/usr/share/gap/lib/partitio.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | #############################################################################
##
#W partitio.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the functions that construct and modify ordered
## partitions. These functions are used in the backtrack algorithms for
## permutation groups.
##
## A *partition* is a mutable record with the following components.
## \beginitems
## `points': &
## a list of all points contained in the partition, such that
## points from the same cell are neighboured
##
## `cellno': &
## a list whose <i>th entry is the number of the cell which
## contains the point <i>
##
## `firsts': &
## a list such that <points[firsts[j]]> is the first point in
## <points> which is in cell <j>
##
## `lengths': &
## a list of the cell lengths
## \enditems
##
#############################################################################
##
#F Partition( <list> ) . . . . . . . . . . . . . . . . partition constructor
##
InstallGlobalFunction( Partition, function( list )
local P, i, c;
P := rec( points := Concatenation( list ),
firsts := [ ],
lengths := [ ] );
if Length(list)>0 then
P.cellno := ListWithIdenticalEntries( Maximum( P.points ), 0 );
else
Info(InfoWarning,2,"empty partition created!");
P.cellno:=[];
fi;
i := 1;
for c in [ 1 .. Length( list ) ] do
if Length( list[ c ] ) = 0 then
Error( "Partition: cells must not be empty" );
fi;
Add( P.firsts, i );
Add( P.lengths, Length( list[ c ] ) );
i := i + Length( list[ c ] );
P.cellno{ list[ c ] } := c + 0 * list[ c ];
od;
return P;
end );
#############################################################################
##
#F IsPartition( <P> ) . . . . . . . . . . . . test if object is a partition
##
InstallGlobalFunction( IsPartition, P -> IsRecord( P ) and IsBound( P.cellno ) );
#T state this in the definition of a partition!
#############################################################################
##
#F NumberCells( <P> ) . . . . . . . . . . . . . . . . . . . number of cells
##
InstallGlobalFunction( NumberCells, P -> Length( P.firsts ) );
#############################################################################
##
#F Cell( <P>, <m> ) . . . . . . . . . . . . . . . . . . . . . cell as list
##
InstallGlobalFunction( Cell, function( P, m )
return P.points{ [ P.firsts[m] .. P.firsts[m] + P.lengths[m] - 1 ] };
end );
#############################################################################
#F Cells( <Pi> ) . . . . . . . . . . . . . . . . . partition as list of sets
##
InstallGlobalFunction( Cells, function( Pi )
local cells, i;
cells := [ ];
for i in Reversed( [ 1 .. NumberCells( Pi ) ] ) do
cells[ i ] := Cell( Pi, i );
od;
return cells;
end );
#############################################################################
##
#F CellNoPoint( <part>,<pnt> )
##
InstallGlobalFunction( CellNoPoint,function(part,pt)
return part.cellno[pt];
end );
#############################################################################
##
#F CellNoPoints( <part>,<pnt> )
##
InstallGlobalFunction( CellNoPoints,function(part,pts)
return part.cellno{pts};
end );
#############################################################################
##
#F PointInCellNo( <part>,<pnt>,<no> )
##
InstallGlobalFunction( PointInCellNo,function(part,pt,no)
return part.cellno[pt]=no;
end );
#############################################################################
##
#F Fixcells( <P> ) . . . . . . . . . . . . . . . . . . . . fixcells as list
##
## Returns a list of the points along in their cell, ordered as these cells
## are ordered
##
InstallGlobalFunction( Fixcells, function( P )
local fix, i;
fix := [ ];
for i in [ 1 .. Length( P.lengths ) ] do
if P.lengths[ i ] = 1 then
Add( fix, P.points[ P.firsts[ i ] ] );
fi;
od;
return fix;
end );
