/usr/share/gap/lib/meataxe.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | #############################################################################
##
#W meataxe.gd GAP Library Derek Holt
#W Sarah Rees
#W Alexander Hulpke
##
##
#Y (C) 1998-2001 School Math. Sci., University of St Andrews, Scotland
##
## This file contains the declarations for the 'Smash'-MeatAxe modified for
## GAP4 and using the standard MeatAxe interface. It defines the MeatAxe
## SMTX.
##
#############################################################################
##
#F GModuleByMats(<mats>,<f>)
##
DeclareGlobalFunction("GModuleByMats");
#############################################################################
##
#F TrivialGModule ( g, F ) . . . trivial G-module
##
## g is a finite group, F a finite field, trivial smash G-module computed.
DeclareGlobalFunction("TrivialGModule");
#############################################################################
##
#F InducedGModule ( g, h, m ) . . . calculate an induced G-module
##
## h should be a subgroup of a finite group g, and m a smash
## GModule for h.
## The induced module for g is calculated.
DeclareGlobalFunction("InducedGModule");
#############################################################################
##
#F PermutationGModule ( g, F) . permutation module
##
## g is a permutation group, F a finite field.
## The corresponding permutation module is output.
DeclareGlobalFunction("PermutationGModule");
###############################################################################
##
#F TensorProductGModule ( m1, m2 ) . . tensor product of two G-modules
##
## TensorProductGModule calculates the tensor product of smash
## modules m1 and m2.
## They are assumed to be modules over the same algebra so, in particular,
## they should have the same number of generators.
##
DeclareGlobalFunction("TensorProductGModule");
###############################################################################
##
#F WedgeGModule ( module ) . . . . . wedge product of a G-module
##
## WedgeGModule calculates the wedge product of a G-module.
## That is the action on antisymmetrix tensors.
##
DeclareGlobalFunction("WedgeGModule");
###############################################################################
##
#F DualGModule ( module ) . . . . . dual of a G-module
##
## DualGModule calculates the dual of a G-module.
## The matrices of the module are inverted and transposed.
##
DeclareGlobalFunction("DualGModule");
###############################################################################
##
#F TestModulesFitTogether(m1,m2)
##
## Given two modules <m1> and <m2> this routine tests whether both have the
## same number of generators and are defined over the same field.
##
DeclareGlobalFunction("TestModulesFitTogether");
DeclareInfoClass("InfoMeatAxe");
DeclareInfoClass("InfoMtxHom");
SMTX:=rec(name:="The Smash MeatAxe");
MTX:=SMTX;
SMTX.Getter := function(string)
return function(module)
if not (IsBound(module.smashMeataxe) and
IsBound(module.smashMeataxe.(string))) then
return fail;
else
return module.smashMeataxe.(string);
fi;
end;
end;
|