This file is indexed.

/usr/share/gap/lib/morpheus.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
#############################################################################
##
#W  morpheus.gi                GAP library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file  contains declarations for Morpheus
##

#############################################################################
##
#V  MORPHEUSELMS . . . .  limit up to which size to store element lists
##
MORPHEUSELMS := 50000;

InstallMethod(Order,"for automorphisms",true,[IsGroupHomomorphism],0,
function(hom)
local map,phi,o,lo,i,start,img;
  o:=1;
  phi:=hom;
  map:=MappingGeneratorsImages(phi);
  i:=1;
  while i<=Length(map[1]) do
    lo:=1;
    start:=map[1][i];
    img:=map[2][i];
    while img<>start do
      img:=ImagesRepresentative(phi,img);
      lo:=lo+1;
      # do the bijectivity test only if high local order, then it does not
      # matter
      if lo=1000 and not IsBijective(hom) then
	Error("<hom> must be bijective");
      fi;
    od;
    if lo>1 then
      o:=o*lo;
      if i<Length(map[1]) then
	phi:=phi^lo;
	map:=MappingGeneratorsImages(phi);
        i:=0; # restart search, as generator set may have changed.
      fi;
    fi;
    i:=i+1;
  od;
  return o;
end);

#############################################################################
##
#M  AutomorphismDomain(<G>)
##
##  If <G> consists of automorphisms of <H>, this attribute returns <H>.
InstallMethod( AutomorphismDomain, "use source of one",true,
  [IsGroupOfAutomorphisms],0,
function(G)
  return Source(One(G));
end);

DeclareRepresentation("IsActionHomomorphismAutomGroup",
  IsActionHomomorphismByBase,["basepos"]);

#############################################################################
##
#M  IsGroupOfAutomorphisms(<G>)
##
InstallMethod( IsGroupOfAutomorphisms, "test generators and one",true,
  [IsGroup],0,
function(G)
local s;
  if IsGeneralMapping(One(G)) then
    s:=Source(One(G));
    if Range(One(G))=s and ForAll(GeneratorsOfGroup(G),
      g->IsGroupGeneralMapping(g) and IsSPGeneralMapping(g) and IsMapping(g)
         and IsInjective(g) and IsSurjective(g) and Source(g)=s
	 and Range(g)=s) then
      SetAutomorphismDomain(G,s);
      # imply finiteness
      if IsFinite(s) then
        SetIsFinite(G,true);
      fi;
      return true;
    fi;
  fi;
  return false;
end);

#############################################################################
##
#M  IsGroupOfAutomorphismsFiniteGroup(<G>)
##
InstallMethod( IsGroupOfAutomorphismsFiniteGroup,"default",true,
  [IsGroup],0,
  G->IsGroupOfAutomorphisms(G) and IsFinite(AutomorphismDomain(G)));

# Try to embed automorphisms into wreath product.
BindGlobal("AutomorphismWreathEmbedding",function(au,g)
local gens, inn,out, nonperm, syno, orb, orbi, perms, free, rep, i, maxl, gen,
      img, j, conj, sm, cen, n, w, emb, ge, no,reps,synom,ginn,oemb;

  gens:=GeneratorsOfGroup(g);
  if Size(Centre(g))>1 then
    return fail;
  fi;
  #sym:=SymmetricGroup(MovedPoints(g));
  #syno:=Normalizer(sym,g);

  inn:=Filtered(GeneratorsOfGroup(au),i->IsInnerAutomorphism(i));
  out:=Filtered(GeneratorsOfGroup(au),i->not IsInnerAutomorphism(i));
  nonperm:=Filtered(out,i->not IsConjugatorAutomorphism(i));
  syno:=g;
  #syno:=Group(List(Filtered(GeneratorsOfGroup(au),IsInnerAutomorphism),
#	 x->ConjugatorOfConjugatorIsomorphism(x)),One(g));
  for i in Filtered(out,IsConjugatorAutomorphism) do
    syno:=ClosureGroup(syno,ConjugatorOfConjugatorIsomorphism(i));
  od;
  #nonperm:=Filtered(out,i->not IsInnerAutomorphism(i));
  # enumerate cosets of subgroup of conjugator isomorphisms
  orb:=[IdentityMapping(g)];
  orbi:=[IdentityMapping(g)];
  perms:=List(nonperm,i->[]);
  free:=FreeGroup(Length(nonperm));
  rep:=[One(free)];
  i:=1;
  maxl:=NrMovedPoints(g);
  while i<=Length(orb) and Length(orb)<maxl do
    for w in [1..Length(nonperm)] do
      gen:=nonperm[w];
      img:=orb[i]*gen;
      j:=1;
      conj:=fail;
      while conj=fail and j<=Length(orb) do
	sm:=img*orbi[j];
	if IsConjugatorAutomorphism(sm) then
	  conj:=ConjugatorOfConjugatorIsomorphism(sm);
	else
	  j:=j+1;
	fi;
      od;
      #j:=First([1..Length(orb)],k->IsConjugatorAutomorphism(img*orbi[k]));
      if conj=fail then
	Add(orb,img);
	Add(orbi,InverseGeneralMapping(img));
	Add(rep,rep[i]*GeneratorsOfGroup(free)[w]);
	perms[w][i]:=Length(orb);
      else
	perms[w][i]:=j;
	if not conj in syno then
	  syno:=ClosureGroup(syno,conj);
	fi;
      fi;
    od;
    i:=i+1;
  od;

  cen:=Centralizer(syno,g);
  Info(InfoMorph,2,"|syno|=",Size(syno)," |cen|=",Size(cen));
  if Size(cen)>1 then
    w:=syno;
    syno:=ComplementClassesRepresentatives(syno,cen);
    if Length(syno)=0 then 
      return fail; # not unique permauts
    fi;
    syno:=syno[1];
    synom:=GroupHomomorphismByImagesNC(w,syno,
	    Concatenation(GeneratorsOfGroup(syno),GeneratorsOfGroup(cen)),
	    Concatenation(GeneratorsOfGroup(syno),List(GeneratorsOfGroup(cen),x->One(syno))));
  else
    synom:=IdentityMapping(syno);
  fi;

  # try wreath embedding
  if Length(orb)<maxl then
    Info(InfoMorph,1,Length(orb)," copies");
    perms:=List(perms,PermList);
    Info(InfoMorph,2,List(rep,i->MappedWord(i,GeneratorsOfGroup(free),perms)));
    n:=Length(orb);
    w:=WreathProduct(syno,SymmetricGroup(n));
    emb:=List(GeneratorsOfGroup(g),
	  i->Product(List([1..n],j->Image(Embedding(w,j),Image(synom,Image(orbi[j],i))))));
    ge:=Subgroup(w,emb);
    emb:=GroupHomomorphismByImagesNC(g,ge,GeneratorsOfGroup(g),emb);
    reps:=List(out,i->RepresentativeAction(w,GeneratorsOfGroup(ge),
      List(GeneratorsOfGroup(g),j->Image(emb,Image(i,j))),OnTuples));
    if not ForAll(reps,IsPerm) then
      return fail;
    fi;
    #no:=Normalizer(w,ge);
    #no:=ClosureGroup(ge,reps);
    ginn:=List(inn,ConjugatorOfConjugatorIsomorphism);
    no:=Group(List(ginn,i->Image(emb,i)), One(w));
    oemb:=emb;
    if Size(no)<Size(ge) then
      emb:=RestrictedMapping(emb,Group(ginn,()));
    fi;
    no:=ClosureGroup(no,reps);
    cen:=Centralizer(no,ge);
    if Size(no)/Size(cen)<Length(orb) then
      return fail;
    fi;

    if Size(cen)>1 then
      no:=ComplementClassesRepresentatives(no,cen);
      if Length(no)>0 then
	no:=no[1];
      else
	return fail;
      fi;
    fi;
    #
    #if Size(no)/Size(syno)<>Length(orb) then
    #  Error("wreath embedding failed");
    #fi;
    sm:=SmallerDegreePermutationRepresentation(ClosureGroup(ge,no));
    no:=Image(sm,no);
    if IsIdenticalObj(emb,oemb) then
      emb:=emb*sm;
      return [no,emb,emb,Image(emb,ginn)];
    else
      emb:=emb*sm;
      oemb:=oemb*sm;
      return [no,emb,oemb,Group(Image(oemb,ginn),One(w))];
    fi;
  fi;
  return fail;
end);

#############################################################################
##
#F  AssignNiceMonomorphismAutomorphismGroup(<autgrp>,<g>)
##
# try to find a small faithful action for an automorphism group
InstallGlobalFunction(AssignNiceMonomorphismAutomorphismGroup,function(au,g)
local hom, allinner, gens, c, ran, r, cen, img, dom, u, subs, orbs, cnt, br, bv, v, val, o, i, comb, best;

  hom:=fail;
  allinner:=HasIsAutomorphismGroup(au) and IsAutomorphismGroup(au);

  if not IsFinite(g) then
    Error("can't do!");

  elif IsAbelian(g) then

    SetIsFinite(au,true);
    gens:=IndependentGeneratorsOfAbelianGroup(g);
    c:=[];
    for i in gens do
      c:=Union(c,Orbit(au,i));
    od;
    hom:=NiceMonomorphismAutomGroup(au,c,gens);

  elif Size(Centre(g))=1 and IsPermGroup(g) then
    # if no centre, try to use exiting permrep
    if ForAll(GeneratorsOfGroup(au),IsConjugatorAutomorphism) then
      ran:= Group( List( GeneratorsOfGroup( au ),
			ConjugatorOfConjugatorIsomorphism ),
		  One( g ) );
      Info(InfoMorph,1,"All automorphisms are conjugator");
      Size(ran); #enforce size calculation

      # if `ran' has a centralizing bit, we're still out of luck.
      # TODO: try whether there is a centralizer complement into which we
      # could go.

