/usr/share/gap/lib/pcgsperm.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | #############################################################################
##
#W pcgsperm.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains functions which deal with polycyclic generating
## systems of solvable permutation groups.
##
#############################################################################
##
#R IsMemberPcSeriesPermGroup . . . . . . . . . . . . . members of pc series
##
DeclareRepresentation( "IsMemberPcSeriesPermGroup",
IsPermGroup, [ "noInSeries" ] );
#############################################################################
##
#F AddNormalizingElementPcgs( <G>, <z> ) . . . . . cyclic extension for pcgs
##
InstallGlobalFunction( AddNormalizingElementPcgs, function( G, z )
local S, A, pos, relord,
pnt, orb, l, L, n, m, img, i, f, p, edg;
StretchImportantSLPElement(z);
S := G;
A := G;
pos := 1;
L := [ ];
if IsBound( G.relativeOrders ) then relord := G.relativeOrders;
else relord := false; fi;
# Loop over the stabilizer chain.
while z <> S.identity do
# If necessary, extend the stabilizer chain.
if IsBound( G.base ) then
ChooseNextBasePoint( S, G.base, [ z ] );
elif not IsBound( S.stabilizer ) then
InsertTrivialStabilizer( S, SmallestMovedPoint( z ) );
Unbind( S.stabilizer.relativeOrders );
fi;
# Extend the orbit.
orb := S.orbit;
pnt := orb[ 1 ];
l := Length( orb ); Add( L, l );
n := l;
m := 1;
img := pnt / z;
while not IsBound( S.translabels[ img ] ) do
orb[ n + 1 ] := img;
for i in [ 2 .. l ] do
orb[ n + i ] := orb[ n - l + i ] / z;
od;
n := n + l;
m := m + 1;
img := img / z;
od;
# Let $m = p_1p_2...p_l$. Then instead of entering <z> into
# '<G>.translabels' <d> times, enter $z^d$ once, for $d=p_1p_2...p_k$
# (where $k<=l$).
if m > 1 then
# If <m> = 1, the current level <A> has not been extended and <z>
# has been shifted into <w> in the next level. <w> or something
# further down, which will extend a future level, must be put in
# as a generator here.
AddSet( S.genlabels, 1 - pos );
while A.orbit[ 1 ] <> S.orbit[ 1 ] do
AddSet( A.genlabels, 1 - pos );
A := A.stabilizer;
od;
A := A.stabilizer;
f := 1;
for p in FactorsInt( m ) do
if relord <> false then
Add( relord, p, pos );
fi;
pos := pos + 1;
Add( S.labels, z, pos );
edg := ListWithIdenticalEntries( l, -pos );
for i in f * [ 1 .. m / f - 1 ] do
S.translabels{ orb{ i * l + [ 1 .. l ] } } := edg;
od;
f := f * p;
z := z ^ p;
od;
fi;
# Find a cofactor to <z> such that the product fixes <pnt>.
edg := S.translabels[ pnt ^ z ];
while edg <> 1 do
if edg > 1 then z := z * S.labels[ edg + pos - 1 ];
else z := z * S.labels[ -edg ]; fi;
edg := S.translabels[ pnt ^ z ];
od;
# Go down one step in the stabilizer chain.
S := S.stabilizer;
od;
if pos = 1 then
return false;
fi;
# Correct the `genlabels' and `translabels' entries and install the
# `generators'.
S := G; i := 0; pos := pos - 1;
while IsBound( S.stabilizer ) do
p := PositionSorted( S.genlabels, 2 );
if not IsEmpty( S.genlabels )
and S.genlabels[ 1 ] < 1 then
S.genlabels[ 1 ] := 2 - S.genlabels[ 1 ];
fi;
orb := [ p .. Length( S.genlabels ) ];
S.genlabels{ orb } := S.genlabels{ orb } + pos;
if i < Length( L ) then i := i + 1; l := L[ i ];
else l := Length( S.orbit ); fi;
orb := S.orbit{ [ 2 .. l ] };
S.translabels{ orb } := S.translabels{ orb } + pos;
orb := S.orbit{ [ l + 1 .. Length( S.orbit ) ] };
S.translabels{ orb } := -S.translabels{ orb };
S.transversal := [ ];
S.transversal{ S.orbit } := S.labels{ S.translabels{ S.orbit } };
S.generators := S.labels{ S.genlabels };
for z in S.generators do
StretchImportantSLPElement(z);
od;
S := S.stabilizer;
od;
return true;
end );
#############################################################################
##
#F ExtendSeriesPermGroup( ... ) . . . . . . extend a series of a perm group
##
InstallGlobalFunction( ExtendSeriesPermGroup, function(
G, # the group in which factors are to be normal/central
series, # the series being constructed
cent, # flag: true if central factors are wanted
desc, # flag: true if a fastest-descending series is wanted
elab, # flag: true if elementary abelian factors are wanted
s, # the element to be added to `series[ <lev> ]'
lev, # the level of the series which is to be extended
dep, # the depth of <s> in <G>
bound ) # a bound on the depth, for solvability/nilpotency tests
local M0, M1, C, X, oldX, T, t, u, w, r, done,
ndep, ord, gcd, p;
