recursions,
## we must distinguish between the two different types of mappings.
## <P/>
## (Note that the basic domain operations such as <Ref Func="AsList"/>
## for the underlying relation of a general mapping may use either
## <Ref Func="ImagesElm"/> or <Ref Func="ImagesRepresentative"/> and the
## appropriate cokernel.
## Conversely, if <Ref Func="AsList"/> for the underlying relation is known
## then <Ref Func="ImagesElm"/> resp. <Ref Func="ImagesRepresentative"/>
## may delegate to it,
## the general mapping gets the property
## <Ref Func="IsConstantTimeAccessGeneralMapping"/> for this;
## note that this is not allowed if only an enumerator of the underlying
## relation is known.)
## <P/>
## Secondary operations are
## <Ref Func="IsInjective"/>, <Ref Func="IsSingleValued"/>,
## <Ref Func="IsSurjective"/>, <Ref Func="IsTotal"/>;
## they may use the basic operations, and must not be used by them.
## <#/GAPDoc>
##
## <#GAPDoc Label="[3]{mapping}">
## General mappings are arithmetic objects.
## One can form groups and vector spaces of general mappings provided
## that they are invertible or can be added and admit scalar multiplication,
## respectively.
## <P/>
## For two general mappings with same source, range, preimage, and image,
## the <E>sum</E> is defined pointwise, i.e.,
## the images of a point under the sum is the set of all sums with
## first summand in the images of the first general mapping and
## second summand in the images of the second general mapping.
## <P/>
## <E>Scalar multiplication</E> of general mappings is defined likewise.
## <P/>
## The <E>product</E> of two general mappings is defined as the composition.
## This multiplication is always associative.
## In addition to the composition via <C>*</C>,
## general mappings can be composed –in reversed order–
## via <Ref Func="CompositionMapping"/>.
## <P/>
## General mappings are in the category of multiplicative elements with
## inverses.
## Similar to matrices, not every general mapping has an inverse or an
## identity, and we define the behaviour of <Ref Func="One"/> and
## <Ref Func="Inverse"/> for general mappings as follows.
## <Ref Func="One"/> returns <K>fail</K> when called for a general mapping
## whose source and range differ,
## otherwise <Ref Func="One"/> returns the identity mapping of the source.
## (Note that the source may differ from the preimage).
## <Ref Func="Inverse"/> returns <K>fail</K> when called for a non-bijective
## general mapping or for a general mapping whose source and range differ;
## otherwise <Ref Func="Inverse"/> returns the inverse mapping.
## <P/>
## Besides the usual inverse of multiplicative elements, which means that
## <C>Inverse( <A>g</A> ) * <A>g</A> = <A>g</A> * Inverse( <A>g</A> )
## = One( <A>g</A> )</C>,
## for general mappings we have the attribute
## <Ref Func="InverseGeneralMapping"/>.
## If <A>F</A> is a general mapping with source <M>S</M>, range <M>R</M>,
## and underlying relation <M>Rel</M> then
## <C>InverseGeneralMapping( <A>F</A> )</C> has source <M>R</M>,
## range <M>S</M>,
## and underlying relation <M>\{ (r,s) \mid (s,r) \in Rel \}</M>.
## For a general mapping that has an inverse in the usual sense,
## i.e., for a bijection of the source, of course both concepts coincide.
## <P/>
## <Ref Func="Inverse"/> may delegate to
## <Ref Func="InverseGeneralMapping"/>.
## <Ref Func="InverseGeneralMapping"/> must not delegate to
## <Ref Func="Inverse"/>,
## but a known value of <Ref Func="Inverse"/> may be fetched.
## So methods to compute the inverse of a general mapping should be
## installed for <Ref Func="InverseGeneralMapping"/>.
## <P/>
## (Note that in many respects, general mappings behave similar to matrices,
## for example one can define left and right identities and inverses, which
## do not fit into the current concepts of &GAP;.)
## <#/GAPDoc>
##
## <#GAPDoc Label="[4]{mapping}">
## Methods for the operations <Ref Func="ImagesElm"/>,
## <Ref Func="ImagesRepresentative"/>,
## <Ref Func="ImagesSet"/>, <Ref Func="ImageElm"/>,
## <Ref Func="PreImagesElm"/>,
## <Ref Func="PreImagesRepresentative"/>, <Ref Func="PreImagesSet"/>,
## and <Ref Func="PreImageElm"/> take two arguments, a general mapping
## <A>map</A> and an element or collection of elements <A>elm</A>.
## These methods must <E>not</E> check whether <A>elm</A> lies in the source
## or the range of <A>map</A>.
## In the case that <A>elm</A> does not, <K>fail</K> may be returned as well
## as any other &GAP; object, and even an error message is allowed.
## Checks of the arguments are done only by the functions
## <Ref Func="Image" Label="set of images of the source of a general mapping"/>,
## <Ref Func="Images" Label="set of images of the source of a general mapping"/>,
## <Ref Func="PreImage" Label="set of preimages of the range of a general mapping"/>,
## and <Ref Func="PreImages" Label="set of preimages of the range of a general mapping"/>,
## which then delegate to the operations listed above.
## <#/GAPDoc>
##
#############################################################################
##
#C IsGeneralMapping( <map> )