#############################################################################
##
#F SplitCell( <P>, <i>, <Q>, <j>, <g>, <out> ) . . . . . . . . split a cell
##
## Splits <P>[ <i> ], by taking out all the points that are also contained
## in <Q>[ <j> ] ^ g. The new cell is appended to <P> unless it would be
## empty. If the old cell would remain empty, nothing is changed either.
##
## Returns the length of the new cell, or `false' if nothing was changed.
##
## Shortcuts of the splitting algorithm: If the last argument <out> is
## `true', at least one point will move out. If <out> is a number, at most
## <out> points will move out.
##
## Q is either a partition or a single cell.
##
BindGlobal("SplitCellTestfun1",function(Q,pt,no)
return PointInCellNo(Q,pt,no);
end);
BindGlobal("SplitCellTestfun2",function(Q,pt,no)
if no=1 then
return pt in Q;
else
return not (pt in Q);
fi;
end);
InstallGlobalFunction( SplitCell, function( P, i, Q, j, g, out )
local a, b, l, B, tmp, m, x, inflag, outflag,test,k,Pcop,acop,maxmov;
# If none or all points are moved out, do not change <P> and return
# 'false'.
a := P.firsts[ i ];
b := a + P.lengths[ i ];
l := b - 1;
# Collect the points to be moved out of the <i>th cell of <P> at the
# right.
# if B is passed, we moved too many (or all) points
if IsInt(out) then
maxmov:=out;
else
maxmov:=P.lengths[i]-1; # maximum number to be moved out: Cellength-1
fi;
if IsPartition(Q)
# if P.points is a range, or g not internal, we would crash
and IsPlistRep(P.points) and IsInternalRep(g) then
a:=SPLIT_PARTITION(P.points,Q.cellno,j,g,[a,l,maxmov]);
if a<0 then
return false;
fi;
else
# library version
if IsPartition(Q) then
test:=SplitCellTestfun1;
else
test:=SplitCellTestfun2;
fi;
B:=l-maxmov;
a := a - 1;
# Points left of <a> remain in the cell, points right of <b> move
# out.
while a < b do
# Decrease <b> until a point remains in the cell.
repeat
b := b - 1;
# $b < B$ means that more than <out> points move out.
if b < B then
return false;
fi;
until not test(Q,P.points[ b ] ^ g,j);
# Increase <a> until a point moved out.
repeat
a := a + 1;
until (a>b) or test(Q,P.points[ a ] ^ g,j);
# Swap the points.
if a < b then
tmp := P.points[ a ];
P.points[ a ] := P.points[ b ];
P.points[ b ] := tmp;
fi;
od;
fi;
if a>l then
# no point moved out
return false;
fi;
# Split the cell and introduce a new cell into <P>.
m := Length( P.firsts ) + 1;
P.cellno{ P.points{ [ a .. l ] } } := m + 0 * [ a .. l ];
P.firsts[ m ] := a;
P.lengths[ m ] := l - a + 1;
P.lengths[ i ] := P.lengths[ i ] - P.lengths[ m ];
return P.lengths[ m ];
end );
#############################################################################
##
#F IsolatePoint( <P>, <a> ) . . . . . . . . . . . . . . . . isolate a point
##
## Takes point <a> out of its cell in <P>, putting it into a new cell, which
## is appended to <P>. However, does nothing, if <a> was already isolated.
##
## Returns the number of the cell from <a> was taken out, or `false' if
## nothing was changed.
##
InstallGlobalFunction( IsolatePoint, function( P, a )
local i, pos, l, m;
i := P.cellno[ a ];
if P.lengths[ i ] = 1 then
return false;
fi;
pos := Position( P.points, a, P.firsts[ i ] - 1 );
l := P.firsts[ i ] + P.lengths[ i ] - 1;
P.points[ pos ] := P.points[ l ];
P.points[ l ] := a;
m := Length( P.firsts ) + 1;
P.cellno[ a ] := m;
P.firsts[ m ] := l;
P.lengths[ m ] := 1;
P.lengths[ i ] := P.lengths[ i ] - 1;
return i;
end );