# If we are too deep in the derived series, give up.
if dep > bound then
return s;
fi;
if desc then
# If necessary, add a new (trivial) subgroup to the series.
if lev + 2 > Length( series ) then
series[ lev + 2 ] := StructuralCopy( series[ lev + 1 ] );
fi;
M0 := series[ lev + 1 ];
M1 := series[ lev + 2 ];
X := M0.labels{ [ 2 .. Length( M0.labels )
- Length( M1.labels ) + 1 ] };
r := lev + 2;
# If the series need not be fastest-descending, prepare to add a new
# group to the list.
else
M1 := series[ 1 ];
M0 := StructuralCopy( M1 );
X := [ ];
r := 1;
fi;
# For elementary abelian factors, find a suitable prime.
if IsInt( elab ) then
p := elab;
elif elab then
# For central series, the prime must be given.
if cent then
Error("cannot construct central el ab series with varying primes");
fi;
ord := Order( s );
if not IsEmpty( X ) then
gcd := GcdInt( ord, Order( X[ 1 ] ) );
if gcd <> 1 then
ord := gcd;
fi;
fi;
p := FactorsInt( ord )[ 1 ];
fi;
# Loop over all conjugates of <s>.
C := [ s ];
while not IsEmpty( C ) do
t := C[ 1 ];
C := C{ [ 2 .. Length( C ) ] };
if not MembershipTestKnownBase( M0, G, t ) then
# Form all necessary commutators with <t> and for elementary
# abelian factors also a <p>th power.
if cent then T := SSortedList( GeneratorsOfGroup( G ) );
else T := SSortedList( X ); fi;
done := false;
while not done and ( not IsEmpty( T ) or elab <> false ) do
if not IsEmpty( T ) then
u := T[ 1 ]; RemoveSet( T, u );
w := Comm( t, u ); ndep := dep + 1;
else
done := true;
w := t ^ p; ndep := dep;
fi;
# If the commutator or power is not in <M1>, recursively
# extend <M1>.
if not MembershipTestKnownBase( M1, G, w ) then
w := ExtendSeriesPermGroup( G, series, cent,
desc, elab, w, lev + 1, ndep, bound );
if w <> true then
return w;
fi;
M1 := series[ r ];
# The enlarged <M1> also pushes up <M0>.
M0 := StructuralCopy( M1 );
oldX := X;
X := [ ];
for u in oldX do
if AddNormalizingElementPcgs( M0, u ) then
Add( X, u );
else
RemoveSet( T, u );
fi;
od;
if MembershipTestKnownBase( M0, G, t ) then
done := true;
fi;
fi;
od;
# Add <t> to <M0> and register its conjugates.
if AddNormalizingElementPcgs( M0, t ) then
Add( X, t );
fi;
UniteSet( C, List( GeneratorsOfGroup( G ), g -> t ^ g ) );
fi;
od;
# For a fastest-descending series, replace the old group. Otherwise, add
# the new group to the list.
if desc then
series[ lev + 1 ] := M0;
if IsEmpty( X ) then
Remove( series, lev + 2 );
fi;
else
if not IsEmpty( X ) then
Add( series, M0, 1 );
fi;
fi;
return true;
end );
#############################################################################
##
#F TryPcgsPermGroup(<Act>[, <G>] , <cent>, <desc>, <elab>) . . try for pcgs
##
InstallGlobalFunction(TryPcgsPermGroup,function(arg)
local grp, pcgs, U, oldlen, series, y, w, whole,
bound, deg, step, i, S, filter,A,G,cent,desc,elab,gens;
A:=arg[1];
cent:=arg[Length(arg)-2];
desc:=arg[Length(arg)-1];
elab:=arg[Length(arg)];
# If the last member <U> of the series <G> already has a pcgs, start with
# its stabilizer chain.
if IsList( A ) then
G:=A;
A:=A[1];
U := G[ Length( G ) ];
if HasPcgs( U ) and IsPcgsPermGroupRep( Pcgs( U ) ) then
U := CopyStabChain( Pcgs( U )!.stabChain );
fi;
elif Length(arg)>4 then
G:=arg[2];
U := TrivialSubgroup( G );
if ForAll(GeneratorsOfGroup(G),x->IsOne(x)) then G:=[G];
else G:=[G,U];fi;
else
G:=A;
U := TrivialSubgroup( G );
if IsTrivial( G ) then G := [ G ];
else G := [ G, U ]; fi;
fi;
# Otherwise start with stabilizer chain of <U> with identical `labels'
# components on all levels.
if IsGroup( U ) then
if IsTrivial( U ) and not HasStabChainMutable( U ) then
U := EmptyStabChain( [ ], One( U ) );
else
S:=U;
U := StabChainMutable( U );
if IsBound( U.base ) and Length(U.base)>0 then i := U.base;
else i := fail; fi;
# ensure compatible bases
if HasBaseOfGroup(G[1])
and not IsSubset(BaseOfGroup(G[1]),BaseStabChain(U)) then
# ensure compatible bases
# compute a new stab chain without touching the stab chain
# stored in S
#T this is less than satisficial but I don't see how otherwise
#T to avoid those %$#@ side effects. AH
U:= StabChainOp( GroupByGenerators(GeneratorsOfGroup(S),One(S) ),
rec(base:=BaseOfGroup(G[1]),size:=Size(S)));
else
U := StabChainBaseStrongGenerators( BaseStabChain( U ),
StrongGeneratorsStabChain( U ),U.identity );
if i <> fail then
U.base := i;
fi;
fi;
fi;
fi;