      if Size(Centralizer(ran,g))=1 then
	r:=ran; # the group of conjugating elements so far
	cen:=TrivialSubgroup(r);

	hom:=GroupHomomorphismByFunction(au,ran,
	  function(auto)
	    if not IsConjugatorAutomorphism(auto) then
	      return fail;
	    fi;
	    img:=ConjugatorOfConjugatorIsomorphism( auto );
	    if not img in ran then
	      # There is still something centralizing left.
	      if not img in r then 
		# get the cenralizing bit
		r:=ClosureGroup(r,img);
		cen:=Centralizer(r,g);
	      fi;
	      # get the right coset element
	      img:=First(List(Enumerator(cen),i->i*img),i->i in ran);
	    fi;
	    return img;
	  end,
	  function(elm)
	    return ConjugatorAutomorphismNC( g, elm );
	  end);
	SetIsGroupHomomorphism(hom,true);
	SetRange( hom,ran );
	SetIsBijective(hom,true);
      fi;
    else
      # permrep does not extend. Try larger permrep.
      img:=AutomorphismWreathEmbedding(au,g);
      if img<>fail then
	Info(InfoMorph,1,"AWE succeeds");
	# make a hom from auts to perm group
	ran:=img[4];
	r:=List(GeneratorsOfGroup(g),i->Image(img[3],i));
	hom:=GroupHomomorphismByFunction(au,img[1],
          function(auto)
	    if IsConjugatorAutomorphism(auto) and
	      ConjugatorOfConjugatorIsomorphism(auto) in Source(img[2]) then
	      return Image(img[2],ConjugatorOfConjugatorIsomorphism(auto));
	    fi;
	    return RepresentativeAction(img[1],r,
	             List(GeneratorsOfGroup(g),i->Image(img[3],Image(auto,i))),OnTuples);
	  end,
	  function(perm)
	    if perm in ran then
	      return ConjugatorAutomorphismNC(g,
	               PreImagesRepresentative(img[2],perm));
	    fi;
	    return GroupHomomorphismByImagesNC(g,g,GeneratorsOfGroup(g),
	             List(r,i->PreImagesRepresentative(img[3],i^perm)));
	  end);

      elif not IsAbelian(Socle(g)) and IsSimpleGroup(Socle(g)) then
	Info(InfoMorph,1,"Try ARG");
	img:=AutomorphismRepresentingGroup(g,GeneratorsOfGroup(au));
	# make a hom from auts to perm group
	ran:=Image(img[2],g);
	r:=List(GeneratorsOfGroup(g),i->Image(img[2],i));
	hom:=GroupHomomorphismByFunction(au,img[1],
          function(auto)
	    if IsInnerAutomorphism(auto) then
	      return Image(img[2],ConjugatorOfConjugatorIsomorphism(auto));
	    fi;
	    return RepresentativeAction(img[1],r,
	             List(GeneratorsOfGroup(g),i->Image(img[2],Image(auto,i))));
	  end,
	  function(perm)
	    if perm in ran then
	      return ConjugatorAutomorphismNC(g,
	               PreImagesRepresentative(img[2],perm));
	    fi;
	    return GroupHomomorphismByImagesNC(g,g,GeneratorsOfGroup(g),
	             List(r,i->PreImagesRepresentative(img[2],i^perm)));
	  end);
      fi;
    fi;
  fi;

  if hom=fail then
    Info(InfoMorph,1,"General Case");
    SetIsFinite(au,true);

    # general case: compute small domain
    gens:=[];
    dom:=[];
    u:=TrivialSubgroup(g);
    subs:=[];
    orbs:=[];
    while Size(u)<Size(g) do
      # find a reasonable element
      cnt:=0;
      br:=false;
      bv:=0;
      if HasConjugacyClasses(g) then
        for r in ConjugacyClasses(g) do
	  if IsPrimePowerInt(Order(Representative(r))) and
	      not Representative(r) in  u then
	    v:=ClosureGroup(u,Representative(r));
	    if allinner then
	      val:=Size(Centralizer(r))*Size(NormalClosure(g,v));
	    else
	      val:=Size(Centralizer(r))*Size(v);
	    fi;
	    if val>bv then
	      br:=Representative(r);
	      bv:=val;
	    fi;
	  fi;
	od;
      else
	repeat
	  cnt:=cnt+1;
	  repeat
	    r:=Random(g);
	  until not r in u;
	  # force prime power order
	  if not IsPrimePowerInt(Order(r)) then
	    v:=List(Collected(Factors(Order(r))),x->r^(x[1]^x[2]));
	    r:=First(v,x->not x in u); # if all are in u, r would be as well
	  fi;

	  v:=ClosureGroup(u,r);
	  if allinner then
	    val:=Size(Centralizer(g,r))*Size(NormalClosure(g,v));
	  else
	    val:=Size(Centralizer(g,r))*Size(v);
	  fi;
	  if val>bv then
	    br:=r;
	    bv:=val;
	  fi;
	until bv>2^cnt;
      fi;
      r:=br;

      if allinner then
	u:=NormalClosure(g,ClosureGroup(u,r));
      else
	u:=ClosureGroup(u,r);
      fi;

      #calculate orbit and closure
      o:=Orbit(au,r);
      v:=TrivialSubgroup(g);
      i:=1;
      while i<=Length(o) do
	if not o[i] in v then
          if allinner then
	    v:=NormalClosure(g,ClosureGroup(v,o[i]));
	  else
	    v:=ClosureGroup(v,o[i]);
	  fi;
	  if Size(v)=Size(g) then
	    i:=Length(o);
	  fi;
	fi;
	i:=i+1;
      od;
      u:=ClosureGroup(u,v);

      i:=1;
      while Length(o)>0 and i<=Length(subs) do
	if IsSubset(subs[i],v) then
	  o:=[];
	elif IsSubset(v,subs[i]) then
	  subs[i]:=v;
	  orbs[i]:=o;
	  gens[i]:=r;
	  o:=[];
	fi;
	i:=i+1;
      od;
      if Length(o)>0 then
	Add(subs,v);
	Add(orbs,o);
	Add(gens,r);
      fi;
    od;

    # now find the smallest subset of domains
    comb:=Filtered(Combinations([1..Length(subs)]),i->Length(i)>0);
    bv:=infinity;
    for i in comb do
      val:=Sum(List(orbs{i},Length));
      if val<bv then
	v:=subs[i[1]];
	for r in [2..Length(i)] do
	  v:=ClosureGroup(v,subs[i[r]]);
	od;
	if Size(v)=Size(g) then
	  best:=i;
	  bv:=val;
	fi;
      fi;
    od;
    gens:=gens{best};
    dom:=Union(orbs{best});
    Unbind(orbs);

    u:=SubgroupNC(g,gens);
    while Size(u)<Size(g) do
      repeat
	r:=Random(dom);
      until not r in u;
      Add(gens,r);
      u:=ClosureSubgroupNC(u,r);
    od;
    Info(InfoMorph,1,"Found generating set of ",Length(gens)," elements",
         List(gens,Order));
    hom:=NiceMonomorphismAutomGroup(au,dom,gens);

  fi;

  SetFilterObj(hom,IsNiceMonomorphism);
  SetNiceMonomorphism(au,hom);
  SetIsHandledByNiceMonomorphism(au,true);
end);

#############################################################################
##
#F  NiceMonomorphismAutomGroup
##
InstallGlobalFunction(NiceMonomorphismAutomGroup,
function(aut,elms,elmsgens)
local xset,fam,hom;
  One(aut); # to avoid infinite recursion once the niceo is set

  elmsgens:=Filtered(elmsgens,i->i in elms); # safety feature
  #if Size(Group(elmsgens))<>Size(Source(One(aut))) then Error("holler1"); fi;
  xset:=ExternalSet(aut,elms);
  SetBaseOfGroup(xset,elmsgens);
  fam := GeneralMappingsFamily( ElementsFamily( FamilyObj( aut ) ),
				PermutationsFamily );
  hom := rec(  );
  hom:=Objectify(NewType(fam,
		IsActionHomomorphismAutomGroup and IsSurjective ),hom);
  SetIsInjective(hom,true);
  SetUnderlyingExternalSet( hom, xset );
  hom!.basepos:=List(elmsgens,i->Position(elms,i));
  SetRange( hom, Image( hom ) );
  Setter(SurjectiveActionHomomorphismAttr)(xset,hom);
  Setter(IsomorphismPermGroup)(aut,ActionHomomorphism(xset,"surjective"));
  hom:=ActionHomomorphism(xset,"surjective");
  SetFilterObj(hom,IsNiceMonomorphism);
  return hom;

end);

#############################################################################
##
#M  PreImagesRepresentative   for OpHomAutomGrp
##
InstallMethod(PreImagesRepresentative,"AutomGroup Niceomorphism",
  FamRangeEqFamElm,[IsActionHomomorphismAutomGroup,IsPerm],0,
function(hom,elm)
local xset,g,imgs;
  xset:= UnderlyingExternalSet( hom );
  g:=Source(One(ActingDomain(xset)));
  imgs:=OnTuples(hom!.basepos,elm);
  imgs:=Enumerator(xset){imgs};
  #if g<>Group(BaseOfGroup(xset)) then Error("holler"); fi;
  elm:=GroupHomomorphismByImagesNC(g,g,BaseOfGroup(xset),imgs);
  SetIsBijective(elm,true);
  return elm;
end);


#############################################################################
##
#F  MorFroWords(<gens>) . . . . . . create some pseudo-random words in <gens>
##                                                featuring the MeatAxe's FRO
InstallGlobalFunction(MorFroWords,function(gens)
local list,a,b,ab,i;
  list:=[];
  ab:=gens[1];
  for i in [2..Length(gens)] do
    a:=ab;
    b:=gens[i];
    ab:=a*b;
    list:=Concatenation(list,
	 [ab,ab^2*b,ab^3*b,ab^4*b,ab^2*b*ab^3*b,ab^5*b,ab^2*b*ab^3*b*ab*b,
	 ab*(ab*b)^2*ab^3*b,a*b^4*a,ab*a^3*b]);
  od;
  return list;
end);


