/usr/share/gap/lib/padics.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 | #############################################################################
##
#W padics.gi GAP Library Jens Hollmann
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation part of the padic numbers.
##
#############################################################################
##
#F PrintPadicExpansion( <ppower>, <int>, <prime>, <precision> )
##
## PrintPadicsExpansion prints a pure p-adic number x, which is given as
## <ppower> and <int> such that x = <prime>^<ppower>*<int> as the p-adic
## expansion in the pure p-adic numbers with <precision> "digits". <int>
## may be divisible by <prime>. Each "digit" ranges from 0 to <prime>-1.
## If a "digit" has more than one decimal digit it is embraced in single
## quotes.
##
## For Example:
## 153.0(17) is 1*17^(-2) + 5*17^(-1) + 3*17^0 and
## '15'3.0(17) is 15*17^(-1) + 3*17^0
##
PrintPadicExpansion := function( ppower, int, prime, precision )
local pos, flag, z, k, r;
if int = 0 then
Print( "0" );
else
# <int> might be divisible by <prime>
while int mod prime = 0 do
int := int / prime;
ppower := ppower + 1;
od;
if ppower > 0 then
# leading zeros
for pos in [0..ppower-1] do
if pos = 1 then
Print( "." );
fi;
Print( "0" );
od;
fi;
pos := ppower;
flag := false;
# print the <int>
z := int;
k := 1;
r := z mod prime;
while (pos < 1) or ((k<=precision) and (z<>0)) do
if pos = 1 then
Print( "." );
fi;
if prime >= 10 then
if flag then
Print( r, "'" );
else
Print( "'" , r, "'" );
fi;
flag := true;
else
Print( r );
flag := false;
fi;
z := (z - r) / prime;
r := z mod prime;
k := k + 1;
pos := pos + 1;
od;
fi;
Print( "(", prime, ")" );
end;
#############################################################################
##
#F PadicExpansionByRat( <a>, <prime>, <precision>)
##
## PadicExpansionByRat takes a rational <a> and returns a list [ppart, erg],
## such that <a> is <prime>^ppart*erg in the pure p-adic numbers over
## <prime> with <precision> "digits".
##
## For Example:
## PadicExpansionByRat(5, 3, 4) -> [0, 5] = 12.00(3)
## PadicExpansionByRat(1/2, 3, 4) -> [0, 41] = 2.111(3)
##
PadicExpansionByRat := function( a, prime, precision )
local c, flag, ppart, z, step, erg, ppot, l, digit;
if a = 0 then
c := [0,0];
else
# extract the p-part (num and den of rationals are coprime)
flag := false;
ppart := 0;
if NumeratorRat(a) mod prime = 0 then
z := NumeratorRat(a) / prime;
step := 1;
flag := true;
fi;
if DenominatorRat(a) mod prime = 0 then
z := DenominatorRat(a) / prime;
step := -1;
flag := true;
fi;
if flag then
# extract the <prime>-part
ppart := step;
while z mod prime = 0 do
z := z / prime;
ppart := ppart + step;
od;
fi;
a := a / prime^ppart;
erg := 0;
ppot := 1;
l := 1;
while( l<= precision) and (a <> 0) do
digit := a mod prime;
erg := erg + digit * ppot;
a := (a - digit) / prime;
ppot := ppot * prime;
l := l + 1;
od;
c := [ppart, erg];
fi;
return c;
end;
#############################################################################
##
#F MultMatrixPadicNumbersByCoefficientsList( <list> )
