This file is indexed.

/usr/share/gap/lib/onecohom.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#############################################################################
##
#W  onecohom.gd                     GAP library                  Frank Celler
##                                                           Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of operations for the 1-Cohomology
##


#############################################################################
##
#V  InfoCoh
##
##  <#GAPDoc Label="InfoCoh">
##  <ManSection>
##  <InfoClass Name="InfoCoh"/>
##
##  <Description>
##  The info class for the cohomology calculations is
##  <Ref InfoClass="InfoCoh"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass("InfoCoh");


#############################################################################
##
#O  TriangulizedGeneratorsByMatrix( <gens>, <M>, <F> ) 
##                                                  triangulize and make base
##
##  <ManSection>
##  <Oper Name="TriangulizedGeneratorsByMatrix" Arg='gens, M, F'/>
##
##  <Description>
##  AKA <C>AbstractBaseMat</C>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TriangulizedGeneratorsByMatrix");


##  For all following functions, the group is given as second argument to
##  allow dispatching after the group type

#############################################################################
##
#O  OCAddGenerators( <ocr>, <G> ) . . . . . . . . . . . add generators, local
##
##  <ManSection>
##  <Oper Name="OCAddGenerators" Arg='ocr, G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OCAddGenerators" );

#############################################################################
##
#O  OCAddMatrices( <ocr>, <gens> )  . . . . . . add operation matrices, local
##
##  <ManSection>
##  <Oper Name="OCAddMatrices" Arg='ocr, gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OCAddMatrices" );

#############################################################################
##
#O  OCAddToFunctions( <ocr> )  . . . . add operation matrices, local
##
##  <ManSection>
##  <Oper Name="OCAddToFunctions" Arg='ocr'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OCAddToFunctions" );
DeclareOperation( "OCAddToFunctions2", [IsRecord, IsListOrCollection] );


#############################################################################
##
#O  OCAddRelations( <ocr>,<gens> ) . . . . . . . . . .  add relations, local
##
##  <ManSection>
##  <Oper Name="OCAddRelations" Arg='ocr,gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "OCAddRelations",
  [IsRecord, IsListOrCollection] );

#############################################################################
##
#O  OCNormalRelations( <ocr>,<G>,<gens> )  rels for normal complements, local
##
##  <ManSection>
##  <Oper Name="OCNormalRelations" Arg='ocr,G,gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "OCNormalRelations",
  [IsRecord,IsGroup,IsListOrCollection] );


#############################################################################
##
#O  OCAddSumMatrices( <ocr>, <gens> )  . . . . . . . . . . . add sums, local
##
##  <ManSection>
##  <Oper Name="OCAddSumMatrices" Arg='ocr, gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation("OCAddSumMatrices",
  [IsRecord,IsListOrCollection]);


#############################################################################
##
#O  OCAddBigMatrices( <ocr>, <gens> )  . . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCAddBigMatrices" Arg='ocr, gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "OCAddBigMatrices",
  [IsRecord,IsListOrCollection] );


#############################################################################
##
#O  OCCoprimeComplement( <ocr>, <gens> ) . . . . . . . .  coprime complement
##
##  <ManSection>
##  <Oper Name="OCCoprimeComplement" Arg='ocr, gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "OCCoprimeComplement",
  [IsRecord,IsListOrCollection] );