##
## <#GAPDoc Label="IsGeneralMapping">
## <ManSection>
## <Filt Name="IsGeneralMapping" Arg='map' Type='Category'/>
##
## <Description>
## Each general mapping lies in the category <Ref Func="IsGeneralMapping"/>.
## It implies the categories
## <Ref Func="IsMultiplicativeElementWithInverse"/>
## and <Ref Func="IsAssociativeElement"/>;
## for a discussion of these implications,
## see <Ref Sect="Arithmetic Operations for General Mappings"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsGeneralMapping",
IsMultiplicativeElementWithInverse and IsAssociativeElement );
#############################################################################
##
#C IsSPGeneralMapping( <map> )
#C IsNonSPGeneralMapping( <map> )
##
## <#GAPDoc Label="IsSPGeneralMapping">
## <ManSection>
## <Filt Name="IsSPGeneralMapping" Arg='map' Type='Category'/>
## <Filt Name="IsNonSPGeneralMapping" Arg='map' Type='Category'/>
##
## <Description>
## <!-- What we want to express is that <C>IsGeneralMapping</C> is the disjoint union-->
## <!-- of <C>IsSPGeneralMapping</C> and <C>IsNonSPGeneralMapping</C>.-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSPGeneralMapping", IsGeneralMapping );
DeclareCategory( "IsNonSPGeneralMapping", IsGeneralMapping );
#############################################################################
##
#C IsGeneralMappingCollection( <obj> )
##
## <ManSection>
## <Filt Name="IsGeneralMappingCollection" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryCollections( "IsGeneralMapping" );
#############################################################################
##
#C IsGeneralMappingFamily( <obj> )
##
## <#GAPDoc Label="IsGeneralMappingFamily">
## <ManSection>
## <Filt Name="IsGeneralMappingFamily" Arg='obj' Type='Category'/>
##
## <Description>
## The family category of the category of general mappings.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsGeneralMapping" );
#############################################################################
##
#A FamilyRange( <Fam> )
##
## <#GAPDoc Label="FamilyRange">
## <ManSection>
## <Attr Name="FamilyRange" Arg='Fam'/>
##
## <Description>
## is the elements family of the family of the range of each general
## mapping in the family <A>Fam</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FamilyRange", IsGeneralMappingFamily );
#############################################################################
##
#A FamilySource( <Fam> )
##
## <#GAPDoc Label="FamilySource">
## <ManSection>
## <Attr Name="FamilySource" Arg='Fam'/>
##
## <Description>
## is the elements family of the family of the source of each general
## mapping in the family <A>Fam</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FamilySource", IsGeneralMappingFamily );
#############################################################################
##
#A FamiliesOfGeneralMappingsAndRanges( <Fam> )
##
## <#GAPDoc Label="FamiliesOfGeneralMappingsAndRanges">
## <ManSection>
## <Attr Name="FamiliesOfGeneralMappingsAndRanges" Arg='Fam'/>
##
## <Description>
## is a list that stores at the odd positions the families of general
## mappings with source in the family <A>Fam</A>, at the even positions the
## families of ranges of the general mappings.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FamiliesOfGeneralMappingsAndRanges",
IsFamily, "mutable" );
#############################################################################
##
#P IsConstantTimeAccessGeneralMapping( <map> )
##
## <#GAPDoc Label="IsConstantTimeAccessGeneralMapping">
## <ManSection>
## <Prop Name="IsConstantTimeAccessGeneralMapping" Arg='map'/>
##
## <Description>
## is <K>true</K> if the underlying relation of the general mapping
## <A>map</A> knows its <Ref Func="AsList"/> value,
## and <K>false</K> otherwise.
## <P/>
## In the former case, <A>map</A> is allowed to use this list for calls to
## <Ref Func="ImagesElm"/> etc.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsConstantTimeAccessGeneralMapping", IsGeneralMapping );
#############################################################################
##
#P IsEndoGeneralMapping( <obj> )
##
## <#GAPDoc Label="IsEndoGeneralMapping">
## <ManSection>
## <Prop Name="IsEndoGeneralMapping" Arg='obj'/>
##
## <Description>
## If a general mapping has this property then its source and range are
## equal.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsEndoGeneralMapping", IsGeneralMapping );
#############################################################################
##
#P IsTotal( <map> ) . . . . . . . . test whether a general mapping is total
##
## <#GAPDoc Label="IsTotal">
## <ManSection>
## <Prop Name="IsTotal" Arg='map'/>
##
## <Description>
## is <K>true</K> if each element in the source <M>S</M>
## of the general mapping <A>map</A> has images, i.e.,
## <M>s^{<A>map</A>} \neq \emptyset</M> for all <M>s \in S</M>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsTotal", IsGeneralMapping );
#############################################################################
##
#P IsSingleValued( <map> ) . test whether a general mapping is single-valued
##
## <#GAPDoc Label="IsSingleValued">
## <ManSection>
## <Prop Name="IsSingleValued" Arg='map'/>
##
## <Description>
## is <K>true</K> if each element in the source <M>S</M>
## of the general mapping <A>map</A> has at most one image, i.e.,
## <M>|s^{<A>map</A>}| \leq 1</M> for all <M>s \in S</M>,
## and <K>false</K> otherwise.
## <P/>
## Equivalently, <C>IsSingleValued( <A>map</A> )</C> is <K>true</K>
## if and only if the preimages of different elements in <M>R</M> are
## disjoint.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSingleValued", IsGeneralMapping );
#############################################################################
##
#P IsMapping( <map> )
