This file is indexed.

/usr/share/gap/lib/mgmadj.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
#############################################################################
##
#W  mgmadj.gd                    GAP library                  Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains declarations for magmas with zero adjoined.
##

##  <#GAPDoc Label="IsMultiplicativeElementWithZero">
##  <ManSection>
##  <Filt Name="IsMultiplicativeElementWithZero" Arg='elt' Type='Category'/>
##  <Returns><K>true</K> or <K>false</K>.</Returns>
##  <Description>
##  This is the category of elements in a family which can be the operands of 
##  <C>*</C> (multiplication) and the operation 
##  <Ref Attr="MultiplicativeZero"/>.
##<Example>
##gap> S:=Semigroup(Transformation( [ 1, 1, 1 ] ));;
##gap> M:=MagmaWithZeroAdjoined(S);
##&lt;&lt;commutative transformation semigroup on 3 pts with 1 generator>
##  with 0 adjoined>
##gap> x:=Representative(M);
##&lt;semigroup with 0 adjoined elt: Transformation( [ 1, 1, 1 ] )>
##gap> IsMultiplicativeElementWithZero(x);
##true
##gap> MultiplicativeZeroOp(x);
##&lt;semigroup with 0 adjoined elt: 0>
##</Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>

DeclareCategory("IsMultiplicativeElementWithZero",IsMultiplicativeElement);
DeclareCategoryCollections("IsMultiplicativeElementWithZero");

##  <#GAPDoc Label="MultiplicativeZeroOp">
##  <ManSection>
##  <Oper Name="MultiplicativeZeroOp" Arg='elt'/>
##  <Returns>A multiplicative zero element.</Returns>
##  <Description>
##  for an element <A>elt</A> in the category 
##  <Ref Func="IsMultiplicativeElementWithZero"/>,
##  <C>MultiplicativeZeroOp</C> 
##  returns the element <M>z</M> in the family <M>F</M> of <A>elt</A>
##  with the property that <M>z * m = z = m * z</M> holds for all
##  <M>m \in F</M>, if such an element can be determined.
##  <P/>
##
##  Families of elements in the category
##  <Ref Func="IsMultiplicativeElementWithZero"/>
##  often arise from adjoining a new zero to an existing magma. 
##  See&nbsp;<Ref Attr="InjectionZeroMagma"/> or 
##  <Ref Func="MagmaWithZeroAdjoined"/> for details.
##<Example>
##gap> G:=AlternatingGroup(5);;
##gap> x:=Representative(MagmaWithZeroAdjoined(G));
##&lt;group with 0 adjoined elt: ()>
##gap> MultiplicativeZeroOp(x);
##&lt;group with 0 adjoined elt: 0></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>

DeclareOperation( "MultiplicativeZeroOp", [IsMultiplicativeElementWithZero] );

##  <#GAPDoc Label="MultiplicativeZero">
##  <ManSection>
##  <Attr Name="MultiplicativeZero" Arg='M'/>
##  <Oper Name="IsMultiplicativeZero" Arg='M, z'/>
##  <Description>
##  <C>MultiplicativeZero</C> returns the multiplicative zero of the magma
##  <A>M</A>  which is the element
##  <C>z</C> in <A>M</A> such that <C><A>z</A> *  <A>m</A> = <A>m</A> *
##  <A>z</A> = <A>z</A></C> for all <A>m</A> in <A>M</A>.<P/>
##
##  <C>IsMultiplicativeZero</C> returns <K>true</K> if the element <A>z</A> of
##  the magma <A>M</A> equals the multiplicative zero of <A>M</A>. 
##<Example>
##gap> S:=Semigroup( Transformation( [ 1, 1, 1 ] ), 
##> Transformation( [ 2, 3, 1 ] ) );
##&lt;transformation semigroup on 3 pts with 2 generators>
##gap> MultiplicativeZero(S);
##fail
##gap> S:=Semigroup( Transformation( [ 1, 1, 1 ] ), 
##> Transformation( [ 1, 3, 2 ] ) );
##&lt;transformation semigroup on 3 pts with 2 generators>
##gap> MultiplicativeZero(S);
##Transformation( [ 1, 1, 1 ] )</Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>

DeclareAttribute( "MultiplicativeZero", IsMultiplicativeElementWithZero );
DeclareOperation("IsMultiplicativeZero", [ IsMagma, IsMultiplicativeElement ] );

# the documentation for the functions below is in mgmadj.xml in doc/ref

DeclareRepresentation("IsMagmaWithZeroAdjoinedElementRep",
IsComponentObjectRep and IsMultiplicativeElementWithZero and
IsAttributeStoringRep, []);

DeclareCategory( "IsMagmaWithZeroAdjoined", IsMagma);
DeclareAttribute( "InjectionZeroMagma", IsMagma );
DeclareAttribute("MagmaWithZeroAdjoined", IsMultiplicativeElementWithZero and IsMagmaWithZeroAdjoinedElementRep);
DeclareAttribute("MagmaWithZeroAdjoined", IsMagma);
DeclareAttribute( "UnderlyingInjectionZeroMagma", IsMagmaWithZeroAdjoined);