/usr/share/gap/lib/permutat.g is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | #############################################################################
##
#W permutat.g GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file deals with permutations.
##
#############################################################################
##
## <#GAPDoc Label="[1]{permutat}">
## Internally, &GAP; stores a permutation as a list of the <M>d</M> images
## of the integers <M>1, \ldots, d</M>, where the <Q>internal degree</Q>
## <M>d</M> is the largest integer moved by the permutation or bigger.
## When a permutation is read in in cycle notation, <M>d</M> is always set
## to the largest moved integer, but a bigger <M>d</M> can result from a
## multiplication of two permutations, because the product is not shortened
## if it fixes <M>d</M>.
## The images are stored all as <M>16</M>-bit integers or all as
## <M>32</M>-bit integers, depending on whether <M>d \leq 65536</M> or not.
## For example, if <M>m\geq 65536</M>, the permutation
## <M>(1, 2, \ldots, m)</M> has internal degree <M>d=m</M> and takes
## <M>4m</M> bytes of memory for storage. But --- since the internal degree
## is not reduced --- this
## means that the identity permutation <C>()</C> calculated as
## <M>(1, 2, \ldots, m) * (1, 2, \ldots, m)^{{-1}}</M> also
## takes <M>4m</M> bytes of storage.
## It can take even more because the internal list has sometimes room for
## more than <M>d</M> images.
## <P/>
## The operation <Ref Func="RestrictedPerm"/> reduces the storage degree of
## its result and therefore can be used to save memory if intermediate
## calculations in large degree result in a small degree result.
## <P/>
## Permutations do not belong to a specific group.
## That means that one can work with permutations without defining
## a permutation group that contains them.
## <P/>
## <Example><![CDATA[
## gap> (1,2,3);
## (1,2,3)
## gap> (1,2,3) * (2,3,4);
## (1,3)(2,4)
## gap> 17^(2,5,17,9,8);
## 9
## gap> OnPoints(17,(2,5,17,9,8));
## 9
## ]]></Example>
## <P/>
## The operation <Ref Func="Permuted"/> can be used to permute the entries
## of a list according to a permutation.
## <#/GAPDoc>
##
#############################################################################
##
#C IsPerm( <obj> )
##
## <#GAPDoc Label="IsPerm">
## <ManSection>
## <Filt Name="IsPerm" Arg='obj' Type='Category'/>
##
## <Description>
## Each <E>permutation</E> in &GAP; lies in the category
## <Ref Func="IsPerm"/>.
## Basic operations for permutations are
## <Ref Func="LargestMovedPoint" Label="for a permutation"/>,
## multiplication of two permutations via <C>*</C>,
## and exponentiation <C>^</C> with first argument a positive integer
## <M>i</M> and second argument a permutation <M>\pi</M>,
## the result being the image <M>i^{\pi}</M> of the point <M>i</M>
## under <M>\pi</M>.
## <!-- other arith. ops.?-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryKernel( "IsPerm",
IsMultiplicativeElementWithInverse and IsAssociativeElement and
IsFiniteOrderElement,
IS_PERM );
#############################################################################
##
#C IsPermCollection( <obj> )
#C IsPermCollColl( <obj> )
##
## <#GAPDoc Label="IsPermCollection">
## <ManSection>
## <Filt Name="IsPermCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsPermCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## are the categories for collections of permutations and collections of
## collections of permutations, respectively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryCollections( "IsPerm" );
DeclareCategoryCollections( "IsPermCollection" );
#############################################################################
##
#F SmallestGeneratorPerm( <perm> )