##
## MultMatrix...List takes the coeff.-list <list> of a polynomial and
## returns a (n x 2*n-1)-matrix if n is the degree of the polynomial
## i.e. the length of <list> minus 1. If you have an extension L of a field
## K by a given polynomial f (i.e. L = K[X]/(f(X))) with coeff.-list <list>,
## than the i-th row of the returned matrix gives the coeff.-presentation of
## X^(i-1) in the basis {X^0, ..., X^n-1} of L.
##
## For example:
## Mult...List( [-1,5,-2,1] ) -> [1 ]
## so the polynomial is [ 1 ]
## X^3-2X^2+5X-1 [ 1]
## [1 -5 2]
## [2 -9 -1]
##
## So multiplying two elements of L (polynomials in X) is simply multiplying
## the polynomials and then multiplying the resulting coeff.-list with the
## matrix and get the coeff.-presentation of the result in the right basis
## of L.
##
MultMatrixPadicNumbersByCoefficientsList := function ( list )
local n, F, zero, one, mat, i, j;
n := Length(list) - 1;
F := FamilyObj(list[1]);
zero := Zero(F);
one := One(F);
if n <= 1 then
return [[one]];
fi;
# prepare a zero-matrix with ones on the main diagonale:
mat := [ ];
for i in [1..2*n-1] do
mat[i] := [ ];
for j in [1..n] do
mat[i][j] := zero;
od;
od;
for i in [1..n] do
mat[i][i] := one;
od;
# the n+1-th row is simple:
for j in [1..n] do
mat[n+1][j] := - list[j];
od;
# the rest is a little more complex. Regard the fact, that
# x^i is x*x^(i-1) and the coeff.presentation of x^(i-1) is
# already known.
for i in [n+2..2*n-1] do
mat[i] := ShiftedCoeffs(mat[i-1],1) + mat[i-1][n] * mat[n+1];
od;
return mat;
end;
#############################################################################
##
#F StructureConstantsPadicNumbers( <e>, <f> )
##
## An extended p-adic field is given by two polynomials. One for the
## ramified part g with degree <e> and one for the unramified part h with
## degree <f>. The extended p-adic field is then the extension of Q_p i.e. L
## = Q_p[x,y]/(g(y),h(x)).
##
## L has a basis in x^i*y^j. This basis is ordered as follows:
## {1, x, x^2, ..., y, x y, x^2 y, ..., y^2, x y^2, x^2 y^2, ...}
##
## Let B_i be the i-th basiselement. StructureConstantsPadicNumbers takes
## the two degrees <e> and <f> and returns a (n x n)-matrix (n = <e> * <f>).
## In this matrix stands at position (i,j) the index of the row of the
## multiplication-matrix that gives the coeff.-presentation of B_i * B_j The
## mult.-matrix of an extended p-adic field is given as the
## Kronecker-product of the mult.-matrices of the two polynomials returned
## by MultMatrixPadicNumbersByCoefficientsList. (see in
## PadicExtensionNumberFamily)
##
## So I get the structure-constants m_ijk if
## B_i*B_j = SUM(k=1,...,n) m_ijk B_k
## simply by M[ B[i,j], k].
##
## M is the mult.-matrix and B is the matrix returned by this function.
##
StructureConstantsPadicNumbers := function( e, f )
local mat, i, j, a1, a2, b1, b2;
# there are <e>*<f> basis-elements and according to the above ordering
# B_i is simply x^((i-1) mod f)*y^((i-1) div f)
mat := [];
for i in [1..e*f] do
mat[i] := [];
for j in [1..e*f] do
a1 := (i-1) mod f;
a2 := (j-1) mod f;
b1 := QuoInt(i-1, f);
b2 := QuoInt(j-1, f);
mat[i][j] := (a1+a2) + (b1+b2)*(2*f-1) + 1;
od;
od;
return mat;
end;
#############################################################################
##
#M ShiftedPadicNumber( <padic>, <shift> )
##
## ShiftedPadicNumber takes a p-adic number <padic> and an integer <shift>
## and returns the p-adic number c, that is <padic> * p^<shift>. The
## <shift> is just added to the p-part.
##
InstallMethod( ShiftedPadicNumber,
true,
[ IsPadicNumber, IsInt ],
0,
function( x, shift )
local fam, c;
fam := FamilyObj(x);
c := Immutable( [ x![1]+shift, x![2] ] );
return Objectify( fam!.defaultType, c );
end );
#############################################################################
##
#M <padic> * <rat>
##
InstallMethod( \*,
true,
[ IsPadicNumber, IsRat ],
0,
function( a, b )
local fam;
fam := FamilyObj( a );
return a * PadicNumber( fam, b );
end );
#############################################################################
##
#M <rat> * <padic>
##
InstallMethod( \*,
true,
[ IsRat, IsPadicNumber ],
0,
function( a, b )
local fam;
fam := FamilyObj( b );
return PadicNumber( fam, a ) * b;
end );
#############################################################################
##
#M <padic-list> * <rat>
##
InstallMethod( \*,
true,
[ IsPadicNumberList, IsRat ],
0,
function( a, b )
b := PadicNumber( FamilyObj(a[1]), b );
return List( a, x -> x * b );
end );
#############################################################################
##
#M <rat> * <padic-list>
##
InstallMethod( \*,
true,
[ IsRat, IsPadicNumberList ],
0,
function( a, b )
a := PadicNumber( FamilyObj(b[1]), a );
return List( b, x -> a * x );
end );
#############################################################################
##
#M ZeroOp( <padic> )
##
InstallMethod( ZeroOp,
"for a p-adic number",
true,
[ IsPadicNumber ],
0,
function( padic )
return Zero( FamilyObj( padic ) );
end );
#############################################################################
##
#M OneOp( <padic> )
##
InstallMethod( OneOp,
"for a p-adic number",
true,
[ IsPadicNumber ],
0,
function( padic )
return One( FamilyObj( padic ) );
end );
#############################################################################
##
#M PurePadicNumberFamily( <p>, <precision> )