#############################################################################
##
#F  MorRatClasses(<G>) . . . . . . . . . . . local rationalization of classes
##
InstallGlobalFunction(MorRatClasses,function(GR)
local r,c,u,j,i;
  Info(InfoMorph,2,"RationalizeClasses");
  r:=[];
  for c in RationalClasses(GR) do
    u:=Subgroup(GR,[Representative(c)]);
    j:=DecomposedRationalClass(c);
    Add(r,rec(representative:=u,
		class:=j[1],
		classes:=j,
		size:=Size(c)));
  od;

  for i in r do
    i.size:=Sum(i.classes,Size);
  od;
  return r;
end);

#############################################################################
##
#F  MorMaxFusClasses(<l>) . .  maximal possible morphism fusion of classlists
##
InstallGlobalFunction(MorMaxFusClasses,function(r)
local i,j,flag,cl;
  # cl is the maximal fusion among the rational classes.
  cl:=[]; 
  for i in r do
    j:=0;
    flag:=true;
    while flag and j<Length(cl) do
      j:=j+1;
      flag:=not(Size(i.class)=Size(cl[j][1].class) and
		  i.size=cl[j][1].size and
		  Size(i.representative)=Size(cl[j][1].representative));
    od;
    if flag then
      Add(cl,[i]);
    else
      Add(cl[j],i);
    fi;
  od;

  # sort classes by size
  Sort(cl,function(a,b) return
    Sum(a,i->i.size)
      <Sum(b,i->i.size);end);
  return cl;
end);

#############################################################################
##
#F  SomeVerbalSubgroups
##  
## correspond simultaneously some verbal subgroups in g and h
BindGlobal("SomeVerbalSubgroups",function(g,h)
local l,m,i,j,cg,ch,pg;
  l:=[g];
  m:=[h];
  i:=1;
  while i<=Length(l) do
    for j in [1..i] do
      cg:=CommutatorSubgroup(l[i],l[j]);
      ch:=CommutatorSubgroup(m[i],m[j]);
      pg:=Position(l,cg);
      if pg=fail then
        Add(l,cg);
	Add(m,ch);
      else
        while m[pg]<>ch do
	  pg:=Position(l,cg,pg+1);
	  if pg=fail then
	    Add(l,cg);
	    Add(m,ch);
	    pg:=Length(m);
	  fi;
        od;
      fi;
    od;
    i:=i+1;
  od;
  return [l,m];
end);

#############################################################################
##
#F  MorClassLoop(<range>,<classes>,<params>,<action>)  loop over classes list
##     to find generating sets or Iso/Automorphisms up to inner automorphisms
##  
##  classes is a list of records like the ones returned from
##  MorMaxFusClasses.
##
##  params is a record containing optional components:
##  gens  generators that are to be mapped
##  from  preimage group (that contains gens)
##  to    image group (as it might be smaller than 'range')
##  free  free generators
##  rels  some relations that hold in from, given as list [word,order]
##  dom   a set of elements on which automorphisms act faithful
##  aut   Subgroup of already known automorphisms
##  condition function that must return `true' on the homomorphism.
##
##  action is a number whose bit-representation indicates the action to be
##  taken:
##  1     homomorphism
##  2     injective
##  4     surjective
##  8     find all (in contrast to one)
##
MorClassOrbs:=function(G,C,R,D)
local i,cl,cls,rep,x,xp,p,b,g;
  i:=Index(G,C);
  if i>20000 or i<Size(D) then
    return List(DoubleCosetRepsAndSizes(G,C,D),j->j[1]);
  else
    if not IsBound(C!.conjclass) then
      cl:=[R];
      cls:=[R];
      rep:=[One(G)];
      i:=1;
      while i<=Length(cl) do
	for g in GeneratorsOfGroup(G) do
	  x:=cl[i]^g;
	  if not x in cls then
	    Add(cl,x);
	    AddSet(cls,x);
	    Add(rep,rep[i]*g);
	  fi;
	od;
	i:=i+1;
      od;
      SortParallel(cl,rep);
      C!.conjclass:=cl;
      C!.conjreps:=rep;
    fi;
    cl:=C!.conjclass;
    rep:=[];
    b:=BlistList([1..Length(cl)],[]);
    p:=1;
    repeat
      while p<=Length(cl) and b[p] do
	p:=p+1;
      od;
      if p<=Length(cl) then
	b[p]:=true;
	Add(rep,p);
	cls:=[cl[p]];
	for i in cls do
	  for g in GeneratorsOfGroup(D) do
	    x:=i^g;
	    xp:=PositionSorted(cl,x);
	    if not b[xp] then
	      Add(cls,x);
	      b[xp]:=true;
	    fi;
	  od;
	od;
      fi;
      p:=p+1;
    until p>Length(cl);

    return C!.conjreps{rep};
  fi;
end;

InstallGlobalFunction(MorClassLoop,function(range,clali,params,action)
local id,result,rig,dom,tall,tsur,tinj,thom,gens,free,rels,len,ind,cla,m,
      mp,cen,i,j,imgs,ok,size,l,hom,cenis,reps,repspows,sortrels,genums,wert,p,
      e,offset,pows,TestRels,pop,mfw,derhom,skip,cond,outerorder;

  len:=Length(clali);
  if ForAny(clali,i->Length(i)=0) then
    return []; # trivial case: no images for generator
  fi;

  id:=One(range);
  if IsBound(params.aut) then
    result:=params.aut;
    rig:=true;
    if IsBound(params.dom) then
      dom:=params.dom;
    else
      dom:=false;
    fi;
  else
    result:=[];
    rig:=false;
  fi;

  if IsBound(params.outerorder) then
    outerorder:=params.outerorder;
  else
    outerorder:=false;
  fi;


  # extra condition?
  if IsBound(params.condition) then
    cond:=params.condition;
  else
    cond:=fail;
  fi;

  tall:=action>7; # try all
  if tall then
    action:=action-8;
  fi;
  derhom:=fail;
  tsur:=action>3; # test surjective
  if tsur then
    size:=Size(params.to);
    action:=action-4;
    if Index(range,DerivedSubgroup(range))>1 then
      derhom:=NaturalHomomorphismByNormalSubgroup(range,DerivedSubgroup(range));
    fi;
  fi;
  tinj:=action>1; # test injective
  if tinj then
    action:=action-2;
  fi;
  thom:=action>0; # test homomorphism

  if IsBound(params.gens) then
    gens:=params.gens;
  fi;

  if IsBound(params.rels) then
    free:=params.free;
    rels:=params.rels;
    if Length(rels)=0 then
      rels:=false;
    fi;
  elif thom then
    free:=GeneratorsOfGroup(FreeGroup(Length(gens)));
    mfw:=MorFroWords(free);
    # get some more
    if Product(List(gens,Order))<2000 then
      for i in Cartesian(List(gens,i->[1..Order(i)])) do
	Add(mfw,Product(List([1..Length(gens)],z->free[z]^i[z])));
      od;
    fi;
    rels:=List(mfw,i->[i,Order(MappedWord(i,free,gens))]);
  else
    rels:=false;
  fi;

  if rels<>false then
    # sort the relators according to the generators they contain
    genums:=List(free,i->GeneratorSyllable(i,1));
    genums:=List([1..Length(genums)],i->Position(genums,i));
    sortrels:=List([1..len],i->[]);
    pows:=List([1..len],i->[]);
    for i in rels do
      l:=len;
      wert:=0;
      m:=[];
      for j in [1..NrSyllables(i[1])] do
        p:=genums[GeneratorSyllable(i[1],j)];
        e:=ExponentSyllable(i[1],j);
	Append(m,[p,e]); # modified extrep
        AddSet(pows[p],e);
	if p<len then
	  wert:=wert+2; # conjugation: 2 extra images
	  l:=Minimum(l,p);
	fi;
	wert:=wert+AbsInt(e);
      od;
      Add(sortrels[l],[m,i[2],i[2]*wert,[1,3..Length(m)-1],i[1]]);
    od;
    # now sort by the length of the relators
    for i in [1..len] do
      Sort(sortrels[i],function(x,y) return x[3]<y[3];end);
    od;
    offset:=1-Minimum(List(Filtered(pows,i->Length(i)>0),
                           i->i[1])); # smallest occuring index

    # test the relators at level tlev and set imgs
    TestRels:=function(tlev)
    local rel,k,j,p,start,gn,ex;

      if Length(sortrels[tlev])=0 then
	imgs:=List([tlev..len-1],i->reps[i]^(m[i][mp[i]]));
	imgs[Length(imgs)+1]:=reps[len];
        return true;
      fi;

      if IsPermGroup(range) then
        # test by tracing points
        for rel in sortrels[tlev] do
	  start:=1;
	  p:=start;
	  k:=0;
	  repeat
	    for j in rel[4] do
	      gn:=rel[1][j];
	      ex:=rel[1][j+1];
	      if gn=len then
	        p:=p^repspows[gn][ex+offset];
	      else
		p:=p/m[gn][mp[gn]];
	        p:=p^repspows[gn][ex+offset];
		p:=p^m[gn][mp[gn]];
	      fi;
	    od;
	    k:=k+1;
	  # until we have the power or we detected a smaller potential order.
	  until k>=rel[2] or (p=start and IsInt(rel[2]/k));
	  if p<>start then
	    return false;
	  fi;
	od;
      fi;

      imgs:=List([tlev..len-1],i->reps[i]^(m[i][mp[i]]));
      imgs[Length(imgs)+1]:=reps[len];

      if tinj then
	return ForAll(sortrels[tlev],i->i[2]=Order(MappedWord(i[5],
	                              free{[tlev..len]}, imgs)));
      else
	return ForAll(sortrels[tlev],
	              i->IsInt(i[2]/Order(MappedWord(i[5],
		                          free{[tlev..len]}, imgs))));
      fi;
      
    end;
  else
    TestRels:=x->true; # to satisfy the code below.
  fi;