##
## <#GAPDoc Label="IsMapping">
## <ManSection>
## <Prop Name="IsMapping" Arg='map'/>
##
## <Description>
## A <E>mapping</E> <A>map</A> is a general mapping that assigns to each
## element <C>elm</C> of its source a unique element
## <C>Image( <A>map</A>, elm )</C> of its range.
## <P/>
## Equivalently, the general mapping <A>map</A> is a mapping if and only if
## it is total and single-valued
## (see <Ref Func="IsTotal"/>, <Ref Func="IsSingleValued"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsMapping",
IsGeneralMapping and IsTotal and IsSingleValued );
#############################################################################
##
#P IsEndoMapping( <obj> )
##
## <ManSection>
## <Prop Name="IsEndoMapping" Arg='obj'/>
##
## <Description>
## If a mapping has this property then its source and range are
## equal and it is single valued.
## </Description>
## </ManSection>
##
DeclareSynonymAttr( "IsEndoMapping", IsMapping and IsEndoGeneralMapping );
#############################################################################
##
#P IsInjective( <map> ) . . . . . . test if a general mapping is injective
##
## <#GAPDoc Label="IsInjective">
## <ManSection>
## <Prop Name="IsInjective" Arg='map'/>
##
## <Description>
## is <K>true</K> if the images of different elements in the source <M>S</M>
## of the general mapping <A>map</A> are disjoint, i.e.,
## <M>x^{<A>map</A>} \cap y^{<A>map</A>} = \emptyset</M>
## for <M>x \neq y \in S</M>,
## and <K>false</K> otherwise.
## <P/>
## Equivalently, <C>IsInjective( <A>map</A> )</C> is <K>true</K>
## if and only if each element in the range of <A>map</A> has at most one
## preimage in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsInjective", IsGeneralMapping );
DeclareSynonym("IsOneToOne",IsInjective);
#############################################################################
##
#P IsSurjective( <map> ) . . . . . . test if a general mapping is surjective
##
## <#GAPDoc Label="IsSurjective">
## <ManSection>
## <Prop Name="IsSurjective" Arg='map'/>
##
## <Description>
## is <K>true</K> if each element in the range <M>R</M>
## of the general mapping <A>map</A> has preimages in the source <M>S</M>
## of <A>map</A>, i.e.,
## <M>\{ s \in S \mid x \in s^{<A>map</A>} \} \neq \emptyset</M>
## for all <M>x \in R</M>, and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSurjective", IsGeneralMapping );
DeclareSynonym("IsOnto",IsSurjective);
#############################################################################
##
#P IsBijective( <map> ) . . . . . . test if a general mapping is bijective
##
## <#GAPDoc Label="IsBijective">
## <ManSection>
## <Prop Name="IsBijective" Arg='map'/>
##
## <Description>
## A general mapping <A>map</A> is <E>bijective</E> if and only if it is
## an injective and surjective mapping (see <Ref Func="IsMapping"/>,
## <Ref Func="IsInjective"/>, <Ref Func="IsSurjective"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsBijective",
IsSingleValued and IsTotal and IsInjective and IsSurjective );
#############################################################################
##
#A Range( <map> ) . . . . . . . . . . . . . . . range of a general mapping
##
## <#GAPDoc Label="Range">
## <ManSection>
## <Attr Name="Range" Arg='map' Label="of a general mapping"/>
##
## <Description>
## The range of a general mapping.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Range", IsGeneralMapping );
#############################################################################
##
#A Source( <map> ) . . . . . . . . . . . . . . . source of a general mapping
##
## <#GAPDoc Label="Source">
## <ManSection>
## <Attr Name="Source" Arg='map'/>
##
## <Description>
## The source of a general mapping.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Source", IsGeneralMapping );
#############################################################################
##
#A UnderlyingRelation( <map> ) . . underlying relation of a general mapping
##
## <#GAPDoc Label="UnderlyingRelation">
## <ManSection>
## <Attr Name="UnderlyingRelation" Arg='map'/>
##
## <Description>
## The <E>underlying relation</E> of a general mapping <A>map</A> is the
## domain of pairs <M>(s,r)</M>, with <M>s</M> in the source and <M>r</M> in
## the range of <A>map</A> (see <Ref Func="Source"/>,
## <Ref Func="Range" Label="of a general mapping"/>),
## and <M>r \in</M> <C>ImagesElm( <A>map</A>, </C><M>s</M><C> )</C>.
## <P/>
## Each element of the underlying relation is represented by
## a direct product element (see <Ref Func="IsDirectProductElement"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingRelation", IsGeneralMapping );
#############################################################################
##
#A UnderlyingGeneralMapping( <map> )
##
## <#GAPDoc Label="UnderlyingGeneralMapping">
## <ManSection>
## <Attr Name="UnderlyingGeneralMapping" Arg='map'/>
##
## <Description>
## attribute for underlying relations of general mappings
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingGeneralMapping", IsCollection );
#############################################################################
##
#F GeneralMappingsFamily( <sourcefam>, <rangefam> )
##
## <#GAPDoc Label="GeneralMappingsFamily">
## <ManSection>
## <Func Name="GeneralMappingsFamily" Arg='sourcefam, rangefam'/>
##
## <Description>
## All general mappings with same source family <A>FS</A> and same range
## family <A>FR</A> lie in the family
## <C>GeneralMappingsFamily( <A>FS</A>, <A>FR</A> )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GeneralMappingsFamily" );
#############################################################################
##
#F TypeOfDefaultGeneralMapping( <source>, <range>, <filter> )
##
## <#GAPDoc Label="TypeOfDefaultGeneralMapping">
## <ManSection>
## <Func Name="TypeOfDefaultGeneralMapping" Arg='source, range, filter'/>
##
## <Description>
## is the type of mappings with <C>IsDefaultGeneralMappingRep</C> with
## source <A>source</A> and range <A>range</A> and additional categories
## <A>filter</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TypeOfDefaultGeneralMapping" );
#############################################################################
##
#A IdentityMapping( <D> ) . . . . . . . . identity mapping of a collection
##
## <#GAPDoc Label="IdentityMapping">
## <ManSection>
## <Attr Name="IdentityMapping" Arg='D'/>
##
## <Description>
## is the bijective mapping with source and range equal to the collection
## <A>D</A>, which maps each element of <A>D</A> to itself.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IdentityMapping", IsCollection );
#############################################################################
##
#A InverseGeneralMapping( <map> )