##
## PurePadicNumberFamily returns the family of pure p-adic numbers over the
## prime <p> with <precision> "digits". For the representation of pure
## p-adic numbers see "PadicNumber" below.
##
InstallValue(PADICS_FAMILIES,[]);
InstallGlobalFunction( PurePadicNumberFamily, function( p, precision )
local str, fam;
if not IsPrimeInt( p ) then
Error( "<p> must be a prime" );
fi;
if (not IsInt( precision )) or (precision < 0) then
Error( "<precision> must be a positive integer" );
fi;
if not IsBound(PADICS_FAMILIES[p]) then
PADICS_FAMILIES[p] := [];
fi;
if not IsBound(PADICS_FAMILIES[p][precision]) then
str := "PurePadicNumberFamily(";
Append( str, String(p) );
Append( str, "," );
Append( str, String(precision) );
Append( str, ")" );
fam := NewFamily( str, IsPurePadicNumber );
fam!.prime:= p;
fam!.precision:= precision;
fam!.modulus:= p^precision;
fam!.printPadicSeries:= true;
fam!.defaultType := NewType( fam, IsPurePadicNumber );
PADICS_FAMILIES[p][precision] := fam;
fi;
return PADICS_FAMILIES[p][precision];
end );
#############################################################################
##
#M PadicNumber( <pure-padic-family>, <list> )
##
## Make a pure p-adic number out of a list. A pure p-adic number is
## represented as a list of length 2 such that the number is p^list[1] *
## list[2]. It is easily guaranteed that list[2] is never divisible by the
## prime p. By that we have always maximum precision.
##
InstallMethod( PadicNumber, "for a pure p-adic family and a list",
true,
[ IsPurePadicNumberFamily,
IsCyclotomicCollection ],
0,
function( fam, list )
if Length(list) <> 2 then
Error( "<list> must have length 2" );
elif not IsInt(list[1]) then
Error( "<list>[1] must be an integer" );
elif not IsInt(list[2]) or list[2] < 0 or list[2] >= fam!.modulus then
Error( "<list>[2] must be an integer in {0..p^precision}" );
fi;
return Objectify( fam!.defaultType, Immutable(list) );
end );
#############################################################################
##
#M PadicNumber( <pure-padic-family>, <rat> )
##
## Make a pure p-adic number out of a rational.
##
InstallMethod( PadicNumber, "for a pure p-adic family and a rational",
true,
[ IsPurePadicNumberFamily,
IsRat ],
0,
function( fam, rat )
local c;
c := Immutable( PadicExpansionByRat( rat, fam!.prime, fam!.precision ) );
return Objectify( fam!.defaultType, c );
end );
#############################################################################
##
#M PrintObj( <pure-padic> )
##
InstallMethod( PrintObj,
true,
[ IsPurePadicNumber ],
0,
function ( x )
local fam;
fam := FamilyObj(x);
# printPadicSeries is just a boolean variable. Handy for checking
# what REALLY happens if set to false.
if fam!.printPadicSeries then
PrintPadicExpansion( x![1], x![2], fam!.prime, fam!.precision );
else
Print( fam!.prime, "^", x![1], "*", x![2], "(" , fam!.prime , ")" );
fi;
end );
#############################################################################
##
#M Random( <pure-padic-family> )