# The `genlabels' at every level of $U$ must be sets.
S := U;
while not IsEmpty( S.genlabels ) do
Sort( S.genlabels );
S := S.stabilizer;
od;
grp := G[ 1 ];
whole := IsTrivial( G[ Length( G ) ] );
oldlen := Length( U.labels );
series := [ U ];
series[ 1 ].relativeOrders := [ ];
step:="W";
if not IsTrivial( grp ) then
# The derived length of <G> was bounded by Dixon. The nilpotency
# class of <G> is at most Max( log_p(d)-1 ).
deg := NrMovedPoints( grp );
if cent then
bound := Maximum( List( Collected( FactorsInt( deg ) ), p ->
p[ 1 ] ^ ( LogInt( deg, p[ 1 ] ) ) ) );
else
bound := Int( LogInt( deg ^ 5, 3 ) / 2 );
fi;
if HasSize( grp )
and Length( FactorsInt( Size( grp ) ) ) < bound then
bound := Length( FactorsInt( Size( grp ) ) );
fi;
for step in Reversed( [ 1 .. Length( G ) - 1 ] ) do
for y in GeneratorsOfGroup( G[ step ] ) do
if not y in GeneratorsOfGroup( G[ step + 1 ] ) then
w := ExtendSeriesPermGroup( A, series, cent,
desc, elab, y, 0, 0, bound );
if w <> true then
SetIsNilpotentGroup( grp, false );
if not cent then
SetIsSolvableGroup( grp, false );
fi;
# In case of failure, return two ``witnesses'': The
# pcgs of the solvable normal subgroup of <G>
# constructed so far, and an element in
# $G^{(\infty)}$.
#T this should be cleaned up.
return [ PcgsStabChainSeries( IsPcgsPermGroupRep,
GroupStabChain( grp, series[ 1 ], true ),
series, oldlen,false ),
w ];
fi;
fi;
od;
od;
fi;
# Construct the pcgs object.
if whole then filter := IsPcgsPermGroupRep;
else filter := IsModuloPcgsPermGroupRep; fi;
if elab=true then
filter:=filter and IsPcgsElementaryAbelianSeries;
fi;
if cent then
filter:=filter and IsPcgsCentralSeries;
fi;
pcgs := PcgsStabChainSeries( filter, grp, series, oldlen,
(elab=true) or cent);
if whole then
SetIsSolvableGroup( grp, true );
SetPcgs( grp, pcgs );
SetHomePcgs( grp, pcgs );
SetGroupOfPcgs (pcgs, grp);
if cent then
SetIsNilpotentGroup( grp, true );
fi;
else
pcgs!.denominator := G[ Length( G ) ];
if HasIsSolvableGroup( G[ Length( G ) ] )
and IsSolvableGroup( G[ Length( G ) ] ) then
SetIsSolvableGroup( grp, true );
fi;
fi;
return pcgs;
end);
#############################################################################
##
#F PcgsStabChainSeries( <filter>, <G>, <series>, <oldlen>,<iselab> )
##
InstallGlobalFunction(PcgsStabChainSeries,
function(filter,G,series,oldlen,iselab)
local pcgs, first, i,attr;
first := [ ];
for i in [ 1 .. Length( series ) ] do
Add( first, Length( series[ i ].labels ) );
od;
first:=first[ 1 ] - first + 1;
filter:=filter and IsPcgs and IsPrimeOrdersPcgs;
attr:=[];
if iselab=true then
filter:=filter and HasIndicesEANormalSteps;
attr:=[IndicesEANormalSteps, first];
fi;
pcgs := PcgsByPcSequenceCons( IsPcgsDefaultRep,filter,
ElementsFamily( FamilyObj( G ) ),
series[ 1 ].labels
{ 1 + [ 1 .. Length(series[ 1 ].labels) - oldlen ] },
attr );
SetRelativeOrders(pcgs, series[ 1 ].relativeOrders);
pcgs!.stabChain := series[ 1 ];
pcgs!.generatingSeries:=series;
pcgs!.permpcgsNormalSteps:=first;
# if HasHomePcgs(G) and HomePcgs(G)<>pcgs then
# G:=Group(series[1].generators,());
# fi;
# SetGroupOfPcgs( pcgs, G );
return pcgs;
end );
BindGlobal("NorSerPermPcgs",function(pcgs)
local ppcgs,series,stbc,G,i;
ppcgs := ParentPcgs (pcgs);
G:=GroupOfPcgs(pcgs);
