This file is indexed.

/usr/share/gap/lib/permdeco.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#############################################################################
##
#W  permdeco.gi                  GAP library                  Alexander Hulpke
##
##
#Y  Copyright (C) 2004 The GAP Group
##
##  This file contains functions that deal with action on chief factors or
##  composition factors and the representation of such groups in a nice way
##  as permutation groups.
##

InstallMethod( FittingFreeLiftSetup, "permutation", true, [ IsPermGroup ],0,
function( G )
local   pcgs,r,hom,A,iso,p,i;
  
  r:=RadicalGroup(G);
  hom:=NaturalHomomorphismByNormalSubgroup(G,r);
  
  pcgs := TryPcgsPermGroup( G,r, false, false, true );
  if not IsPcgs( pcgs )  then
    return fail;
  fi;
  if not HasPcgsElementaryAbelianSeries(r) then
    SetPcgsElementaryAbelianSeries(r,pcgs);
  fi;

  A:=CreateIsomorphicPcGroup(pcgs,true,false);

  iso := GroupHomomorphismByImagesNC( G, A, pcgs, GeneratorsOfGroup( A ));
  SetIsBijective( iso, true );
  return rec(pcgs:=pcgs,
             depths:=IndicesEANormalSteps(pcgs),
	     radical:=r,
	     pcisom:=iso,
	     factorhom:=hom);

end );


#testfunction for AutomorphismRepresentingGroup
#test:=function(start)
#local it,g,a,r;
#  it:=SimpleGroupsIterator(start:NOPSL2);
#  repeat
#    g:=NextIterator(it);
#    Print("@ Trying ",g," ",Size(g),"\n");
#    a:=AutomorphismGroup(g);
#    r:=AutomorphismRepresentingGroup(g,GeneratorsOfGroup(a));
#    Print("@ Got ",NrMovedPoints(r[1])," from ",NrMovedPoints(g),"\n");
#  until false;
#end;
InstallGlobalFunction(AutomorphismRepresentingGroup,function(G,autos)
local G0,a0,tryrep,sel,selin,a,s,dom,iso,stabs,outs,map,i,j,p,found,seln,
  sub,d;

  tryrep:=function(rep,bound)
  local Gi,repi,maps,v,w,cen,hom;
     Gi:=Image(rep,G);
     Info(InfoGroup,2,"Trying degree ",NrMovedPoints(Gi));
     repi:=InverseGeneralMapping(rep);
     maps:=List(sel,x->repi*autos[x]*rep);
     for v in maps do
       SetIsBijective(v,true);
     od;
     if ForAll(maps,IsConjugatorAutomorphism) then
	# the representation extends
	v:=List( maps, ConjugatorOfConjugatorIsomorphism );
	w:=ClosureGroup(Gi,v);
	Info(InfoGroup,1,"all conjugator degree ",NrMovedPoints(w));

	maps:=[];
	maps{sel}:=v;
	maps{selin}:=List(selin,x->
	  Image(rep,
	    ConjugatorOfConjugatorIsomorphism(autos[x])));

	cen:=Centralizer(w,Gi);
	if Size(cen)=1 then
	  return [w,rep,maps];
	else
	  Info(InfoGroup,2,"but centre");
	  hom:=NaturalHomomorphismByNormalSubgroupNC(w,cen);
	  if IsPermGroup(Image(hom)) and
	    NrMovedPoints(Image(hom))<=bound then

	    #Print("QQQ\n");
	    return [Image(hom,w),rep*hom,List(maps,x->Image(hom,x))];
	  fi;

	fi;
     else
       Info(InfoGroup,2,"Does not work");
     fi;
     return fail;
  end;

  selin:=Filtered([1..Length(autos)],x->IsInnerAutomorphism(autos[x]));
  sel:=Difference([1..Length(autos)],selin);