##
## <#GAPDoc Label="SmallestGeneratorPerm">
## <ManSection>
## <Func Name="SmallestGeneratorPerm" Arg='perm'/>
##
## <Description>
## is the smallest permutation that generates the same cyclic group
## as the permutation <A>perm</A>.
## This is very efficient, even when <A>perm</A> has large order.
## <Example><![CDATA[
## gap> SmallestGeneratorPerm( (1,4,3,2) );
## (1,2,3,4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SmallestGeneratorPerm",IsPerm);
InstallMethod( SmallestGeneratorPerm,"for internally represented permutation",
[ IsPerm and IsInternalRep ],
SMALLEST_GENERATOR_PERM );
#############################################################################
##
#A SmallestMovedPoint( <perm> )
#A SmallestMovedPoint( <C> )
##
## <#GAPDoc Label="SmallestMovedPoint">
## <ManSection>
## <Attr Name="SmallestMovedPoint" Arg='perm' Label="for a permutation"/>
## <Attr Name="SmallestMovedPoint" Arg='C'
## Label="for a list or collection of permutations"/>
##
## <Description>
## is the smallest positive integer that is moved by <A>perm</A>
## if such an integer exists, and <Ref Var="infinity"/> if
## <A>perm</A> is the identity.
## For <A>C</A> a collection or list of permutations,
## the smallest value of
## <Ref Func="SmallestMovedPoint" Label="for a permutation"/> for the
## elements of <A>C</A> is returned
## (and <Ref Var="infinity"/> if <A>C</A> is empty).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SmallestMovedPoint", IsPerm );
DeclareAttribute( "SmallestMovedPoint", IsPermCollection );
DeclareAttribute( "SmallestMovedPoint", IsList and IsEmpty );
DeclareSynonymAttr( "SmallestMovedPointPerm", SmallestMovedPoint );
#############################################################################
##
#A LargestMovedPoint( <perm> ) . . . . . . . . . . . . . . largest point
#A LargestMovedPoint( <C> )
##
## <#GAPDoc Label="LargestMovedPoint">
## <ManSection>
## <Attr Name="LargestMovedPoint" Arg='perm' Label="for a permutation"/>
## <Attr Name="LargestMovedPoint" Arg='C'
## Label="for a list or collection of permutations"/>
##
## <Description>
## For a permutation <A>perm</A>, this attribute contains
## the largest positive integer which is moved by <A>perm</A>
## if such an integer exists, and <C>0</C> if <A>perm</A> is the identity.
## For <A>C</A> a collection or list of permutations,
## the largest value of
## <Ref Func="LargestMovedPoint" Label="for a permutation"/> for the
## elements of <A>C</A> is returned (and <C>0</C> if <A>C</A> is empty).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LargestMovedPoint", IsPerm );
DeclareAttribute( "LargestMovedPoint", IsPermCollection );
DeclareAttribute( "LargestMovedPoint", IsList and IsEmpty );
DeclareSynonymAttr( "LargestMovedPointPerm", LargestMovedPoint );
#############################################################################
##
#A NrMovedPoints( <perm> )
#A NrMovedPoints( <C> )