  # backtrack over all classes in clali
  l:=ListWithIdenticalEntries(len,1);
  ind:=len;
  while ind>0 do
    ind:=len;
    Info(InfoMorph,3,"step ",l);
    # test class combination indicated by l:
    cla:=List([1..len],i->clali[i][l[i]]); 
    reps:=List(cla,Representative);
    skip:=false;
    if derhom<>fail then
      if not Size(Group(List(reps,i->Image(derhom,i))))=Size(Image(derhom)) then
#T The group `Image( derhom )' is abelian but initially does not know this;
#T shouldn't this be set?
#T Then computing the size on the l.h.s. may be sped up using `SubgroupNC'
#T w.r.t. the (abelian) group.
	skip:=true;
	Info(InfoMorph,3,"skipped");
      fi;
    fi;

    if not skip then
      if rels<>false and IsPermGroup(range) then
	# and precompute the powers
	repspows:=List([1..len],i->[]);
	for i in [1..len] do
	  for j in pows[i] do
	    repspows[i][j+offset]:=reps[i]^j;
	  od;
	od;
      fi;

      #cenis:=List(cla,i->Intersection(range,Centralizer(i)));
      # make sure we get new groups (we potentially add entries)
      cenis:=[];
      for i in cla do
	cen:=Intersection(range,Centralizer(i));
	if IsIdenticalObj(cen,Centralizer(i)) then
	  m:=Size(cen);
	  cen:=SubgroupNC(range,GeneratorsOfGroup(cen));
	  SetSize(cen,m);
	fi;
	Add(cenis,cen);
      od;

      # test, whether a gen.sys. can be taken from the classes in <cla>
      # candidates.  This is another backtrack
      m:=[];
      m[len]:=[id];
      # positions
      mp:=[];
      mp[len]:=1;
      mp[len+1]:=-1;
      # centralizers
      cen:=[];
      cen[len]:=cenis[len];
      cen[len+1]:=range; # just for the recursion
      i:=len-1;

      # set up the lists
      while i>0 do
	#m[i]:=List(DoubleCosetRepsAndSizes(range,cenis[i],cen[i+1]),j->j[1]);
	m[i]:=MorClassOrbs(range,cenis[i],reps[i],cen[i+1]);
	mp[i]:=1;

	pop:=true;
	while pop and i<=len do
	  pop:=false;
	  while mp[i]<=Length(m[i]) and TestRels(i)=false do
	    mp[i]:=mp[i]+1; #increment because of relations
	    Info(InfoMorph,4,"early break ",i);
	  od;
	  if i<=len and mp[i]>Length(m[i]) then
	    Info(InfoMorph,3,"early pop");
	    pop:=true;
	    i:=i+1;
	    if i<=len then
	      mp[i]:=mp[i]+1; #increment because of pop
	    fi;
	  fi;
	od;

	if pop then
	  i:=-99; # to drop out of outer loop
	elif i>1 then
	  cen[i]:=Centralizer(cen[i+1],reps[i]^(m[i][mp[i]]));
	fi;
	i:=i-1;
      od;

      if pop then
	Info(InfoMorph,3,"allpop");
	i:=len+2; # to avoid the following `while' loop
      else
	i:=1; 
	Info(InfoMorph,3,"loop");
      fi;

      while i<len do
	if rels=false or TestRels(1) then
	  if rels=false then
	    # otherwise the images are set by `TestRels' as a side effect.
	    imgs:=List([1..len-1],i->reps[i]^(m[i][mp[i]]));
	    imgs[len]:=reps[len];
	  fi;
	  Info(InfoMorph,4,"orders: ",List(imgs,Order));

	  # computing the size can be nasty. Thus try given relations first.
	  ok:=true;

	  if rels<>false then
	    if tinj then
	      ok:=ForAll(rels,i->i[2]=Order(MappedWord(i[1],free,imgs)));
	    else
	      ok:=ForAll(rels,i->IsInt(i[2]/Order(MappedWord(i[1],free,imgs))));
	    fi;
	  fi;

	  # check surjectivity
	  if tsur and ok then
	    ok:= Size( SubgroupNC( range, imgs ) ) = size;
	  fi;

	  if ok and thom then
	    Info(InfoMorph,3,"testing");
	    imgs:=GroupGeneralMappingByImagesNC(params.from,range,gens,imgs);
	    SetIsTotal(imgs,true);
	    if tsur then
	      SetIsSurjective(imgs,true);
	    fi;
	    ok:=IsSingleValued(imgs);
	    if ok and tinj then
	      ok:=IsInjective(imgs);
	    fi;
	  fi;

	  if ok and cond<>fail then
	    ok:=cond(imgs);
	  fi;
	  
	  if ok then
	    Info(InfoMorph,2,"found");
	    # do we want one or all?
	    if tall then
	      if rig then
		if not imgs in result then
		  result:= GroupByGenerators( Concatenation(
			      GeneratorsOfGroup( result ), [ imgs ] ),
			      One( result ) );
		  # note its niceo
		  hom:=NiceMonomorphismAutomGroup(result,dom,gens);
		  SetNiceMonomorphism(result,hom);
		  SetIsHandledByNiceMonomorphism(result,true);

		  Size(result);
		  Info(InfoMorph,2,"new ",Size(result));
		fi;
	      else
		Add(result,imgs);
		# can we deduce we got all?
		if outerorder<>false and Lcm(Concatenation([1],List(
		  Filtered(result,x->not IsInnerAutomorphism(x)),
		  x->First([2..outerorder],y->IsInnerAutomorphism(x^y)))))
		    =outerorder
		  then
		    Info(InfoMorph,1,"early break");
		    return result;
		fi;
	      fi;
	    else
	      return imgs;
	    fi;
	  fi;
	fi;

	mp[i]:=mp[i]+1;
	while i<=len and mp[i]>Length(m[i]) do
	  mp[i]:=1;
	  i:=i+1;
	  if i<=len then
	    mp[i]:=mp[i]+1;
	  fi;
	od;

	while i>1 and i<=len do
	  while i<=len and TestRels(i)=false do
	    Info(InfoMorph,4,"intermediate break ",i);
	    mp[i]:=mp[i]+1;
	    while i<=len and mp[i]>Length(m[i]) do
	      Info(InfoMorph,3,"intermediate pop ",i);
	      i:=i+1;
	      if i<=len then
		mp[i]:=mp[i]+1;
	      fi;
	    od;
	  od;

	  if i<=len then # i>len means we completely popped. This will then
			# also pop us out of both `while' loops.
	    cen[i]:=Centralizer(cen[i+1],reps[i]^(m[i][mp[i]]));
	    i:=i-1;
	    #m[i]:=List(DoubleCosetRepsAndSizes(range,cenis[i],cen[i+1]),j->j[1]);
	    m[i]:=MorClassOrbs(range,cenis[i],reps[i],cen[i+1]);
	    mp[i]:=1;

	  else
	    Info(InfoMorph,3,"allpop2");
	  fi;
	od;

      od;
    fi;

    # 'free for increment'
    l[ind]:=l[ind]+1;
    while ind>0 and l[ind]>Length(clali[ind]) do
      l[ind]:=1;
      ind:=ind-1;
      if ind>0 then
	l[ind]:=l[ind]+1;
      fi;
    od;
  od;

  return result;
end);


#############################################################################
##
#F  MorFindGeneratingSystem(<G>,<cl>) . .  find generating system with an few 
##                      as possible generators from the first classes in <cl>
##
InstallGlobalFunction(MorFindGeneratingSystem,function(arg)
local G,cl,lcl,len,comb,combc,com,a,cnt,s,alltwo;
  G:=arg[1];
  cl:=arg[2];
  Info(InfoMorph,1,"FindGenerators");
  # throw out the 1-Class
  cl:=Filtered(cl,i->Length(i)>1 or Size(i[1].representative)>1);
  alltwo:=Set(Factors(Size(G)))=[2];

  #create just a list of ordinary classes.
  lcl:=List(cl,i->Concatenation(List(i,j->j.classes)));
  len:=1;
  len:=Maximum(1,Length(MinimalGeneratingSet(
		    Image(IsomorphismPcGroup((G/DerivedSubgroup(G))))))-1);
  while true do
    len:=len+1;
    Info(InfoMorph,2,"Trying length ",len);
    # now search for <len>-generating systems
    comb:=UnorderedTuples([1..Length(lcl)],len); 
    combc:=List(comb,i->List(i,j->lcl[j]));

    # test all <comb>inations
    com:=0;
    while com<Length(comb) do
      com:=com+1;
      # don't try only order 2 generators unless its a 2-group
      if Set(List(Flat(combc[com]),i->Order(Representative(i))))<>[2] or
	alltwo then
	a:=MorClassLoop(G,combc[com],rec(to:=G),4);
	if Length(a)>0 then
	  return a;
	fi;
      fi;
    od;
  od;
end);

#############################################################################
##
#F  Morphium(<G>,<H>,<DoAuto>) . . . . . . . .Find isomorphisms between G and H
##       modulo inner automorphisms. DoAuto indicates whether all
## 	 automorphism are to be found
##       This function thus does the main combinatoric work for creating 
##       Iso- and Automorphisms.
##       It needs, that both groups are not cyclic.
##
InstallGlobalFunction(Morphium,function(G,H,DoAuto)
local len,combi,Gr,Gcl,Ggc,Hr,Hcl,bg,bpri,x,dat,
      gens,i,c,hom,free,elms,price,result,rels,inns,bcl,vsu;

  IsSolvableGroup(G); # force knowledge
  gens:=SmallGeneratingSet(G);
  len:=Length(gens);
  Gr:=MorRatClasses(G);
  Gcl:=MorMaxFusClasses(Gr);

  Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
  combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
  price:=Product(combi,i->Sum(i,Size));
  Info(InfoMorph,1,"generating system ",Sum(Flat(combi),Size),
       " of price:",price,"");

  if ((not HasMinimalGeneratingSet(G) and price/Size(G)>10000)
     or Sum(Flat(combi),Size)>Size(G)/10 or IsSolvableGroup(G)) 
     and ValueOption("nogensyssearch")<>true then
    if IsSolvableGroup(G) then
      gens:=IsomorphismPcGroup(G);
      gens:=List(MinimalGeneratingSet(Image(gens)),
                 i->PreImagesRepresentative(gens,i));
      Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
      combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
      bcl:=ShallowCopy(combi);
      Sort(bcl,function(a,b) return Sum(a,Size)<Sum(b,Size);end);
      bg:=gens;
      bpri:=Product(combi,i->Sum(i,Size));
      for i in [1..7*Length(gens)-12] do
	repeat
	  for c in [1..Length(gens)] do
	    if Random([1,2,3])<2 then
	      gens[c]:=Random(G);
	    else
	      x:=bcl[Random(Filtered([1,1,1,1,2,2,2,3,3,4],k->k<=Length(bcl)))];
	      gens[c]:=Random(Random(x));
	    fi;
	  od;
	until Index(G,SubgroupNC(G,gens))=1;
	Ggc:=List(gens,i->First(Gcl,
	          j->ForAny(j,j->ForAny(j.classes,k->i in k))));
	combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
	Append(bcl,combi);
	Sort(bcl,function(a,b) return Sum(a,Size)<Sum(b,Size);end);
	price:=Product(combi,i->Sum(i,Size));
	Info(InfoMorph,3,"generating system of price:",price,"");
	if price<bpri then
	  bpri:=price;
	  bg:=gens;
	fi;
      od;

      gens:=bg;
      
    else
      gens:=MorFindGeneratingSystem(G,Gcl);
    fi;

    Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
    combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
    price:=Product(combi,i->Sum(i,Size));
    Info(InfoMorph,1,"generating system of price:",price,"");
  fi;

  if not DoAuto then
    Hr:=MorRatClasses(H);
    Hcl:=MorMaxFusClasses(Hr);
  fi;

  vsu:=SomeVerbalSubgroups(G,H);
  if List(vsu[1],Size)<>List(vsu[2],Size) then
    # cannot be candidates
    return [];
  fi;

  # now test, whether it is worth, to compute a finer congruence
  # then ALSO COMPUTE NEW GEN SYST!
  # [...]

  if not DoAuto then
    combi:=[];
    for i in Ggc do
      c:=Filtered(Hcl,
	   j->Set(List(j,k->k.size))=Set(List(i,k->k.size))
		and Length(j[1].classes)=Length(i[1].classes) 
		and Size(j[1].class)=Size(i[1].class)
		and Size(j[1].representative)=Size(i[1].representative)
      # This test assumes maximal fusion among the rat.classes. If better
      # congruences are used, they MUST be checked here also!
	);
      if Length(c)<>1 then
	# Both groups cannot be isomorphic, since they lead to different 
	# congruences!
	Info(InfoMorph,2,"different congruences");
	return fail;
      else
	Add(combi,c[1]);
      fi;
    od;
    combi:=List(combi,i->Concatenation(List(i,i->i.classes)));
  fi;

  # filter by verbal subgroups
  for i in [1..Length(gens)] do
    c:=Filtered([1..Length(vsu[1])],j->gens[i] in vsu[1][j]);
    c:=Filtered(combi[i],k->
         c=Filtered([1..Length(vsu[2])],j->Representative(k) in vsu[2][j]));
    if Length(c)<Length(combi[i]) then
      Info(InfoMorph,1,"images improved by verbal subgroup:",
      Sum(combi[i],Size)," -> ",Sum(c,Size));
      combi[i]:=c;
    fi;
  od;

  # combi contains the classes, from which the
  # generators are taken.

  #free:=GeneratorsOfGroup(FreeGroup(Length(gens)));
  #rels:=MorFroWords(free);
  #rels:=List(rels,i->[i,Order(MappedWord(i,free,gens))]);
  #result:=rec(gens:=gens,from:=G,to:=H,free:=free,rels:=rels);
  result:=rec(gens:=gens,from:=G,to:=H);

  if DoAuto then

    inns:=List(GeneratorsOfGroup(G),i->InnerAutomorphism(G,i));
    if Sum(Flat(combi),Size)<=MORPHEUSELMS then
      elms:=[];
      for i in Flat(combi) do
        if not ForAny(elms,j->Representative(i)=Representative(j)) then
	  # avoid duplicate classes
	  Add(elms,i);
	fi;
      od;
      elms:=Union(List(elms,AsList));
      Info(InfoMorph,1,"permrep on elements: ",Length(elms));

      Assert(2,ForAll(GeneratorsOfGroup(G),i->ForAll(elms,j->j^i in elms)));
      result.dom:=elms;
      inns:= GroupByGenerators( inns, IdentityMapping( G ) );

      hom:=NiceMonomorphismAutomGroup(inns,elms,gens);
      SetNiceMonomorphism(inns,hom);
      SetIsHandledByNiceMonomorphism(inns,true);

      result.aut:=inns;
    else
      elms:=false;
    fi;

    # catch case of simple groups to get outer automorphism orders
    # automorphism suffices.
    if IsSimpleGroup(H) then
      dat:=DataAboutSimpleGroup(H);
      if IsBound(dat.fullAutGroup) then
	if dat.fullAutGroup[1]=1 then
	  # all automs are inner.
	  result:=rec(aut:=result.aut);
	else
	  result.outerorder:=dat.fullAutGroup[1];
	  result:=rec(aut:=MorClassLoop(H,combi,result,15));
	fi;
      fi;
    else
      result:=rec(aut:=MorClassLoop(H,combi,result,15));
    fi;

    if elms<>false then
      result.elms:=elms;
      result.elmsgens:=Filtered(gens,i->i<>One(G));
      inns:=SubgroupNC(result.aut,GeneratorsOfGroup(inns));
    fi;
    result.inner:=inns;
  else
    result:=MorClassLoop(H,combi,result,7);
  fi;

  return result;

end);

#############################################################################
##
#F  AutomorphismGroupAbelianGroup(<G>)
##
InstallGlobalFunction(AutomorphismGroupAbelianGroup,function(G)
local i,j,k,l,m,o,nl,nj,max,r,e,au,p,gens,offs;

  # trivial case
  if Size(G)=1 then
    au:= GroupByGenerators( [], IdentityMapping( G ) );
    i:=NiceMonomorphismAutomGroup(au,[One(G)],[One(G)]);
    SetNiceMonomorphism(au,i);
    SetIsHandledByNiceMonomorphism(au,true);
    SetIsAutomorphismGroup( au, true );
    SetIsFinite(au,true);
    return au;
  fi;

  # get standard generating system
  gens:=IndependentGeneratorsOfAbelianGroup(G);

  au:=[];
  # run by primes
  p:=Set(Factors(Size(G)));
  for i in p do
    l:=Filtered(gens,j->IsInt(Order(j)/i));
    nl:=Filtered(gens,i->not i in l);

    #sort by exponents
    o:=List(l,j->LogInt(Order(j),i));
    e:=[];
    for j in Set(o) do
      Add(e,[j,l{Filtered([1..Length(o)],k->o[k]=j)}]);
    od;

    # construct automorphisms by components
    for j in e do
      nj:=Concatenation(List(Filtered(e,i->i[1]<>j[1]),i->i[2]));
      r:=Length(j[2]);

      # the permutations and addition
      if r>1 then
	Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
	    #(1,2)
	    Concatenation(nl,nj,j[2]{[2]},j[2]{[1]},j[2]{[3..Length(j[2])]})));
	Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
	    #(1,..,n)
	    Concatenation(nl,nj,j[2]{[2..Length(j[2])]},j[2]{[1]})));
	#for k in [0..j[1]-1] do
        k:=0;
	  Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
	      #1->1+i^k*2
	      Concatenation(nl,nj,[j[2][1]*j[2][2]^(i^k)],
	                          j[2]{[2..Length(j[2])]})));
        #od;
      fi;
  
      # multiplications

      for k in List( Flat( GeneratorsPrimeResidues(i^j[1])!.generators ),
              Int )  do

	Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
	    #1->1^k
	    Concatenation(nl,nj,[j[2][1]^k],j[2]{[2..Length(j[2])]})));
      od;

    od;
    
    # the mixing ones
    for j in [1..Length(e)] do
      for k in [1..Length(e)] do
	if k<>j then
	  nj:=Concatenation(List(e{Difference([1..Length(e)],[j,k])},i->i[2]));
	  offs:=Maximum(0,e[k][1]-e[j][1]);
	  if Length(e[j][2])=1 and Length(e[k][2])=1 then
	    max:=Minimum(e[j][1],e[k][1])-1;
	  else
	    max:=0;
	  fi;
	  for m in [0..max] do
	    Add(au,GroupHomomorphismByImagesNC(G,G,
	       Concatenation(nl,nj,e[j][2],e[k][2]),
	       Concatenation(nl,nj,[e[j][2][1]*e[k][2][1]^(i^(offs+m))],
				    e[j][2]{[2..Length(e[j][2])]},e[k][2])));
	  od;
	fi;
      od;
    od;
  od;

  for i in au do
    SetIsBijective(i,true);
    j:=MappingGeneratorsImages(i);
    if j[1]<>j[2] then
      SetIsInnerAutomorphism(i,false);
    fi;
    SetFilterObj(i,IsMultiplicativeElementWithInverse);
  od;

  au:= GroupByGenerators( au, IdentityMapping( G ) );
  SetIsAutomorphismGroup(au,true);
  SetIsFinite(au,true);

