/usr/share/gap/lib/onecohom.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | #############################################################################
##
#W onecohom.gd GAP library Frank Celler
## Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for the 1-Cohomology
##
#############################################################################
##
#V InfoCoh
##
## <#GAPDoc Label="InfoCoh">
## <ManSection>
## <InfoClass Name="InfoCoh"/>
##
## <Description>
## The info class for the cohomology calculations is
## <Ref InfoClass="InfoCoh"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoCoh");
#############################################################################
##
#O TriangulizedGeneratorsByMatrix( <gens>, <M>, <F> )
## triangulize and make base
##
## <ManSection>
## <Oper Name="TriangulizedGeneratorsByMatrix" Arg='gens, M, F'/>
##
## <Description>
## AKA <C>AbstractBaseMat</C>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TriangulizedGeneratorsByMatrix");
## For all following functions, the group is given as second argument to
## allow dispatching after the group type
#############################################################################
##
#O OCAddGenerators( <ocr>, <G> ) . . . . . . . . . . . add generators, local
##
## <ManSection>
## <Oper Name="OCAddGenerators" Arg='ocr, G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OCAddGenerators" );
#############################################################################
##
#O OCAddMatrices( <ocr>, <gens> ) . . . . . . add operation matrices, local
##
## <ManSection>
## <Oper Name="OCAddMatrices" Arg='ocr, gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OCAddMatrices" );
#############################################################################
##
#O OCAddToFunctions( <ocr> ) . . . . add operation matrices, local
##
## <ManSection>
## <Oper Name="OCAddToFunctions" Arg='ocr'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OCAddToFunctions" );
DeclareOperation( "OCAddToFunctions2", [IsRecord, IsListOrCollection] );
#############################################################################
##
#O OCAddRelations( <ocr>,<gens> ) . . . . . . . . . . add relations, local
##
## <ManSection>
## <Oper Name="OCAddRelations" Arg='ocr,gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "OCAddRelations",
[IsRecord, IsListOrCollection] );
#############################################################################
##
#O OCNormalRelations( <ocr>,<G>,<gens> ) rels for normal complements, local
##
## <ManSection>
## <Oper Name="OCNormalRelations" Arg='ocr,G,gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "OCNormalRelations",
[IsRecord,IsGroup,IsListOrCollection] );
#############################################################################
##
#O OCAddSumMatrices( <ocr>, <gens> ) . . . . . . . . . . . add sums, local
##
## <ManSection>
## <Oper Name="OCAddSumMatrices" Arg='ocr, gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation("OCAddSumMatrices",
[IsRecord,IsListOrCollection]);
#############################################################################
##
#O OCAddBigMatrices( <ocr>, <gens> ) . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCAddBigMatrices" Arg='ocr, gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "OCAddBigMatrices",
[IsRecord,IsListOrCollection] );
#############################################################################
##
#O OCCoprimeComplement( <ocr>, <gens> ) . . . . . . . . coprime complement
##
## <ManSection>
## <Oper Name="OCCoprimeComplement" Arg='ocr, gens'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "OCCoprimeComplement",
[IsRecord,IsListOrCollection] );