##
## <#GAPDoc Label="NrMovedPoints">
## <ManSection>
## <Attr Name="NrMovedPoints" Arg='perm' Label="for a permutation"/>
## <Attr Name="NrMovedPoints" Arg='C'
## Label="for a list or collection of permutations"/>
##
## <Description>
## is the number of positive integers that are moved by <A>perm</A>,
## respectively by at least one element in the collection <A>C</A>.
## (The actual moved points are returned by
## <Ref Func="MovedPoints" Label="for a permutation"/>.)
## <Example><![CDATA[
## gap> SmallestMovedPointPerm((4,5,6)(7,2,8));
## 2
## gap> LargestMovedPointPerm((4,5,6)(7,2,8));
## 8
## gap> NrMovedPointsPerm((4,5,6)(7,2,8));
## 6
## gap> MovedPoints([(2,3,4),(7,6,3),(5,47)]);
## [ 2, 3, 4, 5, 6, 7, 47 ]
## gap> NrMovedPoints([(2,3,4),(7,6,3),(5,47)]);
## 7
## gap> SmallestMovedPoint([(2,3,4),(7,6,3),(5,47)]);
## 2
## gap> LargestMovedPoint([(2,3,4),(7,6,3),(5,47)]);
## 47
## gap> LargestMovedPoint([()]);
## 0
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NrMovedPoints", IsPerm );
DeclareAttribute( "NrMovedPoints", IsPermCollection );
DeclareAttribute( "NrMovedPoints", IsList and IsEmpty );
DeclareSynonymAttr( "NrMovedPointsPerm", NrMovedPoints );
DeclareSynonymAttr( "DegreeAction", NrMovedPoints );
DeclareSynonymAttr( "DegreeOperation", NrMovedPoints );
#############################################################################
##
#A MovedPoints( <perm> )
#A MovedPoints( <C> )
##
## <#GAPDoc Label="MovedPoints">
## <ManSection>
## <Attr Name="MovedPoints" Arg='perm' Label="for a permutation"/>
## <Attr Name="MovedPoints" Arg='C'
## Label="for a list or collection of permutations"/>
##
## <Description>
## is the proper set of the positive integers moved by at least one
## permutation in the collection <A>C</A>, respectively by the permutation
## <A>perm</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MovedPoints", IsPerm);
DeclareAttribute( "MovedPoints", IsPermCollection );
DeclareAttribute( "MovedPoints", IsList and IsEmpty );
#############################################################################
##
#A SignPerm( <perm> )
##
## <#GAPDoc Label="SignPerm">
## <ManSection>
## <Attr Name="SignPerm" Arg='perm'/>
##
## <Description>
## The <E>sign</E> of a permutation <A>perm</A> is defined as <M>(-1)^k</M>
## where <M>k</M> is the number of cycles of <A>perm</A> of even length.
## <P/>
## The sign is a homomorphism from the symmetric group onto the
## multiplicative group <M>\{ +1, -1 \}</M>,
## the kernel of which is the alternating group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SignPerm", IsPerm );
InstallMethod( SignPerm,
"for internally represented permutation",
[ IsPerm and IsInternalRep ],
SIGN_PERM );
#############################################################################
##
#A CycleStructurePerm( <perm> ) . . . . . . . . . . . . . . cycle structure
##
## <#GAPDoc Label="CycleStructurePerm">
## <ManSection>
## <Attr Name="CycleStructurePerm" Arg='perm'/>
##
## <Description>
## is the cycle structure (i.e. the numbers of cycles of different lengths)
## of the permutation <A>perm</A>.
## This is encoded in a list <M>l</M> in the following form:
## The <M>i</M>-th entry of <M>l</M> contains the number of cycles of
## <A>perm</A> of length <M>i+1</M>.
## If <A>perm</A> contains no cycles of length <M>i+1</M> it is not
## bound.
## Cycles of length 1 are ignored.
## <Example><![CDATA[
## gap> SignPerm((1,2,3)(4,5));
## -1
## gap> CycleStructurePerm((1,2,3)(4,5,9,7,8));
## [ , 1,, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CycleStructurePerm", IsPerm );
#############################################################################
##
#R IsPerm2Rep . . . . . . . . . . . . . . permutation with 2 bytes entries
##
## <ManSection>
## <Filt Name="IsPerm2Rep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsPerm2Rep", IsInternalRep, [] );
#############################################################################
##
#R IsPerm4Rep . . . . . . . . . . . . . . permutation with 4 bytes entries
##
## <ManSection>
## <Filt Name="IsPerm4Rep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsPerm4Rep", IsInternalRep, [] );
#############################################################################
##
#V PermutationsFamily . . . . . . . . . . . . . family of all permutations
##
## <#GAPDoc Label="PermutationsFamily">
## <ManSection>
## <Var Name="PermutationsFamily"/>
##
## <Description>
## is the family of all permutations.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "PermutationsFamily",
NewFamily( "PermutationsFamily",
IsPerm,CanEasilySortElements,CanEasilySortElements ) );
# IsMultiplicativeElementWithOne,CanEasilySortElements,CanEasilySortElements ) );
#############################################################################
##
#V TYPE_PERM2 . . . . . . . . . . type of permutation with 2 bytes entries
##
## <ManSection>
## <Var Name="TYPE_PERM2"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_PERM2",
NewType( PermutationsFamily, IsPerm and IsPerm2Rep ) );
#############################################################################
##
#V TYPE_PERM4 . . . . . . . . . . type of permutation with 4 bytes entries
##
## <ManSection>
## <Var Name="TYPE_PERM4"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_PERM4",
NewType( PermutationsFamily, IsPerm and IsPerm4Rep ) );
#############################################################################
##
#v One . . . . . . . . . . . . . . . . . . . . . . . . . one of permutation
##
SetOne( PermutationsFamily, () );
#############################################################################
##
#F PermList( <list> )