##
## <#GAPDoc Label="InverseGeneralMapping">
## <ManSection>
## <Attr Name="InverseGeneralMapping" Arg='map'/>
##
## <Description>
## The <E>inverse general mapping</E> of a general mapping <A>map</A> is
## the general mapping whose underlying relation
## (see <Ref Func="UnderlyingRelation"/>) contains a pair <M>(r,s)</M>
## if and only if the underlying relation of <A>map</A> contains the pair
## <M>(s,r)</M>.
## <P/>
## See the introduction to Chapter <Ref Chap="Mappings"/>
## for the subtleties concerning the difference between
## <Ref Func="InverseGeneralMapping"/> and <Ref Func="Inverse"/>.
## <P/>
## Note that the inverse general mapping of a mapping <A>map</A> is
## in general only a general mapping.
## If <A>map</A> knows to be bijective its inverse general mapping will know
## to be a mapping.
## In this case also <C>Inverse( <A>map</A> )</C> works.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "InverseGeneralMapping", IsGeneralMapping );
#############################################################################
##
#A ImagesSource( <map> )
##
## <#GAPDoc Label="ImagesSource">
## <ManSection>
## <Attr Name="ImagesSource" Arg='map'/>
##
## <Description>
## is the set of images of the source of the general mapping <A>map</A>.
## <P/>
## <Ref Func="ImagesSource"/> delegates to <Ref Func="ImagesSet"/>,
## it is introduced only to store the image of <A>map</A> as attribute
## value.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ImagesSource", IsGeneralMapping );
#############################################################################
##
#A PreImagesRange( <map> )
##
## <#GAPDoc Label="PreImagesRange">
## <ManSection>
## <Attr Name="PreImagesRange" Arg='map'/>
##
## <Description>
## is the set of preimages of the range of the general mapping <A>map</A>.
## <P/>
## <Ref Func="PreImagesRange"/> delegates to <Ref Func="PreImagesSet"/>,
## it is introduced only to store the preimage of <A>map</A> as attribute
## value.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PreImagesRange", IsGeneralMapping );
#############################################################################
##
#O ImagesElm( <map>, <elm> ) . . . all images of an elm under a gen. mapping
##
## <#GAPDoc Label="ImagesElm">
## <ManSection>
## <Oper Name="ImagesElm" Arg='map, elm'/>
##
## <Description>
## If <A>elm</A> is an element of the source of the general mapping
## <A>map</A> then <Ref Func="ImagesElm"/> returns the set of all images
## of <A>elm</A> under <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the source of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ImagesElm", [ IsGeneralMapping, IsObject ] );
#############################################################################
##
#O ImagesRepresentative(<map>,<elm>) . one image of elm under a gen. mapping
##
## <#GAPDoc Label="ImagesRepresentative">
## <ManSection>
## <Oper Name="ImagesRepresentative" Arg='map,elm'/>
##
## <Description>
## If <A>elm</A> is an element of the source of the general mapping
## <A>map</A> then <Ref Func="ImagesRepresentative"/> returns either
## a representative of the set of images of <A>elm</A> under <A>map</A>
## or <K>fail</K>, the latter if and only if <A>elm</A> has no images under
## <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the source of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ImagesRepresentative", [ IsGeneralMapping, IsObject ] );
#############################################################################
##
#O ImagesSet( <map>, <elms> )
##
## <#GAPDoc Label="ImagesSet">
## <ManSection>
## <Oper Name="ImagesSet" Arg='map, elms'/>
##
## <Description>
## If <A>elms</A> is a subset of the source of the general mapping
## <A>map</A> then <Ref Func="ImagesSet"/> returns the set of all images of
## <A>elms</A> under <A>map</A>.
## <P/>
## The result will be either a proper set or a domain.
## Anything may happen if <A>elms</A> is not a subset of the source of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ImagesSet", [ IsGeneralMapping, IsCollection ] );
#############################################################################
##
#O ImageElm( <map>, <elm> ) . . . . unique image of an elm under a mapping
##
## <#GAPDoc Label="ImageElm">
## <ManSection>
## <Oper Name="ImageElm" Arg='map, elm'/>
##
## <Description>
## If <A>elm</A> is an element of the source of the total and single-valued
## mapping <A>map</A> then
## <Ref Func="ImageElm"/> returns the unique image of <A>elm</A> under
## <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the source of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ImageElm", [ IsMapping, IsObject ] );