##
## This is just something that actually returns a pure p-adic number. The
## range of the p-part is not totally covered as it is infinity. But you
## may get two pure p-adic numbers that have no "digit" in common, so by
## adding them, one of the two vanishes.
##
InstallOtherMethod( Random,
true,
[ IsPurePadicNumberFamily ],
0,
function ( fam )
local c;
c := [];
c[1] := Random( -fam!.precision, fam!.precision );
c[2] := Random( 0, fam!.modulus-1 );
while c[2] mod fam!.prime = 0 do
c[1] := c[1] + 1;
c[2] := c[2] / fam!.prime;
od;
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M Zero( <pure-padic-family> )
##
InstallOtherMethod( Zero,
true,
[ IsPurePadicNumberFamily ],
0,
function ( fam )
return PadicNumber( fam, [0,0] );
end );
#############################################################################
##
#M IsZero( <pure-padic> )
##
InstallMethod( IsZero,
true,
[ IsPurePadicNumber ],
0,
function ( x )
return x![2] = 0;
end );
########################################################################
##
#M One( <pure-padic-family> )
##
InstallOtherMethod( One,
true,
[ IsPurePadicNumberFamily ],
0,
function ( fam )
return PadicNumber( fam, [0,1] );
end );
#############################################################################
##
#M Valuation( <pure-padic>
##
## The Valuation is the p-part of the p-adic number.
##
InstallMethod( Valuation,
true,
[ IsPurePadicNumber ],
0,
function( x )
if IsZero(x) then
return infinity;
fi;
return x![1];
end );
#############################################################################
##
#M AdditiveInverseOp( <pure-padic> )
##
InstallMethod( AdditiveInverseOp,
true,
[ IsPurePadicNumber ],
0,
function( a )
local fam, c;
fam := FamilyObj( a );
c := [ a![1], -a![2] mod fam!.modulus];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M InverseOp( <pure-padic> )
##
InstallMethod( InverseOp,
true,
[ IsPurePadicNumber ],
0,
function( a )
local fam, c;
if IsZero(a) then
Error("division by zero");
fi;
fam:= FamilyObj( a );
c:= [ -a![1] , 1/a![2] mod fam!.modulus ];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <pure-padic> + <pure-padic>
##
InstallMethod( \+,
IsIdenticalObj,
[ IsPurePadicNumber, IsPurePadicNumber ],
0,
function( a, b )
local fam, c, r;
# if <a> or <b> is zero, return the other one
if IsZero(a) then
return b;
fi;
if IsZero(b) then
return a;
fi;
fam:= FamilyObj( a );
# different valuation: c[2] is NOT divisible by p!
if a![1] < b![1] then
c := [ a![1],
(a![2]+fam!.prime^(b![1]-a![1])*b![2]) mod fam!.modulus ];
# equal valuation: c[2] MAY BE divisible by p! So check that.
elif a![1] = b![1] then
c := [];
c[1] := a![1];
c[2] := (a![2] + b![2]) mod fam!.modulus;
# c[2] might be divisible by p
r := c[2] mod fam!.prime;
while (r=0) and (c[2]>1) do
c[1] := c[1] + 1;
c[2] := c[2] / fam!.prime;
r := c[2] mod fam!.prime;
od;
# different valuation: again c[2] is NOT divisible by p!
else
c:= [ b![1],
(fam!.prime^(a![1]-b![1])*a![2]+b![2]) mod fam!.modulus ];
fi;
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <pure-padic> * <pure-padic>
##
InstallMethod( \*,
IsIdenticalObj,
[ IsPurePadicNumber, IsPurePadicNumber ],
0,
function( a, b )
local fam, c;
fam:= FamilyObj( a );
if IsZero(a) then
c:= [0, 0];
elif IsZero(b) then
c:= [0, 0];
else
c:= [ a![1]+b![1] , a![2]*b![2] mod fam!.modulus ];
fi;
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <pure-padic> / <pure-padic>
##
InstallMethod( \/,
IsIdenticalObj,
[ IsPurePadicNumber, IsPurePadicNumber ],
0,
function( a, b )
local fam, c;
if IsZero(b) then
Error("division by zero");
fi;
fam:= FamilyObj( a );
c:= [ a![1]-b![1] , a![2]/b![2] mod fam!.modulus ];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <pure-padic> = <pure-padic>
##
InstallMethod( \=,
IsIdenticalObj,
[ IsPurePadicNumber, IsPurePadicNumber ],
0,
function( a, b )
return (a![1] = b![1]) and (a![2] = b![2]);
end );
#############################################################################
##
#M <pure-padic> < <pure-padic>
##
## This is just something to keep GAP quiet
##
InstallMethod( \<,
IsIdenticalObj,
[ IsPurePadicNumber, IsPurePadicNumber ],
0,
function( a, b )
if a![1] = b![1] then
return a![2] < b![2];
else
return a![1] < b![1];
fi;
end );
#############################################################################
##
#M PadicExtensionNumberFamily( <p>, <precision>, <unram>, <ram> )