series:=EmptyPlist( Length(pcgs!.generatingSeries) );
for i in [ 1 .. Length( pcgs!.generatingSeries ) ] do
stbc := ShallowCopy (pcgs!.generatingSeries[i]);
Unbind( stbc.relativeOrders );
Unbind( stbc.base );
series[ i ] := GroupStabChain( G, stbc, true );
if (not HasHomePcgs(series[i]) ) or HomePcgs(series[i]) = ppcgs then
SetHomePcgs ( series[ i ], ppcgs );
SetFilterObj( series[ i ], IsMemberPcSeriesPermGroup );
series[ i ]!.noInSeries := i;
fi;
od;
return series;
end);
InstallMethod(EANormalSeriesByPcgs,"perm group rep",true,
[IsPcgs and IsPcgsElementaryAbelianSeries and IsPcgsPermGroupRep],0,
NorSerPermPcgs);
InstallOtherMethod(EANormalSeriesByPcgs,"perm group modulo rep",true,
[IsModuloPcgsPermGroupRep and IsPcgsElementaryAbelianSeries],0,
NorSerPermPcgs);
#############################################################################
##
#F PcgsMemberPcSeriesPermGroup( <U> ) . . . . pcgs for a group in the series
##
InstallGlobalFunction( PcgsMemberPcSeriesPermGroup, function( U )
local home, pcgs,npf;
home := HomePcgs( U );
npf:=home!.permpcgsNormalSteps;
if U!.noInSeries>Length(npf) then
# special treatment for the trivial subgroup
pcgs:=InducedPcgsByGenerators(home,GeneratorsOfGroup(U));
else
pcgs := TailOfPcgsPermGroup( home,
npf[ U!.noInSeries ] );
fi;
SetGroupOfPcgs( pcgs, U );
return pcgs;
end );
#############################################################################
##
#F ExponentsOfPcElementPermGroup( <pcgs>, <g>, <min>, <max>, <mode> ) local
##
InstallGlobalFunction( ExponentsOfPcElementPermGroup,
function( pcgs, g, mindepth, maxdepth, mode )
local exp, base, bimg, r, depth, img, H, bpt, gen, e, i;
if mode = 'e' then
exp := ListWithIdenticalEntries( maxdepth - mindepth + 1, 0 );
fi;
base := BaseStabChain( pcgs!.stabChain );
bimg := OnTuples( base, g );
r := Length( base );
depth := mindepth;
while depth <= maxdepth do
# Determine the depth of <g>.
repeat
img := ShallowCopy( bimg );
gen := pcgs!.pcSequence[ depth ];
depth := depth + 1;
# Find the base level of the <depth>th generator, remove the part
# of <g> moving the earlier basepoints.
H := pcgs!.stabChain;
bpt := H.orbit[ 1 ];
i := 1;
while bpt ^ gen = bpt do
while img[ i ] <> bpt do
img{ [ i .. r ] } := OnTuples( img{ [ i .. r ] },
H.transversal[ img[ i ] ] );
od;
H := H.stabilizer;
bpt := H.orbit[ 1 ];
i := i + 1;
od;
until depth > maxdepth or H.translabels[ img[ i ] ] = depth;
# If `H.translabels[ img[ i ] ] = depth', then <g> is not the
# identity.
if H.translabels[ img[ i ] ] = depth then
if mode = 'd' then
return depth - 1;
fi;
# Determine the <depth>th exponent.
e := RelativeOrders( pcgs )[ depth - 1 ];
i := img[ i ];
repeat
e := e - 1;
i := i ^ gen;
until H.translabels[ i ] <> depth;
if mode = 'l' then
return e;
elif mode='s' then
return [depth-1,e];
fi;
# Remove the appropriate power of the <depth>th generator and
# iterate.
exp[ depth - mindepth ] := e;
g := LeftQuotient( gen ^ e, g );
bimg := OnTuples( base, g );
fi;
od;
if mode = 'd' then return maxdepth + 1;
elif mode = 'l' then return fail;
elif mode = 's' then return [maxdepth+1,0];
else return exp; fi;
end );
#############################################################################
##
#F PermpcgsPcGroupPcgs( <pcgs>, <index>, <isPcgsCentral> )