  SetInnerAutomorphismsAutomorphismGroup(au,TrivialSubgroup(au));

  if IsFinite(G) then
    SetIsFinite(au,true);
    SetIsGroupOfAutomorphismsFiniteGroup(au,true);
  fi;

  return au;
end);

#############################################################################
##
#F  IsomorphismAbelianGroups(<G>)
##
InstallGlobalFunction(IsomorphismAbelianGroups,function(G,H)
local o,p,gens,hens;

  # get standard generating system
  gens:=IndependentGeneratorsOfAbelianGroup(G);
  gens:=ShallowCopy(gens);

  # get standard generating system
  hens:=IndependentGeneratorsOfAbelianGroup(H);
  hens:=ShallowCopy(hens);

  o:=List(gens,i->Order(i));
  p:=List(hens,i->Order(i));

  SortParallel(o,gens);
  SortParallel(p,hens);

  if o<>p then
    return fail;
  fi;

  o:=GroupHomomorphismByImagesNC(G,H,gens,hens);
  SetIsBijective(o,true);

  return o;
end);

BindGlobal("OuterAutomorphismGeneratorsSimple",function(G)
local d,id,H,iso,aut,auts,i,all,hom,field,dim,P,diag,mats,gens,gal;
  if not IsSimpleGroup(G) then
    return fail;
  fi;
  gens:=GeneratorsOfGroup(G);
  d:=DataAboutSimpleGroup(G);
  id:=d.idSimple;
  all:=false;
  if id.series="A" then
    if id.parameter=6 then
      # A6 is easy enough
      return fail;
    else
      H:=AlternatingGroup(id.parameter);
      if G=H then 
	iso:=IdentityMapping(G);
      else
	iso:=IsomorphismGroups(G,H);
      fi;
      aut:=GroupGeneralMappingByImages(G,G,gens,
	    List(gens,
	      x->PreImagesRepresentative(iso,Image(iso,x)^(1,2))));
      auts:=[aut];
      all:=true;
    fi;

  elif id.series in ["L","2A","C"] then
    hom:=EpimorphismFromClassical(G);
    if hom=fail then return fail;fi;
    field:=FieldOfMatrixGroup(Source(hom));
    dim:=DimensionOfMatrixGroup(Source(hom));
    auts:=[];
    if Size(field)>2 then
      gal:=GaloisGroup(field);
      # Diagonal automorphisms
      if id.series="L" then
        P:=GL(dim,field);
      elif id.series="2A" then
        P:=GU(dim,id.parameter[2]);
	#gal:=GaloisGroup(GF(GF(id.parameter[2]),2));
      elif id.series="C" then
	if IsEvenInt(Size(field)) then
	  P:=Source(hom);
	else
	  P:=List(One(Source(hom)),ShallowCopy);
	  for i in [1..Length(P)/2] do
	    P[i][i]:=PrimitiveRoot(field);
	  od;
	  P:=ImmutableMatrix(field,P);
	  if not ForAll(GeneratorsOfGroup(Source(hom)),
	             x->x^P in Source(hom)) then
	    Error("changed shape!");
	  fi;

	  P:=Group(Concatenation([P],GeneratorsOfGroup(Source(hom))));
	  SetSize(P,Size(Source(hom))*2);
	fi;
      else
        Error("not yet done");
      fi;
      # Sufficiently many elements to get the mult. group
      aut:=Size(P)/Size(Source(hom));
      P:=GeneratorsOfGroup(P);
      diag:=Group(One(field));
      mats:=[];
      while Size(diag)<aut do
        if not DeterminantMat(P[1]) in diag then
	  diag:=ClosureGroup(diag,DeterminantMat(P[1]));
	  Add(mats,P[1]);
	fi;
        P:=P{[2..Length(P)]};
      od;
      auts:=Concatenation(auts,
	List(mats,s->GroupGeneralMappingByImages(G,G,gens,List(gens,x->
		  Image(hom,PreImagesRepresentative(hom,x)^s)))));
      
    fi;

    if Size(gal)>1 then
      # Galois
      auts:=Concatenation(auts,
	List(SmallGeneratingSet(gal),
		s->GroupGeneralMappingByImages(G,G,gens,List(gens,x->
		  Image(hom,
		    List(PreImagesRepresentative(hom,x),r->List(r,y->Image(s,y))))))));
    fi;

    # graph
    if id.series="L" and id.parameter[1]>2 then
      Add(auts, GroupGeneralMappingByImages(G,G,gens,List(gens,x->
		  Image(hom,Inverse(TransposedMat(PreImagesRepresentative(hom,x)))))));
      all:=true;
    elif id.series in ["2A","C"] then
      # no graph
      all:=true;
    fi;

  else
    return fail;
  fi;

  for i in auts do
    SetIsMapping(i,true);
    SetIsBijective(i,true);
  od;
  return [auts,all];
end);

BindGlobal("AutomorphismGroupMorpheus",function(G)
local a,b,c,p;
  if IsSimpleGroup(G) then
    c:=DataAboutSimpleGroup(G);
    b:=List(GeneratorsOfGroup(G),x->InnerAutomorphism(G,x));
    a:=OuterAutomorphismGeneratorsSimple(G);
    if a=fail then
      a:=Morphium(G,G,true);
    else
      if a[2]=true then
	a:=a[1];
	a:=rec(aut:=a,inner:=b,sizeaut:=Size(G)*c.fullAutGroup[1]);
      else
	Info(InfoWarning,1,"Only partial list given");
	a:=Morphium(G,G,true);
      fi;
    fi;
  else
    a:=Morphium(G,G,true);
  fi;
  if IsList(a.aut) then
    a.aut:= GroupByGenerators( Concatenation( a.aut, a.inner ),
                               IdentityMapping( G ) );
    if IsBound(a.sizeaut) then SetSize(a.aut,a.sizeaut);fi;
    a.inner:=SubgroupNC(a.aut,a.inner);
  elif HasConjugacyClasses(G) then
    # test whether we really want to keep the stored nice monomorphism
    b:=Range(NiceMonomorphism(a.aut));
    p:=LargestMovedPoint(b); # degree of the nice rep.

    # first class sizes for non central generators. Their sum is what we
    # admit as domain size
    c:=Filtered(List(ConjugacyClasses(G),Size),i->i>1);
    Sort(c);
    c:=c{[1..Minimum(Length(c),Length(GeneratorsOfGroup(G)))]};

    if p>100 and ((not IsPermGroup(G)) or (p>4*LargestMovedPoint(G) 
      and (p>1000 or p>Sum(c) 
           or ForAll(GeneratorsOfGroup(a.aut),IsConjugatorAutomorphism)
	   or Size(a.aut)/Size(G)<p/10*LargestMovedPoint(G)))) then
      # the degree looks rather big. Can we do better?
      Info(InfoMorph,2,"test automorphism domain ",p);
      c:=GroupByGenerators(GeneratorsOfGroup(a.aut),One(a.aut));
      AssignNiceMonomorphismAutomorphismGroup(c,G); 
      if IsPermGroup(Range(NiceMonomorphism(c))) and
	LargestMovedPoint(Range(NiceMonomorphism(c)))<p then
        Info(InfoMorph,1,"improved domain ",
	     LargestMovedPoint(Range(NiceMonomorphism(c))));
	a.aut:=c;
	a.inner:=SubgroupNC(a.aut,GeneratorsOfGroup(a.inner));
      fi;
    fi;
  fi;
  SetInnerAutomorphismsAutomorphismGroup(a.aut,a.inner);
  SetIsAutomorphismGroup( a.aut, true );
  if HasIsFinite(G) and IsFinite(G) then
    SetIsFinite(a.aut,true);
    SetIsGroupOfAutomorphismsFiniteGroup(a.aut,true);
  fi;
  return a.aut;
end);

InstallGlobalFunction(AutomorphismGroupFittingFree,function(g)
  local s, c, acts, ttypes, ttypnam, k, act, t, j, iso, w, wemb, a, au,
  auph, aup, n, wl, genimgs, thom, ahom, emb, lemb, d, ge, stbs, orb, base,
  newbas, obas, p, r, orpo, imgperm, invmap, hom, i, gen,gens,tty,count;
  #write g in a nice form
  count:=ValueOption("count");if count=fail then count:=0;fi;
  s:=Socle(g);
  if IsSimpleGroup(s) then
    return AutomorphismGroupMorpheus(g);
  fi;
  c:=ChiefSeriesThrough(g,[s]);
  acts:=[];
  ttypes:=[];
  ttypnam:=[];
  k:=g;
  for i in [1..Length(c)-1] do
    if IsSubset(s,c[i]) and not HasAbelianFactorGroup(c[i],c[i+1]) then
      act:=WreathActionChiefFactor(g,c[i],c[i+1]);
      Add(acts,act);
      t:=act[4];
      tty:=IsomorphismTypeInfoFiniteSimpleGroup(t);
      j:=1;
      while j<=Length(ttypes) do
	if ttypnam[j]=tty then
	  iso:=IsomorphismGroups(t,acts[ttypes[j][1]][4]);
	  Add(ttypes[j],[Length(acts),iso]);
	  j:=Length(ttypes)+10;
	fi;
	j:=j+1;
      od;
      if j<Length(ttypes)+2 then
	Add(ttypes,[Length(acts)]);
	Add(ttypnam,tty);
	Info(InfoMorph,1,"New isomorphism type: ",
	  ttypnam[Length(ttypnam)].name);
      fi;
    fi;
  od;