##
## <#GAPDoc Label="PermList">
## <ManSection>
## <Func Name="PermList" Arg='list'/>
##
## <Description>
## is the permutation <M>\pi</M> that moves points as described by the
## list <A>list</A>.
## That means that <M>i^{\pi} =</M> <A>list</A><C>[</C><M>i</M><C>]</C> if
## <M>i</M> lies between <M>1</M> and the length of <A>list</A>,
## and <M>i^{\pi} = i</M> if <M>i</M> is
## larger than the length of the list <A>list</A>.
## <Ref Func="PermList"/> will return <K>fail</K>
## if <A>list</A> does not define a permutation,
## i.e., if <A>list</A> is not dense,
## or if <A>list</A> contains a positive integer twice,
## or if <A>list</A> contains an
## integer not in the range <C>[ 1 .. Length( <A>list</A> ) ]</C>.
## If <A>list</A> contains non-integer entries an error is raised.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#F ListPerm( <perm>[, <length>] ) . . . . . . . . . . . . . list of images
##
## <#GAPDoc Label="ListPerm">
## <ManSection>
## <Func Name="ListPerm" Arg='perm[, length]'/>
##
## <Description>
## is a list <M>l</M> that contains the images of the positive integers
## under the permutation <A>perm</A>.
## That means that
## <M>l</M><C>[</C><M>i</M><C>]</C> <M>= i</M><C>^</C><A>perm</A>,
## where <M>i</M> lies between 1
## and the largest point moved by <A>perm</A>
## (see <Ref Func="LargestMovedPoint" Label="for a permutation"/>).
## <P/>
## An optional second argument specifies the length of the desired list.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "ListPerm", function( arg )
local n;
if Length(arg)=2 then
n := arg[2];
else
n := LargestMovedPoint(arg[1]);
fi;
if IsOne(arg[1]) then
return [1..n];
else
return OnTuples( [1..n], arg[1] );
fi;
end );