##
## different than `PcGroupWithPcgs' since extra parameters for shortcut.
##
InstallGlobalFunction( PermpcgsPcGroupPcgs, function( pcgs, index, isPcgsCentral )
local m, sc, gens, p, start, i, i2, n, n2;
m := Length( pcgs );
sc := SingleCollector( FreeGroup(IsSyllableWordsFamily, m ),
RelativeOrders( pcgs ) );
gens := GeneratorsOfRws( sc );
# Find the relations of the p-th powers. Use the vector space structure
# of the elementary abelian factors.
for i in [ 1 .. Length( index ) - 1 ] do
p := RelativeOrders( pcgs )[ index[ i ] ];
start := index[ i + 1 ];
for n in [ index[ i ] .. index[ i + 1 ] - 1 ] do
SetPowerNC( sc, n, LinearCombinationPcgs
( gens, ExponentsOfPcElement
( pcgs, pcgs[ n ] ^ p ) ) );
od;
od;
# Find the relations of the conjugates.
for i in [ 1 .. Length( index ) - 1 ] do
for n in [ index[ i ] .. index[ i + 1 ] - 1 ] do
for i2 in [ 1 .. i - 1 ] do
if isPcgsCentral then
start := index[ i + 1 ];
for n2 in [ index[ i2 ] .. index[ i2 + 1 ] - 1 ] do
SetConjugateNC( sc, n, n2,
GeneratorsOfRws( sc )[ n ]*
LinearCombinationPcgs( gens,
ExponentsOfPcElement( pcgs, Comm
( pcgs[ n ], pcgs[ n2 ] ) ) ) );
od;
else
start := index[ i2 + 1 ];
for n2 in [ index[ i2 ] .. index[ i2 + 1 ] - 1 ] do
SetConjugateNC( sc, n, n2, LinearCombinationPcgs( gens,
ExponentsOfPcElement
( pcgs,
pcgs[ n ] ^ pcgs[ n2 ]) ) );
od;
fi;
od;
start := index[ i + 1 ];
for n2 in [ index[ i ] .. n - 1 ] do
SetConjugateNC( sc, n, n2,
GeneratorsOfRws( sc )[ n ]*LinearCombinationPcgs( gens,
ExponentsOfPcElement( pcgs, Comm
( pcgs[ n ], pcgs[ n2 ] ) ) ) );
od;
od;
od;
UpdatePolycyclicCollector( sc );
m:=GroupByRwsNC( sc );
SetParentAttr(m,m); # some other routines are obnocious otherwise.
return m;
end );
#############################################################################
##
#F SolvableNormalClosurePermGroup( <G>, <H> ) . . . solvable normal closure
##
InstallGlobalFunction( SolvableNormalClosurePermGroup, function( G, H )
local U, oldlen, series, bound, z, S;
U := CopyStabChain( StabChainMutable( TrivialSubgroup( G ) ) );
oldlen := Length( U.labels );
# The `genlabels' at every level of $U$ must be sets.
S := U;
while not IsEmpty( S.genlabels ) do
Sort( S.genlabels );
S := S.stabilizer;
od;
if HasBaseOfGroup(G) and not IsSubset(G,BaseStabChain(U)) then
Error("incompatible bases");
fi;
U.relativeOrders := [ ];
series := [ U ];
# The derived length of <G> is at most (5 log_3(deg(<G>)))/2 (Dixon).
bound := Int( LogInt( Maximum(1,NrMovedPoints( G ) ^ 5), 3 ) / 2 );
if HasSize( G )
and Length( FactorsInt( Size( G ) ) ) < bound then
bound := Length( FactorsInt( Size( G ) ) );
fi;
if IsGroup( H ) then
H := GeneratorsOfGroup( H );
fi;
for z in H do
if ExtendSeriesPermGroup( G, series, false, false, false, z, 0, 0,
bound ) <> true then
return fail;
fi;
od;
U := GroupStabChain( G, series[ 1 ], true );
SetIsSolvableGroup( U, true );
SetIsNormalInParent( U, true );
# remember the pcgs
SetPcgs(U,PcgsStabChainSeries(IsPcgsPermGroupRep,U,series,oldlen,false));
return U;
end );
#############################################################################
##
#M NumeratorOfModuloPcgs( <pcgs> ) . . . . . . . . . . for perm modulo pcgs
##
InstallOtherMethod( NumeratorOfModuloPcgs, true,
[ IsModuloPcgsPermGroupRep ], 0,
pcgs -> Pcgs( GroupOfPcgs( pcgs ) ) );
#############################################################################
##
#M DenominatorOfModuloPcgs( <pcgs> ) . . . . . . . . . for perm modulo pcgs
##
InstallOtherMethod( DenominatorOfModuloPcgs, true,
[ IsModuloPcgsPermGroupRep ], 0,
pcgs -> Pcgs( pcgs!.denominator ) );
#############################################################################
##
#M Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . . pcgs for perm groups
##
InstallMethod( Pcgs, "Sims's method", true, [ IsPermGroup ],
100, # to override method ``from indep. generators of abelian group''
function( G )
local pcgs;
pcgs := TryPcgsPermGroup( G, false, false, true );
if not IsPcgs( pcgs ) then
return fail;
else
if not HasPcgsElementaryAbelianSeries(G) then
SetPcgsElementaryAbelianSeries(G,pcgs);
fi;
return pcgs;
fi;
end );
InstallMethod( Pcgs, "tail of perm pcgs", true,
[ IsMemberPcSeriesPermGroup ], 100,
PcgsMemberPcSeriesPermGroup );
#############################################################################
##
#M HomePcgs( <G> ) . . . . . . . . . . . . . . . . home pcgs for perm groups
##
InstallMethod( HomePcgs, "use a perm pcgs if possible", true,