##
## An extended p-adic field L is given by two polynomials h and g with
## coeff.-lists <unram> (for the unramified part) and <ram> (for the
## ramified part). Then L is Q_p[x,y]/(h(x),g(y)). This function takes the
## prime number <p> and the two coeff.-lists <unram> and <ram> for the two
## polynomials. It is not checked BUT <unram> should be a cyclotomic
## polynomial and <ram> should be an Eisenstein-polynomial or [1,1]. Every
## number out of L is represented as a coeff.-list for the basis
## {1,x,x^2,...,y,xy,x^2y,...} of L. <precision> is the number of "digits"
## that all the coeff. have.
##
InstallGlobalFunction( PadicExtensionNumberFamily,
function( p, precision, unram, ram )
local str, fam, yem1;
if not IsPrimeInt( p ) then
Error( "<p> must be a prime" );
fi;
if (not IsInt( precision )) or (precision < 0) then
Error( "<precision> must be a positive integer" );
fi;
str := "PadicExtensionNumberFamily(";
Append( str, String(p) );
Append( str, "," );
Append( str, String(precision) );
Append( str, ",...)" );
fam := NewFamily( str, IsPadicExtensionNumber );
fam!.defaultType := NewType( fam, IsPadicExtensionNumber );
fam!.prime := p;
fam!.precision := precision;
fam!.modulus := p^precision;
fam!.unramified := unram;
fam!.f := Length(unram)-1;
fam!.ramified := ram;
fam!.e := Length(ram)-1;
fam!.n := fam!.e * fam!.f;
fam!.M := KroneckerProduct(
MultMatrixPadicNumbersByCoefficientsList(ram),
MultMatrixPadicNumbersByCoefficientsList(unram) );
fam!.B := StructureConstantsPadicNumbers(fam!.e, fam!.f);
yem1 := List( [1..fam!.n], i->0 );
yem1[ (fam!.e-1) * fam!.f + 1 ] := 1;
fam!.yem1 := Objectify( fam!.defaultType, [0, yem1] );
fam!.printPadicSeries := true;
return fam;
end );
#############################################################################
##
## General comment: In PadicExtensionNumberFamily you give the two
## polynomials, that define the extension of Q_p. You have to care for
## yourself, that these polynomials are really irreducible over Q_p! Try
## PadicExtensionNumberFamily(3, 4, [1,1,1], [1,1]) for example. You think
## this is ok? It is not, because x^2+x+1 is NOT irreducible over Q_p. The
## result being, that you get non-invertible extended p-adic numbers. So,
## if that happens, check your polynomials!
##
#############################################################################
##
#M PadicNumber( <extended-padic-family>, <list> )
##
## Make an extended p-adic number out of a list. An extended p-adic number
## is represented as a list L of length 2.
##
## L[2] is the list of coeff. for the Basis {1,..,x^(f-1)*y^(e-1)} of the
## extended p-adic field.
##
## L[1] is a common p-part of all the coeff.
##
## It is NOT guaranteed that all or at least one of the coeff. is not
## divisible by the prime p.
##
## For example: in PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1])
## the number (1.2000, 0.1210)(3) may be
## [ 0, [ 1.2000, 0.1210 ] ] or
## [-1, [ 12.000, 1.2100 ] ] here the coeff. have to be multiplied
## by p^(-1)
##
## so there may be a number (1.2, 2.2)(3) and you may ask: "Where are my 5
## digits? There are only two! Where is the complain department!" But
## the number is intern: [-3, [ 0.0012, 0.0022 ] ] and so has in fact
## maximum precision.
##
## So watch it!
##
InstallMethod( PadicNumber, "for a p-adic extension family and a list",
true,
[ IsPadicExtensionNumberFamily,
IsList ],
0,
function( fam, list )
local range;
range := [ 0 .. fam!.modulus-1 ];
if not IsInt(list[1]) then
Error( "<list>[1] must be an integer" );
elif not IsList(list[2]) or Length(list[2]) <> fam!.n then
Error( "<list>[2] must be a list of length ", fam!.n );
elif not ForAll( list[2], x -> x in range ) then
Error( "<list>[2] must be a list of integers in ", range );
fi;
return Objectify( fam!.defaultType, Immutable(list) );
end );
#############################################################################
##
#M PadicNumber( <extended-padic-family>, <rat> )