  # first try given rep
  if NrMovedPoints(G)^3>Size(G) then
    # likely too high degree. Try to reduce first
    a:=SmallerDegreePermutationRepresentation(G);
    a:=tryrep(a,4*NrMovedPoints(Image(a)));
  elif not IsSubset(MovedPoints(G),[1..LargestMovedPoint(G)]) then
    a:=tryrep(ActionHomomorphism(G,MovedPoints(G),"surjective"),
	        4*NrMovedPoints(G));
  else
    a:=tryrep(IdentityMapping(G),4*NrMovedPoints(G));
    if a=fail and ForAll(autos,IsConjugatorAutomorphism) then
      a:=tryrep(SmallerDegreePermutationRepresentation(G),4*NrMovedPoints(G));
    fi;
  fi;
  if a<>fail then return a;fi;

  # then (assuming G simple) try transitive action of small degree
  dom:=Set(Orbit(G,LargestMovedPoint(G)));
  s:=Blocks(G,dom);
  if Length(s)=1 then
    if Set(dom)=[1..Length(dom)] then
      Info(InfoGroup,2,"reduction is equal to G");
      iso:=fail;
    else
      Info(InfoHomClass,2,"point action");
      iso:=ActionHomomorphism(G,dom,"surjective");
    fi;
  else
    Info(InfoHomClass,2,"block refinement");
    iso:=ActionHomomorphism(G,s,OnSets,"surjective");
  fi;

  if iso<>fail then
    # try the new rep
    a:=tryrep(iso,4*NrMovedPoints(G));
    if a<>fail then return a;fi;

    # otherwise go to new small deg rep
    G:=Image(iso,G);
    autos:=List(autos,x->InverseGeneralMapping(iso)*x*iso);
  fi;

  # test the automorphisms that are not conjugator
  seln:=Filtered(sel,x->not IsConjugatorAutomorphism(autos[x]));

  # autos{seln} generates the non-perm automorphism group. Enumerate
  # use that automorphism is conjugator is stabilizer is conjugate
  stabs:=[Stabilizer(G,1)];
  outs:=[IdentityMapping(G)];
  i:=1;
  while i<=Length(stabs) do
    for j in seln do
      map:=outs[i]*autos[j];
      sub:=Image(autos[j],stabs[i]);
      p:=0;
      found:=fail;
      while found=fail and p<Length(stabs) do
	p:=p+1;
	found:=RepresentativeAction(G,sub,stabs[p]);
      od;

      if found=fail then
	# new copy
	Add(stabs,sub);
	Add(outs,map);
      fi;

    od;
    i:=i+1;
  od;
  Info(InfoGroup,1,"Build ",Length(outs)," copies");
  if Length(stabs)=1 then 
    # the group is given in a representation in which there is a centralizer
    # in Sn
    a:=tryrep(IdentityMapping(G),infinity);
    return a;

    Error("why only one -- should have been found before");
  fi;

  d:=DirectProduct(List(stabs,x->G));
  p:=[];
  for i in GeneratorsOfGroup(G) do
    a:=One(d);
    for j in [1..Length(stabs)] do
      a:=a*Image(Embedding(d,j),Image(outs[j],i));
    od;
    Add(p,a);
  od;

  a:=Subgroup(d,p);
  SetSize(a,Size(G));
  p:=GroupHomomorphismByImagesNC(G,a,GeneratorsOfGroup(G),p);

  a:=tryrep(p,4*NrMovedPoints(G));
  if a<>fail then 
    if iso<>fail then
      a[2]:=iso*a[2];
    fi;
    return a;
  fi;

  Info(InfoGroup,1,"Wreath embedding failed");
  Error("This should never happen");

end);

InstallGlobalFunction(EmbedAutomorphisms,function(arg)
local G,H,tg,th,hom, tga, Gemb, C, outs, auts, ar, Hemb;

