/usr/share/gap/lib/permdeco.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | #############################################################################
##
#W permdeco.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2004 The GAP Group
##
## This file contains functions that deal with action on chief factors or
## composition factors and the representation of such groups in a nice way
## as permutation groups.
##
#############################################################################
##
#F AutomorphismRepresentingGroup( <G>, <autos> )
##
## Let $G$ be a permutation group and <autos> a set of automorphisms of
## <G>. This function returns a permutation group $H$, isomorphic to $G$,
## such that all the automorphisms in <autos> can be represented by
## conjugation of $H$ with elements of the symmetric group. It returns a
## list $[H2,\phi,a]$ where $\phi is the isomorphism $G\to H$, and $a$ a
## list of permutations corresponding to <autos> that induce the same
## automorphisms of $H$. Finally $H2=\left\langle H,a\right\rangle$.
## The algorithm may fail if <G> is not almost simple.
DeclareGlobalFunction("AutomorphismRepresentingGroup");
#############################################################################
##
#F EmbedAutomorphisms(<G>,<H>,<GT>,<HT>[,<outs>])
##
## Suposet that $GT$ and $HT$ are isomorphic simple groups and $GT\le
## G\le\Aut(GT)$ and $HT\le H\le \Aut(HT)$. This function returns a new
## group $P$ isomorphic to a subgroup of $\Aut(GT)$ and monomorphisms
## $\phi\colon G\to P$ and $\psi\colon H\to P$ in the form of a list
## $[P,\phi,\psi]$.
## The size of the outer automorphism group of $T$ may be given in <outs>
## and will speed up the calculation.
DeclareGlobalFunction("EmbedAutomorphisms");
#############################################################################
##
#F WreathActionChiefFactor( <G>, <M>, <N> )
##
## Suppose that $M/N$ is a chief factor of <G> and $M/N$ is isomorphic to
## $T^n$ where $T$ is simple. Then the action of $G$ on $M/N$ embeds in
## $\Aut(T)\wr S_n$. This function creates this embedding. It returns
## a list $[W,\phi,A,T,n]$, where $T$ is the simple group, $A\ge T$ the group of
## automorphisms of $T$ induced (not necessarily the full automorphism
## group), $W=A\wr S_n$ and $\phi\colon G\to W$ the map embedding $G$ into
## $W$.
DeclareGlobalFunction("WreathActionChiefFactor");
#############################################################################
##
#F PermliftSeries( <G> )
##
## This function constructs a descending series of normal subgroups of <G>,
## starting with the radical (the largest solvable normal subgroup) of <G>,
## such that the factors of subsequent subgroups in the series are
## elementary abelian.
## It returns a list of length 2. The first argument is the series, the
## second argument is either a List of (induced) Pcgs for the subgroups in
## the series (if such pcgs can be obtained cheaply as a byproduct of the
## way the series was obtained) or `false'.
## The option `limit' can be used to limit the orders of the solvable
## factors (if possible).
##
## This is considered an old function that will be superceded by
## FittingFreeLiftSetup
DeclareGlobalFunction("PermliftSeries");
DeclareAttribute("StoredPermliftSeries",IsGroup);
#############################################################################
##
#F EmbeddingWreathInWreath( <W2>,<W>,<emb>,<start> )
##
## Let $W=A\wr B$ and $W2=C\wr D$ be two wreath products with $B\le D$
## (considering $B$ and $D$ as permutation groups) and
## $<emb>\colon A\to C$. This function returns a monomorphism from $W$ into
## $W2$, involving the copies of $C$ at position <start> and at the following
## indices.
DeclareGlobalFunction("EmbeddingWreathInWreath");
#############################################################################
##
#F EmbedFullAutomorphismWreath(<W>,<A>,<T>,<n>)
##
## Suppose that $T\le G\le A\le\Aut(T)$ and that $W=G\wr S$ with $S\le
## S_n$. This function calculates the wreath product $W2=\Aut(T)\wr S$ and
## the embedding.
DeclareGlobalFunction("EmbedFullAutomorphismWreath");
#############################################################################
##
#E permdeco.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|