  # now build the wreath products
  w:=[];
  wemb:=[];
  for i in ttypes do
    t:=acts[i[1]][4];
    a:=acts[i[1]][3];
    au:=AutomorphismGroupMorpheus(t);
    auph:=IsomorphismPermGroup(au);
    aup:=Image(auph);
    n:=acts[i[1]][5];
    for j in [2..Length(i)] do
      n:=n+acts[i[j][1]][5];
    od;
    #T replace symmetric group by a suitable wreath product
    wl:=WreathProduct(aup,SymmetricGroup(n));
    # now embedd all

    n:=1;
    # first is slightly special
    genimgs:=[];
    for gen in GeneratorsOfGroup(a) do
      thom:=GroupHomomorphismByImagesNC(t,t,GeneratorsOfGroup(t),
	      List(GeneratorsOfGroup(t),j->j^gen));
      thom:=Image(auph,thom);
      Add(genimgs,thom);
    od;

    ahom:=GroupHomomorphismByImagesNC(a,aup,GeneratorsOfGroup(a),genimgs);

    emb:=acts[i[1]][2]*EmbeddingWreathInWreath(wl,acts[i[1]][1],ahom,n);
    n:=n+acts[i[1]][5];
    lemb:=[emb];

    for j in [2..Length(i)] do
      a:=acts[i[j][1]][3];
      genimgs:=[];
      for gen in GeneratorsOfGroup(a) do
	thom:=i[j][2];
	thom:=GroupHomomorphismByImagesNC(t,t,GeneratorsOfGroup(t),
	  List(GeneratorsOfGroup(t),
	  j->Image(thom,PreImagesRepresentative(thom,j)^gen)));
	thom:=Image(auph,thom);
	Add(genimgs,thom);
      od;

      ahom:=GroupHomomorphismByImagesNC(a,aup,GeneratorsOfGroup(a),genimgs);

      emb:=acts[i[j][1]][2]*EmbeddingWreathInWreath(wl,acts[i[j][1]][1],ahom,n);
      n:=n+acts[i[j][1]][5];
      Add(lemb,emb);

    od;
    # now map into wl by combining
    emb:=[];
    for gen in GeneratorsOfGroup(g) do
      Add(emb,Product(lemb,i->Image(i,gen)));
    od;
    emb:=GroupHomomorphismByImagesNC(g,wl,GeneratorsOfGroup(g),emb);
    Add(w,wl);
    Add(wemb,emb);

  od;

  # finally form a direct product for the different types
  d:=DirectProduct(w);
  emb:=[];
  for gen in GeneratorsOfGroup(g) do
    Add(emb,
      Product([1..Length(w)],i->Image(Embedding(d,i),Image(wemb[i],gen))));
  od;
  emb:=GroupHomomorphismByImagesNC(g,d,GeneratorsOfGroup(g),emb);

  aup:=Normalizer(d,Image(emb,g));

  #reduce degree
  s:=SmallerDegreePermutationRepresentation(aup);
  emb:=emb*s;
  aup:=Image(s,aup);
  ge:=Image(emb,g);

  # translate back into automorphisms
  a:=[];
  gens:=SmallGeneratingSet(aup);
  for i in gens do
    au:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
	 List(GeneratorsOfGroup(g),
	   j->PreImagesRepresentative(emb,Image(emb,j)^i)));
    Add(a,au);
  od;
  au:=Group(a);

  #cleanup
  Unbind(acts);Unbind(act);Unbind(ttypes);Unbind(w);Unbind(wl);
  Unbind(wemb);Unbind(lemb);Unbind(ahom);Unbind(thom);Unbind(d);

  # produce data to map fro au to aup:
  lemb:=MovedPoints(aup);
  stbs:=[];
  orb:=Orbits(aup,MovedPoints(aup));
  base:=BaseStabChain(StabChainMutable(aup));
  newbas:=[];
  for i in orb do
    obas:=Filtered(base,x->x in i);
    Append(newbas,obas);
    p:=obas[1];
    # get a set of elements that uniquely describes the point p
    s:=SmallGeneratingSet(Stabilizer(ge,p));
    if ForAny(Difference(i,[p]),j->ForAll(s,x->j^x=j)) then
      # try once more -- there is some randomeness involved
      if count<10 then
	return AutomorphismGroupFittingFree(g:count:=count+1);
      fi;
      Error("repeated further fixpoint -- ambiguity");
    fi;
    stbs[p]:=s;
    for j in [2..Length(obas)] do
      r:=RepresentativeAction(aup,p,obas[j]);
      stbs[obas[j]]:=List(s,i->i^r);
    od;
  od;
  orpo:=List(MovedPoints(aup),x->First([1..Length(orb)],y->x in orb[y]));

  imgperm:=function(autom)
  local bi, s, i;
    bi:=[];
    for i in newbas do
      s:=List(stbs[i],
	      x->Image(emb,Image(autom,PreImagesRepresentative(emb,x))));
      s:=First(orb[orpo[i]],x->ForAll(s,j->x^j=x));
      Add(bi,s);
    od;
    return RepresentativeAction(aup,newbas,bi,OnTuples);
  end;

  invmap:=GroupHomomorphismByImagesNC(aup,au,gens,a);
  hom:=GroupHomomorphismByFunction(au,aup,imgperm,
	 function(x)
	   return Image(invmap,x);
	 end);
  SetInverseGeneralMapping(hom,invmap);
  SetInverseGeneralMapping(invmap,hom);
  SetIsAutomorphismGroup(au,true);
  SetIsGroupOfAutomorphismsFiniteGroup(au,true);
  SetNiceMonomorphism(au,hom);
  SetIsHandledByNiceMonomorphism(au,true);

  return au;
end);

#############################################################################
##
#M  AutomorphismGroup(<G>) . . group of automorphisms, given as Homomorphisms
##
InstallMethod(AutomorphismGroup,"finite groups",true,[IsGroup and IsFinite],0,
function(G)
local A;
  # since the computation is expensive, it is worth to test some properties first,
  # instead of relying on the method selection
  if IsAbelian(G) then
    A:=AutomorphismGroupAbelianGroup(G);
  elif (not HasIsPGroup(G)) and IsPGroup(G) then
    #if G did not yet know to be a P-group, but is -- redispatch to catch the
    #`autpgroup' package method. This will be called at most once.
    LoadPackage("autpgrp"); # try to load the package if it exists
    return AutomorphismGroup(G);
  elif IsNilpotentGroup(G) and not IsPGroup(G) then
    LoadPackage("autpgrp"); # try to load the package if it exists
    A:=AutomorphismGroupNilpotentGroup(G);
  elif IsSolvableGroup(G) then
    if HasIsFrattiniFree(G) and IsFrattiniFree(G) then
      A:=AutomorphismGroupFrattFreeGroup(G);
    else
      A:=AutomorphismGroupSolvableGroup(G);
    fi;
  elif Size(RadicalGroup(G))=1 and IsPermGroup(G) then
    # essentially a normalizer when suitably embedded 
    A:=AutomorphismGroupFittingFree(G);
  else
    A:=AutomorphismGroupMorpheus(G);
  fi;
  SetIsAutomorphismGroup(A,true);
  SetIsGroupOfAutomorphismsFiniteGroup(A,true);
  SetIsFinite(A,true);
  SetAutomorphismDomain(A,G);
  return A;
end);

# just in case it does not know to be finite
RedispatchOnCondition(AutomorphismGroup,true,[IsGroup],
    [IsGroup and IsFinite],0);

#############################################################################
##
#M NiceMonomorphism 
##
InstallMethod(NiceMonomorphism,"for automorphism groups",true,
              [IsGroupOfAutomorphismsFiniteGroup],0,
function( A )
local G;

    if not IsGroupOfAutomorphismsFiniteGroup(A) then
      TryNextMethod();
    fi;

    G  := Source( Identity(A) );

    # this stores the niceo
    AssignNiceMonomorphismAutomorphismGroup(A,G); 

    # as `AssignNice...' will have stored an attribute value this cannot cause
    # an infinite recursion:
    return NiceMonomorphism(A);
end);


#############################################################################
##
#M  InnerAutomorphismsAutomorphismGroup( <A> ) 
##
InstallMethod( InnerAutomorphismsAutomorphismGroup,
    "for automorphism groups",
    true,
    [ IsAutomorphismGroup and IsFinite ], 0,
    function( A )
    local G, gens;
    G:= Source( Identity( A ) );
    gens:= GeneratorsOfGroup( G );
    # get the non-central generators
    gens:= Filtered( gens, i -> not ForAll( gens, j -> i*j = j*i ) );
    return SubgroupNC( A, List( gens, i -> InnerAutomorphism( G, i ) ) );
    end );


#############################################################################
##
#F  IsomorphismGroups(<G>,<H>) . . . . . . . . . .  isomorphism from G onto H
##
InstallGlobalFunction(IsomorphismGroups,function(G,H)
local m;

  #AH: Spezielle Methoden ?
  if Size(G)=1 then
    if Size(H)<>1 then
      return fail;
    else
      return GroupHomomorphismByImagesNC(G,H,[],[]);
    fi;
  fi;
  if IsAbelian(G) then
    if not IsAbelian(H) then
      return fail;
    else
      return IsomorphismAbelianGroups(G,H);
    fi;
  fi;

  if Size(G)<>Size(H) then
    return fail;
  elif ID_AVAILABLE(Size(G)) <> fail then
    if IdGroup(G)<>IdGroup(H) then
      return fail;
    elif ValueOption("hard")=fail 
      and IsSolvableGroup(G) and Size(G) <= 2000 then
      return IsomorphismSolvableSmallGroups(G,H);
    fi;
  elif Length(ConjugacyClasses(G))<>Length(ConjugacyClasses(H)) then
    return fail;
  fi;

  m:=Morphium(G,H,false);
  if IsList(m) and Length(m)=0 then
    return fail;
  else
    return m;
  fi;

end);