  G:=arg[1];
  H:=arg[2];
  tg:=arg[3];
  th:=arg[4];
  if Length(arg)>4 then
    outs:=arg[4];
  else
    outs:=fail;
  fi;
  if th=tg then
    hom:=IdentityMapping(tg);
  else
    hom:=IsomorphismGroups(th,tg);
  fi;
  if hom=fail then
    Error("nonisomorphic simple groups!");
  fi;
  tga:=List(GeneratorsOfGroup(H),
	    i->GroupHomomorphismByImagesNC(tg,tg,
	       GeneratorsOfGroup(tg),
	       List(GeneratorsOfGroup(tg),
		    j->Image(hom,PreImagesRepresentative(hom,j)^i))));

  Gemb:=fail;
  if ForAll(tga,IsConjugatorAutomorphism) then
    Info(InfoHomClass,4,"All automorphism are conjugator");
    C:=ClosureGroup(G,List(tga,ConjugatorInnerAutomorphism));
    #reco:=ConstructiveRecognitionAlmostSimpleGroupTom(tg);
    if outs=fail then
      outs:=Size(AutomorphismGroup(tg))/Size(tg);
    fi;
    if Size(C)/Size(tg)=outs then
      Info(InfoHomClass,2,"Automorphisms realize full automorphism group");
      Gemb:=IdentityMapping(G);
      G:=C;
      tga:=List(tga,ConjugatorInnerAutomorphism);
    fi;
  fi;

  if Gemb=fail then
    # not all realizable or too small -> build new group
    Info(InfoHomClass,2,"Compute full automorphism group");
    auts:=AutomorphismGroup(tg);
    auts:=GeneratorsOfGroup(auts);
    ar:=AutomorphismRepresentingGroup(tg,Concatenation(
	   auts,
	   List(GeneratorsOfGroup(G),i->ConjugatorAutomorphism(tg,i)),
	   tga));

    tga:=ar[3]{[Length(ar[3])-Length(tga)+1..Length(ar[3])]};
    Gemb:=GroupHomomorphismByImagesNC(G,ar[1],GeneratorsOfGroup(G),
	  ar[3]{[Length(auts)+1..Length(auts)+Length(GeneratorsOfGroup(G))]});
    G:=ar[1];
  else
    Gemb:=IdentityMapping(G);
  fi;
  Hemb:=GroupHomomorphismByImagesNC(H,Group(tga),GeneratorsOfGroup(H),tga);
  return [G,Gemb,Hemb];
end);

InstallGlobalFunction(WreathActionChiefFactor,
function(G,M,N)
local cs,i,k,u,o,norm,T,Thom,autos,ng,a,Qhom,Q,E,Ehom,genimages,
      n,w,embs,reps,act,img,gimg;
  # get the simple factor(s)
  cs:=CompositionSeries(M);
  # the cs with N gives a cs for M/N.
  # take the first subnormal subgroup that is not  in N. This will be the
  # subgroup
  i:=Length(cs);
  u:=fail;
  while u=fail and i>0 do
    if not IsSubset(N,cs[i]) then
      u:=ClosureGroup(N,cs[i]);
    fi;
    i:=i-1;
  od;
  o:=OrbitStabilizer(G,u);
  norm:=o.stabilizer;
  o:=o.orbit;
  n:=Length(o);
  Info(InfoHomClass,1,"Factor: ",Index(u,N),"^",n);
  Qhom:=ActionHomomorphism(G,o,"surjective");
  Q:=Image(Qhom,G);
  Thom:=NaturalHomomorphismByNormalSubgroup(u,N);
  T:=Image(Thom);
  # get the induced automorphism action
  ng:=SmallGeneratingSet(norm); 
  autos:=List(ng,i->GroupHomomorphismByImagesNC(T,T,
	              GeneratorsOfGroup(T),
		      List(GeneratorsOfGroup(T),
		        j->Image(Thom,PreImagesRepresentative(Thom,j)^i))));
  a:=AutomorphismRepresentingGroup(T,autos);
  Thom:=GroupHomomorphismByImagesNC(norm,a[1],ng,a[3]);
  a:=a[1];