#############################################################################
##
#O OneCoboundaries( <G>, <M> ) . . . . . . . . . . one cobounds of <G> / <M>
##
## <#GAPDoc Label="OneCoboundaries">
## <ManSection>
## <Oper Name="OneCoboundaries" Arg='G, M'/>
##
## <Description>
## computes the group of 1-coboundaries.
## Syntax of input and output otherwise is the same as with
## <Ref Func="OneCocycles" Label="for two groups"/> except that entries that
## refer to cocycles are not computed.
## <P/>
## The operations <Ref Func="OneCocycles" Label="for two groups"/> and
## <Ref Func="OneCoboundaries"/> return a record with
## (at least) the components:
## <P/>
## <List>
## <Mark><C>generators</C></Mark>
## <Item>
## Is a list of representatives for a generating set of <A>G</A>/<A>M</A>.
## Cocycles are represented with respect to these generators.
## </Item>
## <Mark><C>oneCocycles</C></Mark>
## <Item>
## A space of row vectors over GF(<M>p</M>), representing <M>Z^1</M>.
## The vectors are represented in dimension <M>a \cdot b</M> where <M>a</M>
## is the length of <C>generators</C> and <M>p^b</M> the size of <A>M</A>.
## </Item>
## <Mark><C>oneCoboundaries</C></Mark>
## <Item>
## A space of row vectors that represents <M>B^1</M>.
## </Item>
## <Mark><C>cocycleToList</C></Mark>
## <Item>
## is a function to convert a cocycle (a row vector in <C>oneCocycles</C>) to
## a corresponding list of elements of <A>M</A>.
## </Item>
## <Mark><C>listToCocycle</C></Mark>
## <Item>
## is a function to convert a list of elements of <A>M</A> to a cocycle.
## </Item>
## <Mark><C>isSplitExtension</C></Mark>
## <Item>
## indicates whether <A>G</A> splits over <A>M</A>.
## The following components are only bound if the extension splits.
## Note that if <A>M</A> is given by a modulo pcgs all subgroups are given
## as subgroups of <A>G</A> by generators corresponding to <C>generators</C>
## and thus may not contain the denominator of the modulo pcgs.
## In this case taking the closure with this denominator will give the full
## preimage of the complement in the factor group.
## </Item>
## <Mark><C>complement</C></Mark>
## <Item>
## One complement to <A>M</A> in <A>G</A>.
## </Item>
## <Mark><C>cocycleToComplement( cyc )</C></Mark>
## <Item>
## is a function that takes a cocycle from <C>oneCocycles</C> and returns
## the corresponding complement to <A>M</A> in <A>G</A>
## (with respect to the fixed complement <C>complement</C>).
## </Item>
## <Mark><C>complementToCocycle(<A>U</A>)</C></Mark>
## <Item>
## is a function that takes a complement and returns the corresponding
## cocycle.
## </Item>
## </List>
## <P/>
## If the factor <A>G</A>/<A>M</A> is given by a (modulo) pcgs <A>gens</A>
## then special methods are used that compute a presentation for the factor
## implicitly from the pcgs.
## <P/>
## Note that the groups of 1-cocycles and 1-coboundaries are not groups in
## the sense of <Ref Func="Group" Label="for several generators"/> for &GAP;
## but vector spaces.
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> n:=Group((1,2)(3,4),(1,3)(2,4));;
## gap> oc:=OneCocycles(g,n);
## rec( cocycleToComplement := function( c ) ... end,
## cocycleToList := function( c ) ... end,
## complement := Group([ (3,4), (2,4,3) ]),
## complementGens := [ (3,4), (2,4,3) ],
## complementToCocycle := function( K ) ... end,
## factorGens := [ (3,4), (2,4,3) ], generators := [ (3,4), (2,4,3) ],
## isSplitExtension := true, listToCocycle := function( L ) ... end,
## oneCoboundaries := <vector space over GF(2), with 2 generators>,
## oneCocycles := <vector space over GF(2), with 2 generators> )
## gap> oc.cocycleToList([ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]);
## [ (1,2)(3,4), (1,2)(3,4) ]
## gap> oc.listToCocycle([(),(1,3)(2,4)]) = Z(2) * [ 0, 0, 1, 0];
## true
## gap> oc.cocycleToComplement([ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]);
## Group([ (3,4), (1,3,4) ])
## gap> oc.complementToCocycle(Group((1,2,4),(1,4))) = Z(2) * [ 0, 1, 1, 1 ];
## true
## ]]></Example>
## <P/>
## The factor group
## <M>H^1(<A>G</A>/<A>M</A>, <A>M</A>) =
## Z^1(<A>G</A>/<A>M</A>, <A>M</A>) / B^1(<A>G</A>/<A>M</A>, <A>M</A>)</M>
## is called the first cohomology group.
## Currently there is no function which explicitly computes this group.
## The easiest way to represent it is as a vector space complement to
## <M>B^1</M> in <M>Z^1</M>.
## <P/>
## If the only purpose of the calculation of <M>H^1</M> is the determination
## of complements it might be desirable to stop calculations
## once it is known that the extension cannot split.
## This can be achieved via the more technical function
## <Ref Func="OCOneCocycles"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OneCoboundaries" );
#############################################################################
##
#O OneCocycles( <G>, <M> )
#O OneCocycles( <gens>, <M> )
#O OneCocycles( <G>, <mpcgs> )
#O OneCocycles( <gens>, <mpcgs> )