#############################################################################
##
#F UndoRefinement( <P> ) . . . . . . . . . . . . . . . . . undo a refinement
##
## Undoes the effect of the last cell-splitting actually performed by
## `SplitCell' or `IsolatePoint'. (This means that if the last call of such
## a function had no effect, `UndoRefinement' looks at the second-last etc.)
## This fuses the last cell of <P> with an earlier cell.
##
## Returns the number of the cell with which the last cell was fused, or
## `false' if the last cell starts at `<P>.points[1]', because then it
## cannot have been split off.
##
## May behave undefined if there was no splitting before.
##
InstallGlobalFunction( UndoRefinement, function( P )
local M, pfm, plm, m;
M := Length( P.firsts );
pfm:=P.firsts[M];
if pfm = 1 then
return false;
fi;
plm:=P.lengths[M];
# Fuse the last cell with the one stored before it in `<P>.points'.
m := P.cellno[ P.points[ pfm - 1 ] ];
P.lengths[ m ] := P.lengths[ m ] + plm;
P.cellno{ P.points { [ pfm .. pfm + plm - 1 ] } } := m + 0 * [ 1 .. plm ];
Unbind( P.firsts[ M ] );
Unbind( P.lengths[ M ] );
return m;
end );
#############################################################################
##
#F FixpointCellNo( <P>, <i> ) . . . . . . . . . fixpoint from cell no. <i>
##
## Returns the first point of <P>[ <i> ] (should be a one-point cell).
##
InstallGlobalFunction( FixpointCellNo, function( P, i )
return P.points[ P.firsts[ i ] ];
end );
#############################################################################
##
#F FixcellPoint( <P>, <old> ) . . . . . . . . . . . . . . . . . . . . local
##
## Returns a random cell number which is not yet contained in <old> and has
## length 1.
##
## Adds this cell number to <old>.
##
InstallGlobalFunction( FixcellPoint, function( P, old )
local lens, poss, p;
lens := P.lengths;
poss := Filtered( [ 1 .. Length( lens ) ], i ->
not i in old and lens[ i ] = 1 );
if Length( poss ) = 0 then
return false;
else
p := Random( poss );
AddSet( old, p );
return p;
fi;
end );
#############################################################################
##
#F FixcellsCell( <P>, <Q>, <old> ) . . . . . . . . . . . local
##
## Returns [ <K>, <I> ] such that for j=1,...|K|=|I|, all points in cell
## <P>[ <I>[j] ] have value <K>[j] in <Q.cellno> (i.e.,
## lie in cell <K>[j] of the partition <Q>.
## Returns `false' if <K> and <I> are empty.
##
InstallGlobalFunction( FixcellsCell, function( P, Q, old )
local K, I, i, k, start;
K := [ ]; I := [ ];
for i in [ 1 .. NumberCells( P ) ] do
start := P.firsts[ i ];
k := CellNoPoint(Q,P.points[ start ]);
if not k in old
and ForAll( start + [ 1 .. P.lengths[ i ] - 1 ], j ->
CellNoPoint(Q,P.points[ j ]) = k ) then
AddSet( old, k );
Add( K, k ); Add( I, i );
fi;
od;
if Length( K ) = 0 then return false;
else return [ K, I ]; fi;
end );
#############################################################################
##
#F TrivialPartition( <Omega> ) . . . . . . . . . one-cell partition of a set
##
InstallGlobalFunction( TrivialPartition, function( Omega )
return Partition( [ Omega ] );
end );
#############################################################################
##
#F OrbitsPartition( <G>, <Omega> ) partition determined by the orbits of <G>
##
InstallGlobalFunction( OrbitsPartition, function( G, Omega )
if IsGroup( G ) then
return Partition( OrbitsDomain( G, Omega ) );
else
return Partition( OrbitsPerms( G.generators, Omega ) );
fi;
end );
#############################################################################
##
#F SmallestPrimeDivisor( <size> ) . . . . . . . . . smallest prime divisor
##
InstallGlobalFunction( SmallestPrimeDivisor, function( size )
local i;
i := 0;
if size = 1 then
return 1;
else
repeat
i := i + 1;
until i > Length( Primes ) or size mod Primes[ i ] = 0;
if i > Length( Primes ) then return FactorsInt( size )[ 1 ];
else return Primes[ i ]; fi;
fi;
end );
#############################################################################
##
#F CollectedPartition( <P>, <size> ) . orbits on cells under group of <size>
##
## Returns a partition into unions of cells of <P> of equal length, sorted
## by this length. However, if there are $n$ cells of equal length, which
## cannot be fused under the action of a group of order <size> (because $n$
## < SmallestPrimeDivisor( <size> )), leaves these $n$ cells unfused.
## (<size> = 1 suppresses this extra feature.)
##
InstallGlobalFunction( CollectedPartition, function( P, size )
local lens, C, div, typ, p, i;
lens := P.lengths;
C := [ ];
div := SmallestPrimeDivisor( size );
for typ in Collected( lens ) do
p := [ ];
for i in [ 1 .. Length( lens ) ] do
if lens[ i ] = typ[ 1 ] then
Add( p, Cell( P, i ) );
fi;
od;
if typ[ 2 ] < div then
Append( C, p );
else
Add( C, Concatenation( p ) );
fi;
od;
return Partition( C );
end );
#############################################################################
##
#E
|