#############################################################################
##
#F Image( <map> ) . . . . set of images of the source of a general mapping
#F Image( <map>, <elm> ) . . . . unique image of an element under a mapping
#F Image( <map>, <coll> ) . . set of images of a collection under a mapping
##
## <#GAPDoc Label="Image">
## <ManSection>
## <Heading>Image</Heading>
## <Func Name="Image" Arg='map'
## Label="set of images of the source of a general mapping"/>
## <Func Name="Image" Arg='map, elm'
## Label="unique image of an element under a mapping"/>
## <Func Name="Image" Arg='map, coll'
## Label="set of images of a collection under a mapping"/>
##
## <Description>
## <C>Image( <A>map</A> )</C> is the <E>image</E> of the general mapping
## <A>map</A>, i.e.,
## the subset of elements of the range of <A>map</A>
## that are actually values of <A>map</A>.
## <E>Note</E> that in this case the argument may also be multi-valued.
## <P/>
## <C>Image( <A>map</A>, <A>elm</A> )</C> is the image of the element
## <A>elm</A> of the source of the mapping <A>map</A> under <A>map</A>,
## i.e., the unique element of the range to which <A>map</A> maps
## <A>elm</A>.
## This can also be expressed as <A>elm</A><C>^</C><A>map</A>.
## Note that <A>map</A> must be total and single valued,
## a multi valued general mapping is not allowed
## (see <Ref Func="Images" Label="set of images of the source of a general mapping"/>).
## <P/>
## <C>Image( <A>map</A>, <A>coll</A> )</C> is the image of the subset
## <A>coll</A> of the source of the mapping <A>map</A> under <A>map</A>,
## i.e., the subset of the range to which <A>map</A> maps elements of
## <A>coll</A>.
## <A>coll</A> may be a proper set or a domain.
## The result will be either a proper set or a domain.
## Note that in this case <A>map</A> may also be multi-valued.
## (If <A>coll</A> and the result are lists then the positions of
## entries do in general <E>not</E> correspond.)
## <P/>
## <Ref Func="Image" Label="set of images of the source of a general mapping"/>
## delegates to <Ref Func="ImagesSource"/> when called
## with one argument, and to <Ref Func="ImageElm"/> resp.
## <Ref Func="ImagesSet"/> when called with two arguments.
## <P/>
## If the second argument is not an element or a subset of the source of
## the first argument, an error is signalled.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Image" );
#############################################################################
##
#F Images( <map> ) . . . . set of images of the source of a general mapping
#F Images( <map>, <elm> ) . . . set of images of an element under a mapping
#F Images( <map>, <coll> ) . . set of images of a collection under a mapping
##
## <#GAPDoc Label="Images">
## <ManSection>
## <Heading>Images</Heading>
## <Func Name="Images" Arg='map'
## Label="set of images of the source of a general mapping"/>
## <Func Name="Images" Arg='map, elm'
## Label="set of images of an element under a mapping"/>
## <Func Name="Images" Arg='map, coll'
## Label="set of images of a collection under a mapping"/>
##
## <Description>
## <C>Images( <A>map</A> )</C> is the <E>image</E> of the general mapping
## <A>map</A>, i.e., the subset of elements of the range of <A>map</A>
## that are actually values of <A>map</A>.
## <P/>
## <C>Images( <A>map</A>, <A>elm</A> )</C> is the set of images of the
## element <A>elm</A> of the source of the general mapping <A>map</A> under
## <A>map</A>, i.e., the set of elements of the range to which <A>map</A>
## maps <A>elm</A>.
## <P/>
## <C>Images( <A>map</A>, <A>coll</A> )</C> is the set of images of the
## subset <A>coll</A> of the source of the general mapping <A>map</A> under
## <A>map</A>, i.e., the subset of the range to which <A>map</A> maps
## elements of <A>coll</A>.
## <A>coll</A> may be a proper set or a domain.
## The result will be either a proper set or a domain.
## (If <A>coll</A> and the result are lists then the positions of
## entries do in general <E>not</E> correspond.)
## <P/>
## <Ref Func="Images" Label="set of images of the source of a general mapping"/>
## delegates to <Ref Func="ImagesSource"/> when called
## with one argument, and to <Ref Func="ImagesElm"/> resp.
## <Ref Func="ImagesSet"/> when called with two arguments.
## <P/>
## If the second argument is not an element or a subset of the source of
## the first argument, an error is signalled.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Images" );
#############################################################################
##
#O PreImagesElm( <map>, <elm> ) . all preimages of elm under a gen. mapping
##
## <#GAPDoc Label="PreImagesElm">
## <ManSection>
## <Oper Name="PreImagesElm" Arg='map, elm'/>
##
## <Description>
## If <A>elm</A> is an element of the range of the general mapping
## <A>map</A> then <Ref Func="PreImagesElm"/> returns the set of all
## preimages of <A>elm</A> under <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the range of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PreImagesElm", [ IsGeneralMapping, IsObject ] );
#############################################################################
##
#O PreImageElm( <map>, <elm> )
##
## <#GAPDoc Label="PreImageElm">
## <ManSection>
## <Oper Name="PreImageElm" Arg='map, elm'/>
##
## <Description>
## If <A>elm</A> is an element of the range of the injective and surjective
## general mapping <A>map</A> then
## <Ref Func="PreImageElm"/> returns the unique preimage of <A>elm</A> under
## <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the range of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PreImageElm",
[ IsGeneralMapping and IsInjective and IsSurjective, IsObject ] );
#############################################################################
##
#O PreImagesRepresentative( <map>, <elm> ) . . . one preimage of an element
## under a gen. mapping
##
## <#GAPDoc Label="PreImagesRepresentative">
## <ManSection>
## <Oper Name="PreImagesRepresentative" Arg='map, elm'/>
##
## <Description>
## If <A>elm</A> is an element of the range of the general mapping
## <A>map</A> then <Ref Func="PreImagesRepresentative"/> returns either a
## representative of the set of preimages of <A>elm</A> under <A>map</A> or
## <K>fail</K>, the latter if and only if <A>elm</A>
## has no preimages under <A>map</A>.
## <P/>
## Anything may happen if <A>elm</A> is not an element of the range of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PreImagesRepresentative",
[ IsGeneralMapping, IsObject ] );
#############################################################################
##
#O PreImagesSet( <map>, <elms> )