  # now embed into wreath
  w:=WreathProduct(a,Q);
  embs:=List([1..n+1],i->Embedding(w,i));

  # define isomorphisms between the components
  reps:=List([1..n],i->
	  PreImagesRepresentative(Qhom,RepresentativeAction(Q,1,i)));

  genimages:=[];
  for i in GeneratorsOfGroup(G) do
    img:=Image(Qhom,i);
    gimg:=Image(embs[n+1],img);
    for k in [1..n] do
      # look at part of i's action on the k-th factor.
      # we get this by looking at the action of
      #   reps[k] *   i    *   reps[k^img]^-1
      # 1   ->    k  ->  k^img    ->           1
      # on the first component. 
      act:=reps[k]*i*(reps[k^img]^-1);
      # this must be multiplied *before* permuting
      gimg:=ImageElm(embs[k],ImageElm(Thom,act))*gimg;
    od;
    #gimg:=RestrictedPermNC(gimg,MovedPoints(w)); 
    Add(genimages,gimg);
  od;

  E:=Subgroup(w,genimages);
  if AssertionLevel()>0 then
    Ehom:=GroupHomomorphismByImages(G,E,GeneratorsOfGroup(G),genimages);
    Assert(1,fail<>Ehom);
  else
    Ehom:=GroupHomomorphismByImagesNC(G,E,GeneratorsOfGroup(G),genimages);
  fi;

  return [w,Ehom,a,Image(Thom,u),n];
end);

#############################################################################
##
#F  PermliftSeries( <G> )
##
InstallGlobalFunction(PermliftSeries,function(G)
local limit, r, pcgs, ser, ind, m, p, l, l2, good, i, j,nser,hom;

  # Do we limit factor size?
  limit:=ValueOption("limit");

  if HasStoredPermliftSeries(G) then
    ser:=StoredPermliftSeries(G);
    if limit=fail or ForAll([2..Length(ser[1])],
      i->Size(ser[1][i-1])/Size(ser[1][i])<=limit) then
      return ser;
    fi;
  fi;

  # it seems to be cleaner (and avoids deferring abelian factors) if we
  # factor out the radical first. (Note: The radical method for perm groups
  # stores the nat hom.!)
  r:=RadicalGroup(G);

  if Size(r)=1 then
    return [[r],false];
  fi;

  # try to improve the representation of G/r
  hom:=NaturalHomomorphismByNormalSubgroup(G,r);
  if IsPermGroup(Range(hom)) then
    hom:=hom*SmallerDegreePermutationRepresentation(Range(hom));
  fi;
  AddNaturalHomomorphismsPool(G,r,hom);

  # first try whether the pcgs found
  # is good enough
  pcgs:=PcgsElementaryAbelianSeries(r);
  ser:=EANormalSeriesByPcgs(pcgs);
  if not ForAll(ser,i->IsNormal(G,i)) then
    # we have to get a better series

    # do we want to reduce the degree?
    m:=fail;
    if IsPermGroup(r) then
      m:=ReducedPermdegree(r);
    fi;
    if m<>fail then
      p:=Image(m);
      ser:=InvariantElementaryAbelianSeries(p, List( GeneratorsOfGroup( G ),
	      i -> GroupHomomorphismByImagesNC(p,p,GeneratorsOfGroup(p),
	             List(GeneratorsOfGroup(p),
		          j->Image(m,PreImagesRepresentative(m,j)^i)))),
	      TrivialSubgroup(p),true);
      ser:=List(ser,i->PreImage(m,i));
    else
      ser:=InvariantElementaryAbelianSeries(r, List( GeneratorsOfGroup( G ),
	      i -> ConjugatorAutomorphismNC( r, i ) ),
	      TrivialSubgroup(G),true);
    fi;