##
## Make an extended p-adic number out of a rational. That means take the
## result of PadicExpansionByRat and put it at the first position of the
## coeff.list.
##
InstallMethod( PadicNumber, "for a p-adic extension family and a rational",
true,
[ IsPadicExtensionNumberFamily,
IsRat ],
0,
function( fam, rat )
local c, erg;
c := PadicExpansionByRat( rat, fam!.prime, fam!.precision );
erg := List( [1..fam!.n], i->0 );
erg[1] := c[2];
c := [ c[1], erg ];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M PrintObj( <extended-padic> )
##
InstallMethod( PrintObj,
true,
[ IsPadicExtensionNumber ],
0,
function( x )
local fam, l;
fam := FamilyObj(x);
if fam!.printPadicSeries then
Print( "padic(" );
for l in [1..fam!.n-1] do
PrintPadicExpansion( x![1], x![2][l], fam!.prime, fam!.precision );
Print( "," );
od;
PrintPadicExpansion( x![1], x![2][fam!.n], fam!.prime, fam!.precision );
Print( ")" );
else
Print( "padic(", fam!.prime, "^", x![1], "*", x![2], ")" );
fi;
end );
#############################################################################
##
#M Random( <extended-padic-family>
##
## Again this is just something that returns an extended p-adic number. The
## p-part is not totally covered (just ranges from -precision to precision).
##
InstallOtherMethod( Random,
true,
[ IsPadicExtensionNumberFamily ],
0,
function ( fam )
local c, l;
c := [];
c[1] := Random( -fam!.precision, fam!.precision );
c[2] := [];
for l in [ 1 .. fam!.n ] do
c[2][l] := Random( 0, fam!.modulus-1 );
od;
while ForAll( c[2], x-> x mod fam!.prime = 0 ) do
c[1] := c[1] + 1;
c[2] := c[2] / fam!.prime;
od;
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M Zero( <extended-padic-family> )
##
InstallOtherMethod( Zero,
true,
[ IsPadicExtensionNumberFamily ],
0,
function( fam )
return Objectify( fam!.defaultType, [0, List( [1..fam!.n], i->0 )] );
end );
########################################################################
##
#M IsZero( <extended-padic> )
##
InstallMethod( IsZero,
true,
[ IsPadicExtensionNumber ],
0,
function ( x )
if PositionNot( x![2], 0 ) > Length( x![2] ) then
return true;
fi;
return false;
end );
#############################################################################
##
#M One( <extended-padic-family> )
##
InstallOtherMethod( One,
true,
[ IsPadicExtensionNumberFamily ],
0,
function( fam )
local c;
c := List( [ 1 .. fam!.n ], i -> 0 );
c[1] := 1;
return Objectify( fam!.defaultType, [0, c] );
end );
#############################################################################
##
#M Valuation( <extended-padic>
##
## In an extended p-adic field the prime p has valuation e (the degree of
## the totally ramified part) and y has valuation 1. y^e is p so this makes
## sense.
##
## The valuation of a sum is (in this case) the minimum of the valuations of
## the summands. As an extended p-adic number is
##
## SUM(i=0..(f-1)) SUM(j=0..(e-1)) a_ij x^i y^j
##
## the valuation nu of that number is the minimum over i and j of
##
## nu(a_ij x^i y^j)
##
## The valuation of a product is the sum of the single valuations, so
##
## nu(a_ij x^i y^j) = nu(a_ij) + nu(x^i) + nu(y^j)
## = nu(a_ij) + j
##
InstallMethod( Valuation,
true,
[ IsPadicExtensionNumber ],
0,
function ( x )
local fam, min, j, wert;
fam := FamilyObj(x);
min := Minimum( List([1..fam!.f], i -> Valuation(x![2][i],fam!.prime)) );
if min <> infinity then
min := fam!.e * min;
fi;
for j in [1..fam!.e-1] do
wert := Minimum( List( [1..fam!.f], i ->
Valuation(x![2][i+j*fam!.f], fam!.prime) ) );
if wert <> infinity then
wert := fam!.e * wert + j;
fi;
if wert < min then
min := wert;
fi;
od;
if min <> infinity then
min := min + x![1] * fam!.e;
fi;
return min;
end );
#############################################################################
##
#M AdditiveInverseOp( <extended-padic> )
##
InstallMethod( AdditiveInverseOp,
true,
[ IsPadicExtensionNumber ],
0,
function( a )
local fam, c;
fam := FamilyObj( a );
c := [ a![1], List( a![2], x -> (-x) mod fam!.modulus ) ];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M InverseOp( <extended-padic> )
##
InstallMethod( InverseOp,
true,
[ IsPadicExtensionNumber ],
0,
function(x)
local fam, val, coeffppart, coeffypart, ppart, z, L, k, j,
Lp, E, Beta, ppot, Beta_k, c, addppart;
if IsZero(x) then
Error( "<x> must be non-zero" );
fi;
fam := FamilyObj(x);
# need a copy of x later:
z := Objectify( fam!.defaultType, [x![1], ShallowCopy(x![2])] );
# if x = [ppart, [x_1,...,x_n]] then
# Valuation(x) = ppart*fam!.e + coeffppart*fam!.e + coeffypart
val := Valuation(x);
if fam!.e > 1 then
coeffypart := val mod fam!.e;
else
coeffypart := 0;
fi;
ppart := x![1];
coeffppart := (val - ppart*fam!.e - coeffypart) / fam!.e;