#############################################################################
##
#O  OneCoboundaries( <G>, <M> )	. . . . . . . . . . one cobounds of <G> / <M>
##
##  <#GAPDoc Label="OneCoboundaries">
##  <ManSection>
##  <Oper Name="OneCoboundaries" Arg='G, M'/>
##
##  <Description>
##  computes the group of 1-coboundaries.
##  Syntax of input and output otherwise is the same as with
##  <Ref Func="OneCocycles" Label="for two groups"/> except that entries that
##  refer to cocycles are not computed.
##  <P/>
##  The operations <Ref Func="OneCocycles" Label="for two groups"/> and
##  <Ref Func="OneCoboundaries"/> return a record with
##  (at least) the components:
##  <P/>
##  <List>
##  <Mark><C>generators</C></Mark>
##  <Item>
##  Is a list of representatives for a generating set of <A>G</A>/<A>M</A>.
##  Cocycles are represented with respect to these generators.
##  </Item>
##  <Mark><C>oneCocycles</C></Mark>
##  <Item>
##  A space of row vectors over GF(<M>p</M>), representing <M>Z^1</M>.
##  The vectors are represented in dimension <M>a \cdot b</M> where <M>a</M>
##  is the length of <C>generators</C> and <M>p^b</M> the size of <A>M</A>.
##  </Item>
##  <Mark><C>oneCoboundaries</C></Mark>
##  <Item>
##  A space of row vectors that represents <M>B^1</M>.
##  </Item>
##  <Mark><C>cocycleToList</C></Mark>
##  <Item>
##  is a function to convert a cocycle (a row vector in <C>oneCocycles</C>) to
##  a corresponding list of elements of <A>M</A>.
##  </Item>
##  <Mark><C>listToCocycle</C></Mark>
##  <Item>
##  is a function to convert a list of elements of <A>M</A> to a cocycle.
##  </Item>
##  <Mark><C>isSplitExtension</C></Mark>
##  <Item>
##  indicates whether <A>G</A> splits over <A>M</A>.
##  The following components are only bound if the extension splits.
##  Note that if <A>M</A> is given by a modulo pcgs all subgroups are given
##  as subgroups of <A>G</A> by generators corresponding to <C>generators</C>
##  and thus may not contain the denominator of the modulo pcgs.
##  In this case taking the closure with this denominator will give the full
##  preimage of the complement in the factor group.
##  </Item>
##  <Mark><C>complement</C></Mark>
##  <Item>
##  One complement to <A>M</A> in <A>G</A>.
##  </Item>
##  <Mark><C>cocycleToComplement( cyc )</C></Mark>
##  <Item>
##  is a function that takes a cocycle from <C>oneCocycles</C> and returns
##  the corresponding complement to <A>M</A> in <A>G</A>
##  (with respect to the fixed complement <C>complement</C>).
##  </Item>
##  <Mark><C>complementToCocycle(<A>U</A>)</C></Mark>
##  <Item>
##  is a function that takes a complement and returns the corresponding
##  cocycle.
##  </Item>
##  </List>
##  <P/>
##  If the factor <A>G</A>/<A>M</A> is given by a (modulo) pcgs <A>gens</A>
##  then special methods are used that compute a presentation for the factor
##  implicitly from the pcgs.
##  <P/>
##  Note that the groups of 1-cocycles and 1-coboundaries are not groups in
##  the sense of <Ref Func="Group" Label="for several generators"/> for &GAP;
##  but vector spaces.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> n:=Group((1,2)(3,4),(1,3)(2,4));;
##  gap> oc:=OneCocycles(g,n);
##  rec( cocycleToComplement := function( c ) ... end, 
##    cocycleToList := function( c ) ... end, 
##    complement := Group([ (3,4), (2,4,3) ]), 
##    complementGens := [ (3,4), (2,4,3) ], 
##    complementToCocycle := function( K ) ... end, 
##    factorGens := [ (3,4), (2,4,3) ], generators := [ (3,4), (2,4,3) ], 
##    isSplitExtension := true, listToCocycle := function( L ) ... end, 
##    oneCoboundaries := <vector space over GF(2), with 2 generators>, 
##    oneCocycles := <vector space over GF(2), with 2 generators> )
##  gap> oc.cocycleToList([ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]);
##  [ (1,2)(3,4), (1,2)(3,4) ]
##  gap> oc.listToCocycle([(),(1,3)(2,4)]) = Z(2) * [ 0, 0, 1, 0];
##  true
##  gap> oc.cocycleToComplement([ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]);
##  Group([ (3,4), (1,3,4) ])
##  gap> oc.complementToCocycle(Group((1,2,4),(1,4))) = Z(2) * [ 0, 1, 1, 1 ];
##  true
##  ]]></Example>
##  <P/>
##  The factor group
##  <M>H^1(<A>G</A>/<A>M</A>, <A>M</A>) =
##  Z^1(<A>G</A>/<A>M</A>, <A>M</A>) / B^1(<A>G</A>/<A>M</A>, <A>M</A>)</M>
##  is called the first cohomology group.
##  Currently there is no function which explicitly computes this group.
##  The easiest way to represent it is as a vector space complement to
##  <M>B^1</M> in <M>Z^1</M>.
##  <P/>
##  If the only purpose of the calculation of <M>H^1</M> is the determination
##  of complements it might be desirable to stop calculations
##  once it is known that the extension cannot split.
##  This can be achieved via the more technical function
##  <Ref Func="OCOneCocycles"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OneCoboundaries" );