    # remember there is no universal parent pcgs
    pcgs:=false;
    ind:=false;
  else
    ind:=IndicesEANormalSteps(pcgs);
    pcgs:=List([1..Length(ind)],
      i->InducedPcgsByPcSequenceNC(pcgs,pcgs{[ind[i]..Length(pcgs)]}));
  fi;

  if limit<>fail then
    nser:=[ser[1]];
    for i in [2..Length(ser)] do
      if Size(ser[i-1])/Size(ser[i])>limit then
	m:=ModuloPcgs(ser[i-1],ser[i]);
	p:=RelativeOrders(m)[1];
	l:=GModuleByMats(LinearActionLayer(G,m),GF(p));
	l:=MTX.BasesCompositionSeries(l);
	l2:=[[]];
	good:=false;
	for j in [1..Length(l)] do
	  if p^(Length(l[j])-Length(l2[Length(l2)]))>limit then
	    if Length(good)>0 then
	      Add(l2,good);
	    fi;
	  fi;
	  good:=l[j];
	od;
	l2:=List(l2,i->List(i,j->PcElementByExponentsNC(m,j)));
	l2:=List(l2,j->ClosureGroup(ser[i],j));
	pcgs:=false; # if there was a pcgs is it wrong now
	Append(nser,Reversed(l2));
      else
	Add(nser,ser[i]);
      fi;
    od;
    if nser<>ser then
      ser:=nser;
    fi;
  fi;

  ser:=[ser,pcgs];
  if not HasStoredPermliftSeries(G) then
    SetStoredPermliftSeries(G,ser);
  fi;
  return ser;
end);

InstallMethod(StoredPermliftSeries,true,[IsGroup],0,PermliftSeries);

InstallGlobalFunction(EmbeddingWreathInWreath,function(wnew,w,emb,start)
local info, a, ai, n, gens, imgs, e, e2, shift, hom, i, j;
  info:=WreathProductInfo(w);
  a:=GeneratorsOfGroup(info.groups[1]);
  ai:=List(a,i->Image(emb,i));
  n:=Length(info.components);
  gens:=[];
  imgs:=[];
  # base
  for i in [1..n] do
    e:=Embedding(w,i);
    e2:=Embedding(wnew,i+start-1);
    for j in [1..Length(a)] do
      Add(gens,Image(e,a[j]));
      Add(imgs,Image(e2,ai[j]));
    od;
  od;
  # complement embeddings
  e:=Embedding(w,n+1);
  e2:=Embedding(wnew,Length(WreathProductInfo(wnew).components)+1);
  shift:=MappingPermListList([1..n],[start..start+n-1]);
  for j in GeneratorsOfGroup(info.groups[2]) do
    Add(gens,Image(e,j)); # component permutation in w
    Add(imgs,Image(e2,j^shift));
  od;
  hom:=GroupHomomorphismByImages(w,wnew,gens,imgs);
  return hom;
end);

InstallGlobalFunction(EmbedFullAutomorphismWreath,function(w,a,t,n)
local au, agens, agau, a2, w2, ogens, ngens, oe, ne, emb, i, j;
  IsNaturalAlternatingGroup(t);
  au:=AutomorphismGroup(t);
  agens:=GeneratorsOfGroup(a);
  agau:=List(agens,i->ConjugatorAutomorphism(t,i));
  a2:=AutomorphismRepresentingGroup(t,
       # this way we get the images easily
       Concatenation(agau,GeneratorsOfGroup(au)));
  agau:=a2[3]{[1..Length(agau)]};
  if Index(a,t)=1 then
    agau:=a2[2];
  else
    agau:=GroupHomomorphismByImagesNC(a,a2[1],agens,agau);
  fi;
  w2:=WreathProduct(a2[1],Image(Projection(w)));
  ogens:=[];
  ngens:=[];
  # for all w-generators take the corresponding w2 generators
  for i in [1..n+1] do
    oe:=Embedding(w,i);
    ne:=Embedding(w2,i);
    for j in GeneratorsOfGroup(Source(oe)) do
      Add(ogens,Image(oe,j));
      if i<=n then
	Add(ngens,Image(ne,Image(agau,j)));
      else
	Add(ngens,Image(ne,j));
      fi;
    od;
  od;
  emb:=GroupHomomorphismByImagesNC(w,w2,ogens,ngens);
  return [emb,w2,a2[1],Image(a2[2])];
end);

#############################################################################
##
#E  permdeco.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here