#############################################################################
##
#O RestrictedPerm(<perm>,<list>) restriction of a perm. to an invariant set
#O RestrictedPermNC(<perm>,<list>) restriction of a perm. to an invariant set
##
## <#GAPDoc Label="RestrictedPerm">
## <ManSection>
## <Oper Name="RestrictedPerm" Arg='perm, list'/>
## <Oper Name="RestrictedPermNC" Arg='perm, list'/>
##
## <Description>
## <Ref Func="RestrictedPerm"/> returns the new permutation
## that acts on the points in the list <A>list</A> in the same way as
## the permutation <A>perm</A>,
## and that fixes those points that are not in <A>list</A>. The resulting
## permutation is stored internally of degree given by the maximal entry of
## <A>list</A>.
## <A>list</A> must be a list of positive integers such that for each
## <M>i</M> in <A>list</A> the image <M>i</M><C>^</C><A>perm</A> is also in
## <A>list</A>,
## i.e., <A>list</A> must be the union of cycles of <A>perm</A>.
## <P/>
## <Ref Func="RestrictedPermNC"/> does not check whether <A>list</A>
## is a union of cycles.
## <P/>
## <Example><![CDATA[
## gap> ListPerm((3,4,5));
## [ 1, 2, 4, 5, 3 ]
## gap> PermList([1,2,4,5,3]);
## (3,4,5)
## gap> MappingPermListList([2,5,1,6],[7,12,8,2]);
## (1,8,5,12,11,10,9,6,2,7,4,3)
## gap> RestrictedPerm((1,2)(3,4),[3..5]);
## (3,4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RestrictedPerm", [ IsPerm, IsList ] );
DeclareOperation( "RestrictedPermNC", [ IsPerm, IsList ] );
InstallMethod(RestrictedPermNC,"kernel method",true,
[IsPerm and IsInternalRep, IsList],0,
function(g,D)
local p;
p:=RESTRICTED_PERM(g,D,false);
if p=fail then
Error("<g> must be a permutation and <D> a plain list or range,\n",
" consisting of a union of cycles of <g>");
fi;
return p;
end);
InstallMethod( RestrictedPerm,"use kernel method, test",true,
[IsPerm and IsInternalRep, IsList],0,
function(g,D)
local p;
p:=RESTRICTED_PERM(g,D,true);
if p=fail then
Error("<g> must be a permutation and <D> a plain list or range,\n",
" consisting of a union of cycles of <g>");
fi;
return p;
end);
#############################################################################
##
#F MappingPermListList( <src>, <dst> ) . . perm. mapping one list to another
##
## <#GAPDoc Label="MappingPermListList">
## <ManSection>
## <Func Name="MappingPermListList" Arg='src, dst'/>
##
## <Description>
## Let <A>src</A> and <A>dst</A> be lists of positive integers of the same
## length, such that neither may contain an element twice.
## <Ref Func="MappingPermListList"/> returns a permutation <M>\pi</M> such
## that <A>src</A><C>[</C><M>i</M><C>]^</C><M>\pi =</M>
## <A>dst</A><C>[</C><M>i</M><C>]</C>.
## The permutation <M>\pi</M> fixes all points larger than the maximum of
## the entries in <A>src</A> and <A>dst</A>.
## If there are several such permutations, it is not specified which of them
## <Ref Func="MappingPermListList"/> returns.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "MappingPermListList", function( src, dst )
if not IsList(src) or not IsList(dst) or Length(src) <> Length(dst) then
Error("usage: MappingPermListList( <lst1>, <lst2> )");
fi;
if IsEmpty( src ) then
return ();
fi;
src := Concatenation( src, Difference( [1..Maximum(src)], src ) );
dst := Concatenation( dst, Difference( [1..Maximum(dst)], dst ) );
src := PermList(src);
if src = fail then return fail; fi;
dst := PermList(dst);
if dst = fail then return fail; fi;
return LeftQuotient( src, dst );
end );
#############################################################################
##
#m SmallestMovedPoint( <perm> ) . . . . . . . . . . . for permutations
##
InstallMethod( SmallestMovedPoint,
"for a permutation",
[ IsPerm ],
function( p )
local i;
if IsOne(p) then
return infinity;
fi;
i := 1;
while i ^ p = i do
i := i + 1;
od;
return i;
end );
#############################################################################
##
#m LargestMovedPoint( <perm> ) . . . . . . . . for internal permutation
##
InstallMethod( LargestMovedPoint,
"for an internal permutation",
[ IsPerm and IsInternalRep ],
LARGEST_MOVED_POINT_PERM );
#############################################################################
##
#m NrMovedPoints( <perm> ) . . . . . . . . . . . . . . . for permutation
##
InstallMethod( NrMovedPoints,
"for a permutation",
[ IsPerm ],
function( perm )
local mov, pnt;
mov:= 0;
if not IsOne( perm ) then
for pnt in [ SmallestMovedPoint( perm )
.. LargestMovedPoint( perm ) ] do