# so x = p^(ppart + coeffppart) * y^coeffypart * z
# and z is divisable neither by y nor by p, so it has Valuation 0
# and can be inverted.
# We don't have y^(-1) but y^(e-1) which is p*y^(-1)
# so z = x * y^(e-1)^coeffypart * p^(-ppart-coeffppart-coeffypart).
# at least there is the coeffppart in z![2]:
if coeffppart > 0 then
z![1] := z![1] + coeffppart;
z![2] := z![2] / fam!.prime^coeffppart;
fi;
addppart := 0;
if coeffypart > 0 then
z := z * fam!.yem1^coeffypart;
# BUT by multiplying with y^(e-1) one may get additional p-parts
# in the coeffs
while ForAll( z![2], y -> y mod fam!.prime = 0 ) do
addppart := addppart + 1;
z![1] := z![1] + 1;
z![2] := z![2] / fam!.prime;
od;
fi;
# z![1] := z![1] - ppart - coeffppart - coeffypart - addppart;
# NOW z![2] has an entry that is not divisible by p and L should be
# invertible
L := [];
for k in [1..fam!.n] do
L[k] := [];
for j in [1..fam!.n] do
L[k][j]:=Sum(List([1..fam!.n],
i -> z![2][i] * fam!.M[ fam!.B[i][j] ][ k ] ));
od;
od;
Lp := InverseMatMod(L, fam!.prime);
# E is the right side (1,0,...,0) and Beta is just (0,...,0)
E := List([1..fam!.n], i->0);
Beta := ShallowCopy(E);
E[1] := 1;
ppot := 1;
# now solve L * Beta = E mod p:
for k in [0..fam!.precision-1-coeffppart] do
Beta_k := List( Lp * E, x -> x mod fam!.prime );
Beta := Beta + Beta_k * ppot;
E := (E - L * Beta_k) / fam!.prime;
ppot := ppot * fam!.prime;
od;
c := [];
c[1] := -z![1];
c[2] := Beta;
# as z^(-1) is now calculated, the formula above gives
# x^(-1) = z^(-1) * y^(e-1)^m * p^(-ppart-coeffppart-coeffypart)
c[1] := c[1] - coeffppart - addppart;
c[2] := c[2] * fam!.prime^(coeffppart + addppart);
c[2] := List( c[2], x -> x mod fam!.modulus );
Objectify( fam!.defaultType, c );
return ( c * fam!.yem1^coeffypart );
end );
#############################################################################
##
#M <extended-padic> + <extended-padic>
##
InstallMethod( \+,
IsIdenticalObj,
[ IsPadicExtensionNumber,
IsPadicExtensionNumber ],
0,
function( x, y )
local fam, ppot, c;
if IsZero(y) then
return x;
elif IsZero(x) then
return y;
fi;
fam:= FamilyObj( x );
ppot := Minimum( x![1], y![1] );
c := [];
c[1] := ppot;
c[2] := fam!.prime^(x![1]-ppot)*x![2] + fam!.prime^(y![1]-ppot)*y![2];
c[2] := List( c[2], x -> x mod fam!.modulus );
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <extended-padic> - <extended-padic>
##
InstallMethod( \-,
IsIdenticalObj,
[ IsPadicExtensionNumber,
IsPadicExtensionNumber ],
0,
function( x, y )
local fam, ppot, c;
if IsZero(y) then
return x;
elif IsZero(x) then
return y;
fi;
fam:= FamilyObj( x );
ppot := Minimum( x![1], y![1] );
c := [];
c[1] := ppot;
c[2] := fam!.prime^(x![1]-ppot)*x![2] - fam!.prime^(y![1]-ppot)*y![2];
c[2] := List( c[2], x -> x mod fam!.modulus );
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <pure-padic> * <extended-padic>
##
InstallMethod( \*,
true,
[ IsPurePadicNumber,
IsPadicExtensionNumber ],
0,
function( a, x )
local Qpxy, Qp, c;
Qpxy := FamilyObj(x);
Qp := FamilyObj(a);
if Qpxy!.prime <> Qp!.prime then
Error( "different primes" );
fi;
if Qpxy!.precision <> Qp!.precision then
Error( "different precision" );