##
## <#GAPDoc Label="OneCocycles">
## <ManSection>
## <Heading>OneCocycles</Heading>
## <Oper Name="OneCocycles" Arg='G, M' Label="for two groups"/>
## <Oper Name="OneCocycles" Arg='G, mpcgs' Label="for a group and a pcgs"/>
## <Oper Name="OneCocycles" Arg='gens, M'
## Label="for generators and a group"/>
## <Oper Name="OneCocycles" Arg='gens, mpcgs'
## Label="for generators and a pcgs"/>
##
## <Description>
## Computes the group of 1-cocycles <M>Z^1(<A>G</A>/<A>M</A>,<A>M</A>)</M>.
## The normal subgroup <A>M</A> may be given by a (Modulo)Pcgs <A>mpcgs</A>.
## In this case the whole calculation is performed modulo the normal
## subgroup defined by <C>DenominatorOfModuloPcgs(<A>mpcgs</A>)</C>
## (see <Ref Sect="Polycyclic Generating Systems"/>).
## Similarly the group <A>G</A> may instead be specified by a set of
## elements <A>gens</A> that are representatives for a generating system for
## the factor group <A>G</A>/<A>M</A>.
## If this is done the 1-cocycles are computed
## with respect to these generators (otherwise the routines try to select
## suitable generators themselves).
## The current version of the code assumes that <A>G</A> is a permutation
## group or a pc group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OneCocycles" );
#############################################################################
##
#O OCOneCoboundaries( <ocr> ) . . . . . . . . . . one cobounds main routine
##
## <ManSection>
## <Oper Name="OCOneCoboundaries" Arg='ocr'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCOneCoboundaries");
#############################################################################
##
#O OCConjugatingWord( <ocr>, <c1>, <c2> ) . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCConjugatingWord" Arg='ocr, c1, c2'/>
##
## <Description>
## Compute a Word n in <A>ocr.module</A> such that <A>c1</A> ^ n = <A>c2</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCConjugatingWord");
#############################################################################
##
#O OCEquationMatrix( <ocr>, <r>, <n> ) . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCEquationMatrix" Arg='ocr, r, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCEquationMatrix");
#############################################################################
##
#O OCSmallEquationMatrix( <ocr>, <r>, <n> ) . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCSmallEquationMatrix" Arg='ocr, r, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCSmallEquationMatrix");
#############################################################################
##
#O OCEquationVector( <ocr>, <r> ) . . . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCEquationVector" Arg='ocr, r'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCEquationVector");
#############################################################################
##
#O OCSmallEquationVector( <ocr>, <r> ) . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCSmallEquationVector" Arg='ocr, r'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OCSmallEquationVector");
#############################################################################
##
#O OCAddComplement( <ocr>, <ocr.group>, <K> ) . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="OCAddComplement" Arg='ocr, ocr.group, K'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation("OCAddComplement",
[IsRecord,IsGroup,IsListOrCollection]);
#############################################################################
##
#O OCOneCocycles( <ocr>, <onlySplit> ) . . . . . . one cocycles main routine
##
## <#GAPDoc Label="OCOneCocycles">
## <ManSection>
## <Oper Name="OCOneCocycles" Arg='ocr, onlySplit'/>
##
## <Description>
## is the more technical function to compute 1-cocycles. It takes an record
## <A>ocr</A> as first argument which must contain at least the components
## <C>group</C> for the group and <C>modulePcgs</C> for a (modulo) pcgs of
## the module. This record
## will also be returned with components as described under
## <Ref Func="OneCocycles" Label="for two groups"/>
## (with the exception of <C>isSplitExtension</C> which is indicated by the
## existence of a <C>complement</C>)
## but components such as <C>oneCoboundaries</C> will only be
## computed if not already present.
## <P/>
## If <A>onlySplit</A> is <K>true</K>,
## <Ref Func="OCOneCocycles"/> returns <K>false</K> as soon as
## possible if the extension does not split.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("OCOneCocycles");
#############################################################################
##
#O ComplementClassesRepresentativesEA(<G>,<N>) . complement classes to el.ab. N by 1-Cohom.
##
## <#GAPDoc Label="ComplementClassesRepresentativesEA">
## <ManSection>
## <Oper Name="ComplementClassesRepresentativesEA" Arg='G, N'/>
##
## <Description>
## computes complement classes to an elementary abelian normal subgroup
## <A>N</A> via 1-Cohomology. Normally, a user program should call
## <Ref Func="ComplementClassesRepresentatives"/> instead, which also works
## for a solvable (not necessarily elementary abelian) <A>N</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ComplementClassesRepresentativesEA");
#############################################################################
##
#o OCPPrimeSets( <U> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
## Construct a generating set, which has the generators of Hall-subgroups
## of a Sylow complement system as sublist.
##
#T DeclareGlobalFunction("OCPPrimeSets");
#T up to now no function is installed
#############################################################################
##
#E
|