if pnt ^ perm <> pnt then
mov:= mov + 1;
fi;
od;
fi;
return mov;
end );
#############################################################################
##
#m CycleStructurePerm( <perm> ) . . . . . . . . . length of cycles of perm
##
InstallMethod( CycleStructurePerm, "internal", [ IsPerm and IsInternalRep],0,
CYCLE_STRUCT_PERM);
InstallMethod( CycleStructurePerm, "generic method", [ IsPerm ],0,
function ( perm )
local cys, # collected cycle lengths, result
degree, # degree of perm
mark, # boolean list to mark elements already processed
i,j, # loop variables
len, # length of a cycle
cyc; # a cycle of perm
if IsOne(perm) then
cys := [];
else
degree := LargestMovedPoint(perm);
mark := BlistList([1..degree], []);
cys := [];
for i in [1..degree] do
if not mark[i] then
cyc := CYCLE_PERM_INT( perm, i );
len := Length(cyc) - 1;
if 0 < len then
if IsBound(cys[len]) then
cys[len] := cys[len]+1;
else
cys[len] := 1;
fi;
fi;
for j in cyc do
mark[j] := true;
od;
fi;
od;
fi;
return cys;
end );
#############################################################################
##
#m String( <perm> ) . . . . . . . . . . . . . . . . . . . for a permutation
##
BIND_GLOBAL("DoStringPerm",function( perm,hint )
local str, i, j;
if IsOne( perm ) then
str := "()";
else
str := "";
for i in [ 1 .. LargestMovedPoint( perm ) ] do
j := i ^ perm;
while j > i do j := j ^ perm; od;
if j = i and i ^ perm <> i then
Append( str, "(" );
Append( str, String( i ) );
j := i ^ perm;
while j > i do
Append( str, "," );
if hint then Append(str,"\<\>"); fi;
Append( str, String( j ) );
j := j ^ perm;
od;
Append( str, ")" );
if hint then Append(str,"\<\<\>\>"); fi;
fi;
od;
if Length(str)>4 and str{[Length(str)-3..Length(str)]}="\<\<\>\>" then
str:=str{[1..Length(str)-4]}; # remove tailing line breaker
fi;
ConvertToStringRep( str );
fi;
return str;
end );
InstallMethod( String, "for a permutation", [ IsPerm ],function(perm)
return DoStringPerm(perm,false);
end);
InstallMethod( ViewString, "for a permutation", [ IsPerm ],function(perm)
return DoStringPerm(perm,true);
end);
#############################################################################
##
#M Order( <perm> ) . . . . . . . . . . . . . . . . . order of a permutation
##
InstallMethod( Order,
"for a permutation",
[ IsPerm ],
ORDER_PERM );
#############################################################################
##
#O DistancePerms( <perm1>, <perm2> ) . returns NrMovedPoints( <perm1>/<perm2> )
## but possibly faster
##
## <#GAPDoc Label="DistancePerms">
## <ManSection>
## <Oper Name="DistancePerms" Arg="perm1, perm2"/>
##
## <Description>
## returns the number of points for which <A>perm1</A> and <A>perm2</A>
## have different images. This should always produce the same result as
## <C>NrMovePoints(<A>perm1</A>/<A>perm2</A>)</C> but some methods may be
## much faster than this form, since no new permutation needs to be created.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "DistancePerms", [IsPerm, IsPerm] );
#############################################################################
##
#M DistancePerms( <perm1>, <perm2> ) . returns NrMovedPoints( <perm1>/<perm2> )
## for kernel permutations
##
InstallMethod( DistancePerms, "for kernel permutations",
[ IsPerm and IsInternalRep, IsPerm and IsInternalRep ],
DISTANCE_PERMS);
#############################################################################
##
#M DistancePerms( <perm1>, <perm2> ) . returns NrMovedPoints( <perm1>/<perm2> )
## generic
##
InstallMethod( DistancePerms, "for general permutations",
[ IsPerm, IsPerm ],
function(x,y)
return NrMovedPoints(x/y); end);
#############################################################################
##
#m ViewObj( <perm> ) . . . . . . . . . . . . . . . . . . . for a permutation
##
InstallMethod( ViewObj, "for a permutation", [ IsPerm ],
function( perm )
local dom,l,i,n,p,c;
dom:=[];
l:=LargestMovedPoint(perm);
i:=SmallestMovedPoint(perm);
n:=0;
while n<200 and i<l do
p:=i;
if p^perm<>p and not p in dom then
c:=false;
while not p in dom do
AddSet(dom,p);
n:=n+1;
# deliberately *no ugly blanks* printed!
if c then
Print(",",p);
else
Print(Concatenation("(",String(p)));
fi;
p:=p^perm;
c:=true;
od;
Print(")");
fi;
i:=i+1;
od;
if i<l and ForAny([i..l],j->j^perm<>j and not j in dom) then
Print("( [...] )");
elif i>l+1 then
Print("()");
fi;
end );
#############################################################################
##
#E
|