[ IsPermGroup and HasPcgs ],
function( G )
local pcgs;
pcgs := Pcgs( G );
if IsPcgsPermGroupRep( pcgs ) then
if HasParentPcgs( pcgs ) then
return ParentPcgs( pcgs );
else
return pcgs;
fi;
else
TryNextMethod();
fi;
end);
InstallMethod( HomePcgs, "try to compute a perm pcgs", true,
[ IsPermGroup ],
function( G )
local pcgs;
pcgs := TryPcgsPermGroup( G, false, false, true );
if not IsPcgs( pcgs ) then
TryNextMethod();
else
if not HasPcgsElementaryAbelianSeries(G) then
SetPcgsElementaryAbelianSeries(G,pcgs);
fi;
return pcgs;
fi;
end );
#############################################################################
##
#M GroupOfPcgs( <pcgs> ) . . . . . . . . . . . . . . . . . . for perm groups
##
InstallMethod( GroupOfPcgs, true, [ IsPcgs and IsPcgsPermGroupRep ], 0,
function( pcgs )
local G;
G := GroupStabChain( pcgs!.stabChain );
SetPcgs( G, pcgs );
return G;
end );
#############################################################################
##
#M PcSeries( <pcgs> ) . . . . . . . . . . . . . . . . . . . for perm groups
##
InstallMethod( PcSeries, true, [ IsPcgs and IsPcgsPermGroupRep ], 0,
function( pcgs )
local series, G, N, i;
G := GroupOfPcgs( pcgs );
N := CopyStabChain( StabChainMutable( TrivialSubgroup( G ) ) );
series := [ GroupStabChain( G, CopyStabChain( N ), true ) ];
for i in Reversed( [ 1 .. Length( pcgs ) ] ) do
AddNormalizingElementPcgs( N, pcgs[ i ] );
Add( series, GroupStabChain( G, CopyStabChain( N ), true ) );
od;
return Reversed( series );
end );
#############################################################################
##
#F TailOfPcgsPermGroup( <pcgs>, <from> ) . . . . . . . . construct tail pcgs
##
InstallGlobalFunction( TailOfPcgsPermGroup, function( pcgs, from )
local tail, i,ins,pins,ran,filt,attr;
i := 1;
pins:=pcgs!.permpcgsNormalSteps;
while pins[ i ] < from do
i := i + 1;
od;
ran:=[pins[i]..Length(pcgs)];
ins:=pins{[i..Length(pins)]}-from+1;
filt:=IsPcgs
#NOT PcgsPermGroupRep -- otherwise we get wrong exponents!
#and IsPcgsPermGroupRep
and IsPrimeOrdersPcgs
and IsInducedPcgs and IsInducedPcgsRep and IsTailInducedPcgsRep
and HasParentPcgs;
attr:=[ParentPcgs,pcgs];
if HasIndicesEANormalSteps(pcgs) then
filt:=filt and HasIndicesEANormalSteps;
Append(attr,[IndicesEANormalSteps,ins]);
fi;
if HasEANormalSeriesByPcgs(pcgs) then
filt:=filt and HasEANormalSeriesByPcgs;
Append(attr,[EANormalSeriesByPcgs,
EANormalSeriesByPcgs(pcgs){[i..Length(pins)]}]);
fi;
tail := PcgsByPcSequenceCons(
IsPcgsDefaultRep,
filt,
FamilyObj( OneOfPcgs( pcgs ) ),
pcgs{[pins[i]..Length(pcgs)]},
attr);
tail!.permpcgsNormalSteps:=ins;
SetRelativeOrders(tail,RelativeOrders(pcgs){[from..Length(pcgs)]});
tail!.stabChain := StabChainMutable( EANormalSeriesByPcgs( pcgs )[ i ] );
if from < pins[ i ] then
tail := ExtendedPcgs( tail,
pcgs{ [ from .. pins[ i ] - 1 ] } );
fi;
tail!.tailStart := from;
# information many InducedPcgs methods use
tail!.depthsInParent:=ran;
tail!.depthMapFromParent:=[];
tail!.depthMapFromParent{ran}:=[1..Length(tail)];
tail!.depthMapFromParent[Length(pcgs)+1]:=Length(tail)+1;
return tail;
end );
#############################################################################
##
#M InducedPcgsByPcSequenceNC( <pcgs>, <pcs> ) . . . . . . . . as perm pcgs
##
InstallMethod( InducedPcgsByPcSequenceNC, "tail of perm pcgs", true,
[ IsPcgsPermGroupRep and IsPrimeOrdersPcgs and IsPcgs,
IsList and IsPermCollection ], 0,
function( pcgs, pcs )
local l,igs, i,ran,ins;
l := Length( pcgs )-Length( pcs );
i := Position( pcgs!.permpcgsNormalSteps, l+1 );
ran:=[ l + 1 .. Length( pcgs ) ];
if i = fail or pcgs{ ran } <> pcs then
TryNextMethod();
fi;
return TailOfPcgsPermGroup(pcgs,ran[1]);
end );
#############################################################################
##
#M InducedPcgsWrtHomePcgs( <U> ) . . . . . . . . . . . . . . . via home pcgs
##
InstallMethod( InducedPcgsWrtHomePcgs, "tail of perm pcgs", true,
[ IsMemberPcSeriesPermGroup and HasHomePcgs ], 0,
function( U )
local pcgs,par,ran;
pcgs := PcgsMemberPcSeriesPermGroup( U );
par:=HomePcgs(U);
SetFilterObj( pcgs, IsInducedPcgs and IsInducedPcgsRep);
SetParentPcgs( pcgs,par ) ;
# information many InducedPcgs methods use
ran:=[par!.permpcgsNormalSteps[U!.noInSeries]..Length(par)];
pcgs!.depthsInParent:=ran;
pcgs!.depthMapFromParent:=[];
pcgs!.depthMapFromParent{ran}:=[1..Length(pcgs)];
pcgs!.depthMapFromParent[Length(par)+1]:=Length(pcgs)+1;
pcgs!.tailStart:=par!.permpcgsNormalSteps[U!.noInSeries];