#############################################################################
##
#O  OneCocycles( <G>, <M> )
#O  OneCocycles( <gens>, <M> )
#O  OneCocycles( <G>, <mpcgs> )
#O  OneCocycles( <gens>, <mpcgs> )
##
##  <#GAPDoc Label="OneCocycles">
##  <ManSection>
##  <Heading>OneCocycles</Heading>
##  <Oper Name="OneCocycles" Arg='G, M' Label="for two groups"/>
##  <Oper Name="OneCocycles" Arg='G, mpcgs' Label="for a group and a pcgs"/>
##  <Oper Name="OneCocycles" Arg='gens, M'
##   Label="for generators and a group"/>
##  <Oper Name="OneCocycles" Arg='gens, mpcgs'
##   Label="for generators and a pcgs"/>
##
##  <Description>
##  Computes the group of 1-cocycles <M>Z^1(<A>G</A>/<A>M</A>,<A>M</A>)</M>.
##  The normal subgroup <A>M</A> may be given by a (Modulo)Pcgs <A>mpcgs</A>.
##  In this case the whole calculation is performed modulo the normal
##  subgroup defined by <C>DenominatorOfModuloPcgs(<A>mpcgs</A>)</C>
##  (see&nbsp;<Ref Sect="Polycyclic Generating Systems"/>).
##  Similarly the group <A>G</A> may instead be specified by a set of
##  elements <A>gens</A> that are representatives for a generating system for
##  the factor group <A>G</A>/<A>M</A>.
##  If this is done the 1-cocycles are computed
##  with respect to these generators (otherwise the routines try to select
##  suitable generators themselves).
##  The current version of the code assumes that <A>G</A> is a permutation
##  group or a pc group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OneCocycles" );


#############################################################################
##
#O  OCOneCoboundaries( <ocr> )	. . . . . . . . . . one cobounds main routine
##
##  <ManSection>
##  <Oper Name="OCOneCoboundaries" Arg='ocr'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCOneCoboundaries");


#############################################################################
##
#O  OCConjugatingWord( <ocr>, <c1>, <c2> )  . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCConjugatingWord" Arg='ocr, c1, c2'/>
##
##  <Description>
##  Compute a Word n in <A>ocr.module</A> such that <A>c1</A> ^ n = <A>c2</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCConjugatingWord");


#############################################################################
##
#O  OCEquationMatrix( <ocr>, <r>, <n> )  . . . . . . . . . . . . . . .  local
##
##  <ManSection>
##  <Oper Name="OCEquationMatrix" Arg='ocr, r, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCEquationMatrix");


#############################################################################
##
#O  OCSmallEquationMatrix( <ocr>, <r>, <n> )  . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCSmallEquationMatrix" Arg='ocr, r, n'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCSmallEquationMatrix");


#############################################################################
##
#O  OCEquationVector( <ocr>, <r> )  . . . . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCEquationVector" Arg='ocr, r'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCEquationVector");


#############################################################################
##
#O  OCSmallEquationVector( <ocr>, <r> )	. . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCSmallEquationVector" Arg='ocr, r'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("OCSmallEquationVector");


#############################################################################
##
#O  OCAddComplement( <ocr>, <ocr.group>, <K> ) . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="OCAddComplement" Arg='ocr, ocr.group, K'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation("OCAddComplement",
  [IsRecord,IsGroup,IsListOrCollection]);


#############################################################################
##
#O  OCOneCocycles( <ocr>, <onlySplit> ) . . . . . . one cocycles main routine
##
##  <#GAPDoc Label="OCOneCocycles">
##  <ManSection>
##  <Oper Name="OCOneCocycles" Arg='ocr, onlySplit'/>
##
##  <Description>
##  is the more technical function to compute 1-cocycles. It takes an record
##  <A>ocr</A> as first argument which must contain at least the components
##  <C>group</C> for the group and <C>modulePcgs</C> for a (modulo) pcgs of
##  the module. This record
##  will also be returned with components as described under
##  <Ref Func="OneCocycles" Label="for two groups"/>
##  (with the exception of <C>isSplitExtension</C> which is indicated by the
##  existence of a <C>complement</C>)
##  but components such as <C>oneCoboundaries</C> will only be
##  computed if not already present.
##  <P/>
##  If <A>onlySplit</A> is <K>true</K>,
##  <Ref Func="OCOneCocycles"/> returns <K>false</K> as soon as
##  possible if the extension does not split.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OCOneCocycles");


#############################################################################
##
#O  ComplementClassesRepresentativesEA(<G>,<N>) . complement classes to el.ab. N by 1-Cohom.
##
##  <#GAPDoc Label="ComplementClassesRepresentativesEA">
##  <ManSection>
##  <Oper Name="ComplementClassesRepresentativesEA" Arg='G, N'/>
##
##  <Description>
##  computes complement classes to an elementary abelian normal subgroup
##  <A>N</A> via 1-Cohomology. Normally, a user program should call
##  <Ref Func="ComplementClassesRepresentatives"/> instead, which also works
##  for a solvable (not necessarily elementary abelian) <A>N</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("ComplementClassesRepresentativesEA");


#############################################################################
##
#o  OCPPrimeSets( <U> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
##  Construct  a  generating  set, which has the generators of Hall-subgroups
##  of a Sylow complement system as sublist.
##
#T DeclareGlobalFunction("OCPPrimeSets");
#T up to now no function is installed


#############################################################################
##
#E