fi;
c := [ a![1] + x![1] ];
c[2] := List( a![2] * x![2], x -> x mod Qpxy!.modulus );
return Objectify( Qpxy!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <extended-padic> * <pure-padic>
##
InstallMethod( \*,
true,
[ IsPadicExtensionNumber,
IsPurePadicNumber ],
0,
function( x, a )
local Qpxy, Qp, c;
Qpxy := FamilyObj(x);
Qp := FamilyObj(a);
if Qpxy!.prime <> Qp!.prime then
Error( "different primes" );
fi;
if Qpxy!.precision <> Qp!.precision then
Error( "different precision" );
fi;
c := [ a![1] + x![1] ];
c[2] := List( x![2] * a![2], x -> x mod Qpxy!.modulus );
return Objectify( Qpxy!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <extended-padic> * <extended-padic>
##
InstallMethod( \*,
IsIdenticalObj,
[ IsPadicExtensionNumber,
IsPadicExtensionNumber ],
0,
function (a, b)
local fam, vec, addvec, bj, bi, aj, ai, c;
fam := FamilyObj( a );
## zwei Nullvektoren der Laenge (2f-1)(2e-1):
vec := List( [1..(2*fam!.f-1)*(2*fam!.e-1)], i->0 );
addvec := List( [1..(2*fam!.f-1)*(2*fam!.e-1)], i->0 );
## Koeff. von b eintragen
for bj in [1..fam!.e] do
for bi in [1..fam!.f] do
vec[ (bj-1)*(2*fam!.f-1) + bi ] := b![2][ (bj-1)*fam!.f + bi ];
od;
od;
## Das eigentliche Multiplizieren:
for aj in [1..fam!.e] do
for ai in [1..fam!.f] do
addvec := addvec + vec * a![2][ (aj-1)*fam!.f + ai ];
vec := ShiftedCoeffs( vec, 1 );
od;
vec := ShiftedCoeffs( vec, fam!.f-1 );
od;
c := [ a![1] + b![1], List(addvec * fam!.M, x -> x mod fam!.modulus) ];
return Objectify( fam!.defaultType, Immutable( c ) );
end );
#############################################################################
##
#M <extended-padic> = <extended-padic>
##
InstallMethod( \=,
IsIdenticalObj,
[ IsPadicExtensionNumber,
IsPadicExtensionNumber ],
0,
function( a, b )
local fam;
if IsZero(a) then
return IsZero(b);
elif IsZero(b) then
return false;
fi;
# A little work is needed, because p^1 * 10 is equal to one
fam := FamilyObj(a);
a := [ a![1], ShallowCopy(a![2]) ];
b := [ b![1], ShallowCopy(b![2]) ];
while ForAll( a[2], z -> z mod fam!.prime = 0 ) do
a[2] := a[2] / fam!.prime;
a[1] := a[1] + 1;
od;
while ForAll( b[2], z -> z mod fam!.prime = 0 ) do
b[2] := b[2] / fam!.prime;
b[1] := b[1] + 1;
od;
return (a[1] = b[1]) and (a[2] = b[2]);
end );
#############################################################################
##
#M <extended-padic> < <extended-padic>
##
## Again just something to have it.
##
InstallMethod( \<,
IsIdenticalObj,
[ IsPadicExtensionNumber,
IsPadicExtensionNumber ],
0,
function( a, b )
local fam;
if IsZero(a) then
return not IsZero(b);
elif IsZero(b) then
return false;
fi;
fam := FamilyObj(a);
a := [ a![1], ShallowCopy(a![2]) ];
b := [ b![1], ShallowCopy(b![2]) ];
while ForAll( a[2], z -> z mod fam!.prime = 0 ) do
a[2] := a[2] / fam!.prime;
a[1] := a[1] + 1;
od;
while ForAll( b[2], z -> z mod fam!.prime = 0 ) do
b[2] := b[2] / fam!.prime;
b[1] := b[1] + 1;
od;
if a[1] = b[1] then
return a[2] < b[2];
else
return a[1] < b[1];
fi;
end );
#############################################################################
##
#E padics.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|