return pcgs;
end );
#############################################################################
##
#M ExtendedPcgs( <N>, <gens> ) . . . . . . . . . . . . . . . in perm groups
##
InstallMethod( ExtendedPcgs, "perm pcgs", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs,
IsList and IsPermCollection ], 0,
function( N, gens )
local S, gen, pcs, pcgs;
S := CopyStabChain( N!.stabChain );
S.relativeOrders := ShallowCopy( RelativeOrders( N ) );
for gen in Reversed( gens ) do
AddNormalizingElementPcgs( S, gen );
od;
pcs := S.labels{ [ 2 .. Length( S.labels ) -
Length( N!.stabChain.labels ) + Length( N ) + 1 ] };
if IsInducedPcgs( N ) then
pcgs := InducedPcgsByPcSequenceNC( ParentPcgs( N ), pcs );
else
pcgs := PcgsByPcSequenceCons( IsPcgsDefaultRep,
IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs,
FamilyObj( OneOfPcgs( N ) ), pcs,[] );
fi;
pcgs!.stabChain := S;
SetRelativeOrders( pcgs, S.relativeOrders );
Unbind( S.relativeOrders );
#SetIndicesNormalSteps( pcgs, Concatenation( [ 1 ], IndicesNormalSteps( N ) ) );
pcgs!.permpcgsNormalSteps:=Concatenation([1],N!.permpcgsNormalSteps+1);
SetEANormalSeriesByPcgs( pcgs, Concatenation( [ GroupStabChain( S ) ],
EANormalSeriesByPcgs( N ) ) );
return pcgs;
end );
#############################################################################
##
#M DepthOfPcElement( <pcgs>, <g> [ , <from> ] ) . . . . . . for perm groups
##
InstallMethod( DepthOfPcElement,"permpcgs", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
function( pcgs, g )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'd' );
end );
InstallMethod( DepthAndLeadingExponentOfPcElement,"permpcgs", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
function( pcgs, g )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 's' );
end );
InstallOtherMethod( DepthOfPcElement,"permpcgs,start", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
IsPosInt ], 0,
function( pcgs, g, depth )
return ExponentsOfPcElementPermGroup( pcgs, g, depth, Length( pcgs ),
'd' );
end );
#############################################################################
##
#M LeadingExponentOfPcElement( <pcgs>, <g> ) . . . . . . . . for perm groups
##
InstallMethod( LeadingExponentOfPcElement, true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
function( pcgs, g )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'l' );
end );
#############################################################################
##
#M ExponentsOfPcElement( <pcgs>, <g> [ , <poss> ] ) . . . . for perm groups
##
InstallMethod( ExponentsOfPcElement, "perm group", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
function( pcgs, g )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'e' );
end );
InstallOtherMethod( ExponentsOfPcElement, "perm group with positions", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
IsList and IsCyclotomicCollection ], 0,
function( pcgs, g, poss )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, Maximum( poss ), 'e' )
{ poss };
# was: { poss - Minimum( poss ) + 1 };
end );
InstallOtherMethod( ExponentsOfPcElement, "perm group with 0 positions", true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
IsList and IsEmpty ], 0,
function( pcgs, g, poss )
return [ ];
end );
#############################################################################
##
#M ExponentOfPcElement( <pcgs>, <g>, <pos> ) . . . . . . . . for perm groups
##
InstallMethod( ExponentOfPcElement, true,
[ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
IsPosInt ], 0,
function( pcgs, g, pos )
return ExponentsOfPcElementPermGroup( pcgs, g, 1, pos, 'e' )[ pos ];
end );
#############################################################################
##
#M RepresentativeAction( <G>, <d>, <e>, OnPoints ) first compare cycles
##
InstallOtherMethod( RepresentativeActionOp,
"cycle structure comparison for solvable perm groups", true,
[ IsPermGroup and CanEasilyComputePcgs, IsPerm, IsPerm, IsFunction ], 0,
function( G, d, e, opr )
if opr <> OnPoints or not (d in G and e in G) then
TryNextMethod();
elif Collected( CycleLengths( d, MovedPoints( G ) ) ) <>
Collected( CycleLengths( e, MovedPoints( G ) ) ) then
return fail;
else
TryNextMethod();
fi;
end );
CYCLICACHE:=[];
InstallGlobalFunction(CreateIsomorphicPcGroup,function(pcgs,needindices,flag)
local r,i,p,A,f,a;
r:=RelativeOrders(pcgs);
if Length(r)<=1 then
p:=Product(r);
i:=1;
while i<=Length(CYCLICACHE) and Size(CYCLICACHE[i])<p do
i:=i+1;
od;