##
## <#GAPDoc Label="PreImagesSet">
## <ManSection>
## <Oper Name="PreImagesSet" Arg='map, elms'/>
##
## <Description>
## If <A>elms</A> is a subset of the range of the general mapping <A>map</A>
## then <Ref Func="PreImagesSet"/> returns the set of all preimages of
## <A>elms</A> under <A>map</A>.
## <P/>
## Anything may happen if <A>elms</A> is not a subset of the range of
## <A>map</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PreImagesSet", [ IsGeneralMapping, IsCollection ] );
#############################################################################
##
#F PreImage( <map> ) . . set of preimages of the range of a general mapping
#F PreImage( <map>, <elm> ) . unique preimage of an elm under a gen.mapping
#F PreImage(<map>, <coll>) set of preimages of a coll. under a gen. mapping
##
## <#GAPDoc Label="PreImage">
## <ManSection>
## <Heading>PreImage</Heading>
## <Func Name="PreImage" Arg='map'
## Label="set of preimages of the range of a general mapping"/>
## <Func Name="PreImage" Arg='map, elm'
## Label="unique preimage of an element under a general mapping"/>
## <Func Name="PreImage" Arg='map, coll'
## Label="set of preimages of a collection under a general mapping"/>
##
## <Description>
## <C>PreImage( <A>map</A> )</C> is the preimage of the general mapping
## <A>map</A>, i.e., the subset of elements of the source of <A>map</A>
## that actually have values under <A>map</A>.
## Note that in this case the argument may also be non-injective or
## non-surjective.
## <P/>
## <C>PreImage( <A>map</A>, <A>elm</A> )</C> is the preimage of the element
## <A>elm</A> of the range of the injective and surjective mapping
## <A>map</A> under <A>map</A>, i.e., the unique element of the source
## which is mapped under <A>map</A> to <A>elm</A>.
## Note that <A>map</A> must be injective and surjective
## (see <Ref Func="PreImages" Label="set of preimages of the range of a general mapping"/>).
## <P/>
## <C>PreImage( <A>map</A>, <A>coll</A> )</C> is the preimage of the subset
## <A>coll</A> of the range of the general mapping <A>map</A> under
## <A>map</A>, i.e., the subset of the source which is mapped under
## <A>map</A> to elements of <A>coll</A>. <A>coll</A> may be a proper set
## or a domain.
## The result will be either a proper set or a domain.
## Note that in this case <A>map</A> may also be non-injective or
## non-surjective.
## (If <A>coll</A> and the result are lists then the positions of
## entries do in general <E>not</E> correspond.)
## <P/>
## <Ref Func="PreImage" Label="set of preimages of the range of a general mapping"/>
## delegates to <Ref Func="PreImagesRange"/> when
## called with one argument,
## and to <Ref Func="PreImageElm"/> resp. <Ref Func="PreImagesSet"/> when
## called with two arguments.
## <P/>
## If the second argument is not an element or a subset of the range of
## the first argument, an error is signalled.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PreImage" );
#############################################################################
##
#F PreImages( <map> ) . . . set of preimages of the range of a gen. mapping
#F PreImages(<map>,<elm>) . set of preimages of an elm under a gen. mapping
#F PreImages(<map>,<coll>) set of preimages of a coll. under a gen. mapping
##
## <#GAPDoc Label="PreImages">
## <ManSection>
## <Heading>PreImages</Heading>
## <Func Name="PreImages" Arg='map'
## Label="set of preimages of the range of a general mapping"/>
## <Func Name="PreImages" Arg='map, elm'
## Label="set of preimages of an elm under a general mapping"/>
## <Func Name="PreImages" Arg='map, coll'
## Label="set of preimages of a collection under a general mapping"/>
##
## <Description>
## <C>PreImages( <A>map</A> )</C> is the preimage of the general mapping
## <A>map</A>, i.e., the subset of elements of the source of <A>map</A>
## that have actually values under <A>map</A>.
## <P/>
## <C>PreImages( <A>map</A>, <A>elm</A> )</C> is the set of preimages of the
## element <A>elm</A> of the range of the general mapping <A>map</A> under
## <A>map</A>, i.e., the set of elements of the source which <A>map</A> maps
## to <A>elm</A>.
## <P/>
## <C>PreImages( <A>map</A>, <A>coll</A> )</C> is the set of images of the
## subset <A>coll</A> of the range of the general mapping <A>map</A> under
## <A>map</A>, i.e., the subset of the source which <A>map</A> maps to
## elements of <A>coll</A>.
## <A>coll</A> may be a proper set or a domain.
## The result will be either a proper set or a domain.
## (If <A>coll</A> and the result are lists then the positions of
## entries do in general <E>not</E> correspond.)
## <P/>
## <Ref Func="PreImages" Label="set of preimages of the range of a general mapping"/>
## delegates to <Ref Func="PreImagesRange"/> when
## called with one argument,
## and to <Ref Func="PreImagesElm"/> resp. <Ref Func="PreImagesSet"/> when
## called with two arguments.
## <P/>
## If the second argument is not an element or a subset of the range of
## the first argument, an error is signalled.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PreImages" );
#############################################################################
##
#O CompositionMapping2(<map2>,<map1>) . . . composition of general mappings
#F CompositionMapping2General(<map2>,<map1>)