#############################################################################
##
#F  GQuotients(<F>,<G>)  . . . . . epimorphisms from F onto G up to conjugacy
##
InstallMethod(GQuotients,"for groups which can compute element orders",true,
  [IsGroup,IsGroup and IsFinite],
  # override `IsFinitelyPresentedGroup' filter.
  1,
function (F,G)
local Fgens,	# generators of F
      cl,	# classes of G
      u,	# trial generating set's group
      vsu,	# verbal subgroups
      pimgs,	# possible images
      val,	# its value
      best,	# best generating set
      bestval,	# its value
      sz,	# |class|
      i,	# loop
      h,	# epis
      len,	# nr. gens tried
      fak,	# multiplication factor
      cnt;	# countdown for finish

  # if we have a pontentially infinite fp group we cannot be clever
  if IsSubgroupFpGroup(F) and
    (not HasSize(F) or Size(F)=infinity) then
    TryNextMethod();
  fi;

  Fgens:=GeneratorsOfGroup(F);

  # if a verbal subgroup is trivial in the image, it must be in the kernel
  vsu:=SomeVerbalSubgroups(F,G);
  vsu:=vsu[1]{Filtered([1..Length(vsu[2])],j->IsTrivial(vsu[2][j]))};
  vsu:=Filtered(vsu,i->not IsTrivial(i));
  if Length(vsu)>1 then
    fak:=vsu[1];
    for i in [2..Length(vsu)] do
      fak:=ClosureGroup(fak,vsu[i]);
    od;
    Info(InfoMorph,1,"quotient of verbal subgroups :",Size(fak));
    h:=NaturalHomomorphismByNormalSubgroup(F,fak);
    fak:=Image(h,F);
    u:=GQuotients(fak,G);
    cl:=[];
    for i in u do
      i:=GroupHomomorphismByImagesNC(F,G,Fgens,
	     List(Fgens,j->Image(i,Image(h,j))));
      Add(cl,i);
    od;
    return cl;
  fi;

  if Size(G)=1 then
    return [GroupHomomorphismByImagesNC(F,G,Fgens,
			  List(Fgens,i->One(G)))];
  elif IsCyclic(F) then
    Info(InfoMorph,1,"Cyclic group: only one quotient possible");
    # a cyclic group has at most one quotient
    if not IsCyclic(G) or not IsInt(Size(F)/Size(G)) then
      return [];
    else
      # get the cyclic gens
      u:=First(AsList(F),i->Order(i)=Size(F));
      h:=First(AsList(G),i->Order(i)=Size(G));
      # just map them
      return [GroupHomomorphismByImagesNC(F,G,[u],[h])];
    fi;
  fi;

  if IsAbelian(G) then
    fak:=5;
  else
    fak:=50;
  fi;

  cl:=ConjugacyClasses(G);

  # first try to find a short generating system
  best:=false;
  bestval:=infinity;
  if Size(F)<10000000 and Length(Fgens)>2 then
    len:=Maximum(2,Length(SmallGeneratingSet(
                 Image(NaturalHomomorphismByNormalSubgroup(F,
		   DerivedSubgroup(F))))));
  else
    len:=2;
  fi;
  cnt:=0;
  repeat
    u:=List([1..len],i->Random(F));
    if Index(F,Subgroup(F,u))=1 then

      # find potential images
      pimgs:=[];
      for i in u do
        sz:=Index(F,Centralizer(F,i));
	Add(pimgs,Filtered(cl,j->IsInt(Order(i)/Order(Representative(j)))
			     and IsInt(sz/Size(j))));
      od;

      # sort u in descending order -> large reductions when centralizing
      SortParallel(pimgs,u,function(a,b)
			     return Sum(a,Size)>Sum(b,Size);
                           end);

      val:=Product(pimgs,i->Sum(i,Size));
      if val<bestval then
	Info(InfoMorph,2,"better value: ",List(u,i->Order(i)),
	      "->",val);
	best:=[u,pimgs];
	bestval:=val;
      fi;

    fi;
    cnt:=cnt+1;
    if cnt=len*fak and best=false then
      cnt:=0;
      Info(InfoMorph,1,"trying one generator more");
      len:=len+1;
    fi;
  until best<>false and (cnt>len*fak or bestval<3*cnt);

  if ValueOption("findall")=false then
    # only one
    h:=MorClassLoop(G,best[2],rec(gens:=best[1],to:=G,from:=F),5);
    # get the same syntax for the object returned
    if IsList(h) and Length(h)=0 then
      return h;
    else
      return [h];
    fi;
  else
    h:=MorClassLoop(G,best[2],rec(gens:=best[1],to:=G,from:=F),13);
  fi;
  cl:=[];
  u:=[];
  for i in h do
    if not KernelOfMultiplicativeGeneralMapping(i) in u then
      Add(u,KernelOfMultiplicativeGeneralMapping(i));
      Add(cl,i);
    fi;
  od;

  Info(InfoMorph,1,Length(h)," found -> ",Length(cl)," homs");
  return cl;
end);

#############################################################################
##
#F  IsomorphicSubgroups(<G>,<H>)
##
InstallMethod(IsomorphicSubgroups,"for finite groups",true,
  [IsGroup and IsFinite,IsGroup and IsFinite],
  # override `IsFinitelyPresentedGroup' filter.
  1,
function(G,H)
local cl,cnt,bg,bw,bo,bi,k,gens,go,imgs,params,emb,clg,sg,vsu,c,i;

  if not IsInt(Size(G)/Size(H)) then
    Info(InfoMorph,1,"sizes do not permit embedding");
    return [];
  fi;

  if IsTrivial(H) then
    return [GroupHomomorphismByImagesNC(H,G,[],[])];
  fi;

  if IsAbelian(G) then
    if not IsAbelian(H) then
      return [];
    fi;
    if IsCyclic(G) then
      if IsCyclic(H) then
        return [GroupHomomorphismByImagesNC(H,G,[MinimalGeneratingSet(H)[1]],
	  [MinimalGeneratingSet(G)[1]^(Size(G)/Size(H))])];
      else
        return [];
      fi;
    fi;
  fi;

  cl:=ConjugacyClasses(G);
  if IsCyclic(H) then
    cl:=List(RationalClasses(G),Representative);
    cl:=Filtered(cl,i->Order(i)=Size(H));
    return List(cl,i->GroupHomomorphismByImagesNC(H,G,
                      [MinimalGeneratingSet(H)[1]],
		      [i]));
  fi;
  cl:=ConjugacyClasses(G);


  # test whether there is a chance to embed
  cnt:=0;
  while cnt<20 do
    bg:=Order(Random(H));
    if not ForAny(cl,i->Order(Representative(i))=bg) then
      return [];
    fi;
    cnt:=cnt+1;
  od;

  # find a suitable generating system
  bw:=infinity;
  bo:=[0,0];
  cnt:=0;
  repeat
    if cnt=0 then
      # first the small gen syst.
      gens:=SmallGeneratingSet(H);
      sg:=Length(gens);
    else
      # then something random
      repeat
	if Length(gens)>2 and Random([1,2])=1 then
	  # try to get down to 2 gens
	  gens:=List([1,2],i->Random(H));
	else
	  gens:=List([1..sg],i->Random(H));
	fi;
	# try to get small orders
	for k in [1..Length(gens)] do
	  go:=Order(gens[k]);
	  # try a p-element
	  if Random([1..3*Length(gens)])=1 then
	    gens[k]:=gens[k]^(go/(Random(Factors(go))));
	  fi;
	od;

      until Index(H,SubgroupNC(H,gens))=1;
    fi;

    go:=List(gens,Order);
    imgs:=List(go,i->Filtered(cl,j->Order(Representative(j))=i));
    Info(InfoMorph,3,go,":",Product(imgs,i->Sum(i,Size)));
    if Product(imgs,i->Sum(i,Size))<bw then
      bg:=gens;
      bo:=go;
      bi:=imgs;
      bw:=Product(imgs,i->Sum(i,Size));
    elif Set(go)=Set(bo) then
      # we hit the orders again -> sign that we can't be
      # completely off track
      cnt:=cnt+Int(bw/Size(G)*3);
    fi;
    cnt:=cnt+1;
  until bw/Size(G)*3<cnt;

  if bw=0 then
    return [];
  fi;

  vsu:=SomeVerbalSubgroups(H,G);
  # filter by verbal subgroups
  for i in [1..Length(bg)] do
    c:=Filtered([1..Length(vsu[1])],j->bg[i] in vsu[1][j]);

#Print(List(bi[i],k->
#     Filtered([1..Length(vsu[2])],j->Representative(k) in vsu[2][j])),"\n");

    cl:=Filtered(bi[i],k->ForAll(c,j->Representative(k) in vsu[2][j]));
    if Length(cl)<Length(bi[i]) then
      Info(InfoMorph,1,"images improved by verbal subgroup:",
      Sum(bi[i],Size)," -> ",Sum(cl,Size));
      bi[i]:=cl;
    fi;
  od;

  Info(InfoMorph,2,"find ",bw," from ",cnt);

  if Length(bg)>2 and cnt>Size(H)^2 and Size(G)<bw then
    Info(InfoPerformance,1,
    "The group tested requires many generators. `IsomorphicSubgroups' often\n",
"#I  does not perform well for such groups -- see the documentation.");
  fi;

  params:=rec(gens:=bg,from:=H);
  # find all embeddings
  if ValueOption("findall")=false then
    # only one
    emb:=MorClassLoop(G,bi,params,
      # one injective homs = 1+2
      3); 
      if IsList(emb) and Length(emb)=0 then
	return emb;
      fi;
    emb:=[emb];
  else
    emb:=MorClassLoop(G,bi,params,
      # all injective homs = 1+2+8
      11); 
  fi;
  Info(InfoMorph,2,Length(emb)," embeddings");
  cl:=[];
  clg:=[];
  for k in emb do
    bg:=Image(k,H);
    if not ForAny(clg,i->RepresentativeAction(G,i,bg)<>fail) then
      Add(cl,k);
      Add(clg,bg);
    fi;
  od;
  Info(InfoMorph,1,Length(emb)," found -> ",Length(cl)," homs");
  return cl;
end);


#############################################################################
##
#E