# do we have it?
if i<=Length(CYCLICACHE) and Size(CYCLICACHE[i])=p then
return CYCLICACHE[i];
fi;
# make space
p:=i;
for i in [Length(CYCLICACHE),Length(CYCLICACHE)-1..p] do
CYCLICACHE[i+1]:=CYCLICACHE[i];
od;
A := PermpcgsPcGroupPcgs( pcgs, IndicesEANormalSteps(pcgs), flag );
CYCLICACHE[p]:=A;
return A;
fi;
# is the group in the mappings families cache?
f:=FamiliesOfGeneralMappingsAndRanges(FamilyObj(OneOfPcgs(pcgs)));
i:=1;
while i<=Length(f) do
a:=ElmWPObj(f,i);
if a<>fail and IsBound(a!.DefiningPcgs)
and RelativeOrders(a!.DefiningPcgs)=r then
# right type PCGS -- test relations
a:=a!.DefiningPcgs;
if (needindices=false or (not HasIndicesEANormalSteps(a)) or
IndicesEANormalSteps(a)=IndicesEANormalSteps(pcgs)) and
ForAll([1..Length(r)-1],x->
ExponentsOfPcElement(a,a[x]^r[x])
=ExponentsOfPcElement(pcgs,pcgs[x]^r[x])) and
ForAll([1..Length(r)],x->ForAll([x+1..Length(r)],y->
ExponentsOfPcElement(a,a[y]^a[x])
=ExponentsOfPcElement(pcgs,pcgs[y]^pcgs[x]))) then
# indeed the group is OK
if not HasIndicesEANormalSteps(a) then
SetIndicesEANormalSteps(a,IndicesEANormalSteps(pcgs));
fi;
A:=GroupOfPcgs(a);
return A;
fi;
fi;
i:=i+2;
od;
A := PermpcgsPcGroupPcgs( pcgs, IndicesEANormalSteps(pcgs), flag );
return A;
end);
#############################################################################
##
#M IsomorphismPcGroup( <G> ) . . . . . . . . . . . . perm group as pc group
##
InstallMethod( IsomorphismPcGroup, true, [ IsPermGroup ], 0,
function( G )
local iso, A, pcgs,p,i;
# Make a pcgs based on an elementary abelian series (good for ag
# routines).
pcgs:=PcgsElementaryAbelianSeries(G);
if not IsPcgs( pcgs ) then
return fail;
fi;
# Construct the pcp group <A> and the bijection between <A> and <G>.
A:=CreateIsomorphicPcGroup(pcgs,false,false);
iso := GroupHomomorphismByImagesNC( G, A, pcgs, GeneratorsOfGroup( A ) );
SetIsBijective( iso, true );
return iso;
end );
#############################################################################
##
#M ModuloPcgs( <G>, <N> )
##
InstallMethod( ModuloPcgs, "for permutation groups", IsIdenticalObj,
[ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local pcgs;
# Make a pcgs based on an elementary abelian series (good for ag
# routines).
pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
if not IsModuloPcgs( pcgs ) then
return fail;
fi;
# set nomerator and denominator appropriately
SetNumeratorOfModuloPcgs(pcgs,GeneratorsOfGroup(G));
SetDenominatorOfModuloPcgs(pcgs,GeneratorsOfGroup(N));
return pcgs;
end);
#############################################################################
##
#M PcgsElementaryAbelianSeries( <G> )
##
InstallMethod( PcgsElementaryAbelianSeries, "perm group", true,
[ IsPermGroup ], 0,
function(G)
local pcgs;
if HasPcgs(G) and IsPcgsElementaryAbelianSeries(Pcgs(G)) then
return Pcgs(G);
fi;
pcgs:=TryPcgsPermGroup( G, false, false, true );
if IsPcgs(pcgs) and not HasPcgs(G) then
SetPcgs(G,pcgs);
fi;
return pcgs;
end);
#############################################################################
##
#M MaximalSubgroupClassReps( <G> )
##
## method for solvable perm groups -- it is cheaper to translate to a pc
## group
InstallMethod( MaximalSubgroupClassReps,"solvable perm group",true,
[ IsPermGroup and CanEasilyComputePcgs and IsFinite ], 0,
function(G)
local hom,m;
hom:=IsomorphismPcGroup(G);
m:=MaximalSubgroupClassReps(Image(hom));
List(m,Size); # force
return List(m,i->PreImage(hom,i));
end);
#############################################################################
##
#E pcgsperm.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|