##
## <#GAPDoc Label="CompositionMapping2">
## <ManSection>
## <Oper Name="CompositionMapping2" Arg='map2, map1'/>
## <Func Name="CompositionMapping2General" Arg='map2, map1'/>
##
## <Description>
## <Ref Func="CompositionMapping2"/> returns the composition of <A>map2</A>
## and <A>map1</A>,
## this is the general mapping that maps an element first under <A>map1</A>,
## and then maps the images under <A>map2</A>.
## <P/>
## (Note the reverse ordering of arguments in the composition via
## the multiplication <Ref Func="\*"/>.
## <P/>
## <Ref Func="CompositionMapping2General"/> is the method that forms a
## composite mapping with two constituent mappings.
## (This is used in some algorithms.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CompositionMapping2",
[ IsGeneralMapping, IsGeneralMapping ] );
DeclareGlobalFunction("CompositionMapping2General");
#############################################################################
##
#F CompositionMapping( <map1>, <map2>, ... ) . . . . composition of mappings
##
## <#GAPDoc Label="CompositionMapping">
## <ManSection>
## <Func Name="CompositionMapping" Arg='map1, map2, ...'/>
##
## <Description>
## <Ref Func="CompositionMapping"/> allows one to compose arbitrarily many
## general mappings,
## and delegates each step to <Ref Func="CompositionMapping2"/>.
## <P/>
## Additionally, the properties <Ref Func="IsInjective"/> and
## <Ref Func="IsSingleValued"/> are maintained;
## if the source of the <M>i+1</M>-th general mapping is identical to
## the range of the <M>i</M>-th general mapping,
## also <Ref Func="IsTotal"/> and <Ref Func="IsSurjective"/> are maintained.
## (So one should not call <Ref Func="CompositionMapping2"/> directly
## if one wants to maintain these properties.)
## <P/>
## Depending on the types of <A>map1</A> and <A>map2</A>,
## the returned mapping might be constructed completely new (for example by
## giving domain generators and their images, this is for example the case
## if both mappings preserve the same algebraic structures and &GAP; can
## decompose elements of the source of <A>map2</A> into generators) or as an
## (iterated) composition
## (see <Ref Func="IsCompositionMappingRep"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CompositionMapping" );
#############################################################################
##
#R IsCompositionMappingRep( <map> )
##
## <#GAPDoc Label="IsCompositionMappingRep">
## <ManSection>
## <Filt Name="IsCompositionMappingRep" Arg='map' Type='Representation'/>
##
## <Description>
## Mappings in this representation are stored as composition of two
## mappings, (pre)images of elements are computed in a two-step process.
## The constituent mappings of the composition can be obtained via
## <Ref Func="ConstituentsCompositionMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsCompositionMappingRep",
IsGeneralMapping and IsAttributeStoringRep, [ "map1", "map2" ] );
#############################################################################
##
#F ConstituentsCompositionMapping( <map> )
##
## <#GAPDoc Label="ConstituentsCompositionMapping">
## <ManSection>
## <Func Name="ConstituentsCompositionMapping" Arg='map'/>
##
## <Description>
## If <A>map</A> is stored in the representation
## <Ref Func="IsCompositionMappingRep"/> as composition of two mappings
## <A>map1</A> and <A>map2</A>, this function returns the
## two constituent mappings in a list <C>[ <A>map1</A>, <A>map2</A> ]</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConstituentsCompositionMapping" );
#############################################################################
##
#O ZeroMapping( <S>, <R> ) . . . . . . . . . . zero mapping from <S> to <R>
##
## <#GAPDoc Label="ZeroMapping">
## <ManSection>
## <Oper Name="ZeroMapping" Arg='S, R'/>
##
## <Description>
## A zero mapping is a total general mapping that maps each element of its
## source to the zero element of its range.
## <P/>
## (Each mapping with empty source is a zero mapping.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ZeroMapping", [ IsCollection, IsCollection ] );
#############################################################################
##
#O RestrictedMapping( <map>, <subdom> )
##
## <#GAPDoc Label="RestrictedMapping">
## <ManSection>
## <Oper Name="RestrictedMapping" Arg='map, subdom'/>
##
## <Description>
## If <A>subdom</A> is a subdomain of the source of the general mapping
## <A>map</A>,
## this operation returns the restriction of <A>map</A> to <A>subdom</A>.
## <!-- The general concept of restricted general mappings still missing.-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RestrictedMapping", [ IsGeneralMapping, IsDomain ] );
#############################################################################
##
#R IsGeneralRestrictedMappingRep( <map> )
##
## Mappings in this representation are stored as wrapper object, containing
## the original map but new source and range.
##
DeclareRepresentation( "IsGeneralRestrictedMappingRep",
IsGeneralMapping and IsAttributeStoringRep, [ "map" ] );
#############################################################################
##
#F GeneralRestrictedMapping( <map>, <source>, <range> )
##
## <C>GeneralRestrictedMapping</C> allows one to restrict <source> and
## <range> for an existing mapping, for example enforcing injectivity or
## surjectivity this way.
##
DeclareGlobalFunction( "GeneralRestrictedMapping" );
#############################################################################
##
#O Embedding( <S>, <T> ) . . . . . . . embedding of one domain into another
#O Embedding( <S>, <i> )
##
## <#GAPDoc Label="Embedding">
## <ManSection>
## <Heading>Embedding</Heading>
## <Oper Name="Embedding" Arg='S, T' Label="for two domains"/>
## <Oper Name="Embedding" Arg='S, i'
## Label="for a domain and a positive integer"/>
##
## <Description>
## returns the embedding of the domain <A>S</A> in the domain <A>T</A>,
## or in the second form, some domain indexed by the positive integer
## <A>i</A>.
## The precise natures of the various methods are described elsewhere:
## for Lie algebras, see <Ref Func="LieFamily"/>; for group products,
## see <Ref Sect="Embeddings and Projections for Group Products"/>
## for a general description, or for examples
## see <Ref Sect="Direct Products"/> for direct products,
## <Ref Sect="Semidirect Products"/> for semidirect products,
## or <Ref Sect="Wreath Products"/> for wreath products; or for
## magma rings
## see <Ref Sect="Natural Embeddings related to Magma Rings"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Embedding", [ IsDomain, IsObject ] );
#############################################################################
##
#O Projection( <S>, <T> ) . . . . . . projection of one domain onto another
#O Projection( <S>, <i> )
#O Projection( <S> )
##
## <#GAPDoc Label="Projection">
## <ManSection>
## <Heading>Projection</Heading>
## <Oper Name="Projection" Arg='S, T' Label="for two domains"/>
## <Oper Name="Projection" Arg='S, i'
## Label="for a domain and a positive integer"/>
## <Oper Name="Projection" Arg='S' Label="for a domain"/>
##
## <Description>
## returns the projection of the domain <A>S</A> onto the domain <A>T</A>,
## or in the second form, some domain indexed by the positive integer
## <A>i</A>,
## or in the third form some natural quotient domain of <A>S</A>.
## Various methods are defined for group products;
## see <Ref Sect="Embeddings and Projections for Group Products"/> for
## a general description,
## or for examples see <Ref Sect="Direct Products"/> for direct
## products, <Ref Sect="Semidirect Products"/> for semidirect products,
## <Ref Sect="Subdirect Products"/> for subdirect products,
## or <Ref Sect="Wreath Products"/> for wreath products.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Projection", [ IsDomain, IsObject ] );
#############################################################################
##
#F GeneralMappingByElements( <S>, <R>, <elms> )
##
## <#GAPDoc Label="GeneralMappingByElements">
## <ManSection>
## <Func Name="GeneralMappingByElements" Arg='S, R, elms'/>
##
## <Description>
## is the general mapping with source <A>S</A> and range <A>R</A>,
## and with underlying relation consisting of the collection <A>elms</A>
## of direct product elements.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GeneralMappingByElements" );
#############################################################################
##
#F MappingByFunction( <S>, <R>, <fun>[, <invfun>] )
#F MappingByFunction( <S>, <R>, <fun>, `false', <prefun> )
##
## <#GAPDoc Label="MappingByFunction">
## <ManSection>
## <Heading>MappingByFunction</Heading>
## <Func Name="MappingByFunction" Arg='S, R, fun[, invfun]'
## Label="by function (and inverse function) between two domains"/>
## <Func Name="MappingByFunction" Arg='S, R, fun, false, prefun'
## Label="by function and function that computes one preimage"/>
##
## <Description>
## <Ref Func="MappingByFunction" Label="by function (and inverse function) between two domains"/>
## returns a mapping <C>map</C> with source
## <A>S</A> and range <A>R</A>,
## such that each element <M>s</M> of <A>S</A> is mapped to the element
## <A>fun</A><M>( s )</M>, where <A>fun</A> is a &GAP; function.
## <P/>
## If the argument <A>invfun</A> is bound then <C>map</C> is a bijection
## between <A>S</A> and <A>R</A>, and the preimage of each element <M>r</M>
## of <A>R</A> is given by <A>invfun</A><M>( r )</M>,
## where <A>invfun</A> is a &GAP; function.
## <P/>
## If five arguments are given and the fourth argument is <K>false</K> then
## the &GAP; function <A>prefun</A> can be used to compute a single preimage
## also if <C>map</C> is not bijective.
## <!-- what is <A>prefun</A> expected to return for <A>r</A> outside the image of <A>map</A>-->
## <!-- if <A>map</A> is not surjective?-->
## <!-- or must <A>map</A> be surjective in this case?-->
## <P/>
## The mapping returned by
## <Ref Func="MappingByFunction" Label="by function (and inverse function) between two domains"/> lies in the
## filter <Ref Func="IsNonSPGeneralMapping"/>,
## see <Ref Sect="Technical Matters Concerning General Mappings"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MappingByFunction" );
#############################################################################
##
#m IsBijective . . . . . . . . . . . . . . . . . . . . for identity mapping
##
InstallTrueMethod( IsBijective, IsGeneralMapping and IsOne );
#############################################################################
##
#m IsSingleValued . . . . . . . . . . . . . . . . . . . . for zero mapping
#m IsTotal . . . . . . . . . . . . . . . . . . . . . . . . for zero mapping
##
InstallTrueMethod( IsSingleValued, IsGeneralMapping and IsZero );
InstallTrueMethod( IsTotal, IsGeneralMapping and IsZero );
#############################################################################
##
#F CopyMappingAttributes( <from>, <to> )
##
## <ManSection>
## <Func Name="CopyMappingAttributes" Arg='from, to'/>
##
## <Description>
## Let <A>from</A> and <A>to</A> be two general mappings which are known to be equal.
## <C>CopyMappingAttributes</C> copies known mapping attributes from <A>from</A> to
## <A>to</A>. This is used in operations, such as
## <C>AsGroupGeneralMappingByImages</C>, that produce equal mappings in another
## representation.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CopyMappingAttributes" );
#############################################################################
##
#A MappingGeneratorsImages(<map>)
##
## <#GAPDoc Label="MappingGeneratorsImages">
## <ManSection>
## <Attr Name="MappingGeneratorsImages" Arg='map'/>
##
## <Description>
## This attribute contains a list of length 2, the first entry being a list
## of generators of the source of <A>map</A> and the second entry a list of
## their images. This attribute is used, for example, by
## <Ref Func="GroupHomomorphismByImages"/> to store generators and images.
## <!-- <C>MappingGeneratorsImages</C> is permitted to call -->
## <!-- <C>Source</C> and <C>ImagesRepresentative</C>. -->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MappingGeneratorsImages", IsGeneralMapping );
#############################################################################
##
#E
|