This file is indexed.

/usr/share/gap/lib/pquot.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#############################################################################
##  
#W  pquot.gd                    GAP Library                     Werner Nickel
##
##
#Y  Copyright (C) 1998, . . . . . . . . .  University of St Andrews, Scotland
##


#############################################################################
##  
#F  AbelianPQuotient  . . . . . . . . . . .  initialize an abelian p-quotient
##
##  <ManSection>
##  <Func Name="AbelianPQuotient" Arg='qs'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AbelianPQuotient" );


#############################################################################
##
#F  PQuotient(<F>, <p>[, <c>][, <logord>][, <ctype>])  . .  pq of an fp group
##
##  <#GAPDoc Label="PQuotient">
##  <ManSection>
##  <Func Name="PQuotient" Arg='F, p[, c][, logord][, ctype]'/>
##
##  <Description>
##  computes a factor <A>p</A>-group of a finitely presented group <A>F</A>
##  in form  of a quotient system.
##  The quotient system can be converted into an epimorphism from <A>F</A>
##  onto the <A>p</A>-group computed by the function
##  <Ref Func="EpimorphismQuotientSystem"/>. 
##  <P/>
##  For a group <M>G</M> define the exponent-<M>p</M> central series of
##  <M>G</M> inductively by <M>{\cal P}_1(G) = G</M> and
##  <M>{\cal P}_{{i+1}}(G) = [{\cal P}_i(G),G]{\cal P}_{{i+1}}(G)^p</M>.
##  The factor groups modulo the terms of the lower
##  exponent-<M>p</M> central series are <M>p</M>-groups.
##  The group <M>G</M> has <M>p</M>-class
##  <M>c</M> if <M>{\cal P}_c(G) \neq {\cal P}_{{c+1}}(G) = 1</M>. 
##  <P/>
##  The algorithm computes successive quotients modulo the terms of the
##  exponent-<M>p</M> central series of <A>F</A>.
##  If the parameter <A>c</A> is present,
##  then the factor group modulo the <M>(c+1)</M>-th term of the
##  exponent-<M>p</M> central series of <A>F</A> is returned.
##  If <A>c</A> is not present, then the algorithm attempts to compute the
##  largest factor <A>p</A>-group of <A>F</A>.
##  In case <A>F</A> does not have a largest factor <A>p</A>-group,
##  the algorithm will not terminate.
##  <P/>
##  By default the algorithm computes only with factor groups of order at
##  most <M>p^{256}</M>. If the parameter <A>logord</A> is present, it will
##  compute with factor groups of order at most <M>p^{<A>logord</A>}</M>.
##  If this parameter is specified, then the parameter <A>c</A> must also be
##  given.  The present
##  implementation produces an error message if the order of a
##  <M>p</M>-quotient exceeds <M>p^{256}</M> or <M>p^{<A>logord</A>}</M>,
##  respectively.
##  Note that the order of intermediate <M>p</M>-groups may be larger than
##  the final order of a <M>p</M>-quotient.
##  <P/>
##  The parameter <A>ctype</A> determines the type of collector that is used
##  for computations within the factor <A>p</A>-group.
##  <A>ctype</A> must either be <C>"single"</C> in which case a simple
##  collector from the left is used or <C>"combinatorial"</C> in which case
##  a combinatorial collector from the left is used. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PQuotient" );


#############################################################################
##
#O  EpimorphismPGroup( <fpgrp>, <p>[, <cl>] )  factor p-group of a f.p. group
##
##  <#GAPDoc Label="EpimorphismPGroup">
##  <ManSection>
##  <Oper Name="EpimorphismPGroup" Arg='fpgrp, p[, cl]'/>
##
##  <Description>
##  computes an epimorphism from the finitely presented group <A>fpgrp</A> to
##  the largest <M>p</M>-group of <M>p</M>-class <A>cl</A> which is
##  a quotient of <A>fpgrp</A>.
##  If <A>cl</A> is omitted, the largest finite <M>p</M>-group quotient
##  (of <M>p</M>-class up to <M>1000</M>) is determined.
##  <P/>
##  <Example><![CDATA[
##  gap> hom:=EpimorphismPGroup(fp,2);
##  [ f1, f2 ] -> [ a1, a2 ]
##  gap> Size(Image(hom));
##  8
##  gap> hom:=EpimorphismPGroup(fp,3,7);
##  [ f1, f2 ] -> [ a1, a2 ]
##  gap> Size(Image(hom));
##  6561
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EpimorphismPGroup", [IsGroup, IsPosInt ] );
DeclareOperation( "EpimorphismPGroup", [IsGroup, IsPosInt, IsPosInt] );


#############################################################################
##
#O  EpimorphismQuotientSystem(<quotsys>)
##
##  <#GAPDoc Label="EpimorphismQuotientSystem">
##  <ManSection>
##  <Oper Name="EpimorphismQuotientSystem" Arg='quotsys'/>
##
##  <Description>
##  For a quotient system <A>quotsys</A> obtained from the function
##  <Ref Func="PQuotient"/>, this operation returns an epimorphism
##  <M><A>F</A> \rightarrow <A>P</A></M> where <M><A>F</A></M> is the
##  finitely presented group of which <A>quotsys</A> is a quotient system and
##  <M><A>P</A></M> is a pc group isomorphic to the quotient of <A>F</A>
##  determined by <A>quotsys</A>.
##  <P/>
##  Different calls to this operation will create different groups <A>P</A>,
##  each with its own family.
##  <P/>
##  <Example><![CDATA[
##  gap> PQuotient( FreeGroup(2), 5, 10, 1024, "combinatorial" );
##  <5-quotient system of 5-class 10 with 520 generators>
##  gap> phi := EpimorphismQuotientSystem( last );
##  [ f1, f2 ] -> [ a1, a2 ]
##  gap> Collected( Factors( Size( Image( phi ) ) ) );
##  [ [ 5, 520 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EpimorphismQuotientSystem", [IsQuotientSystem] );


#############################################################################
##
#F  EpimorphismNilpotentQuotient( <fpgrp>[, <n>] )
##
##  <#GAPDoc Label="EpimorphismNilpotentQuotient">
##  <ManSection>
##  <Func Name="EpimorphismNilpotentQuotient" Arg='fpgrp[, n]'/>
##
##  <Description>
##  returns an epimorphism on the class <A>n</A> finite nilpotent quotient of
##  the finitely presented group <A>fpgrp</A>.
##  If <A>n</A> is omitted, the largest finite nilpotent quotient
##  (of <M>p</M>-class up to <M>1000</M>) is taken.
##  <P/>
##  <Example><![CDATA[
##  gap> hom:=EpimorphismNilpotentQuotient(fp,7);
##  [ f1, f2 ] -> [ f1*f4, f2*f5 ]
##  gap> Size(Image(hom));
##  52488
##  ]]></Example>
##  <P/>
##  A related operation which is also applicable to finitely presented groups is
##  <Ref Func="GQuotients"/>, which computes all epimorphisms from a
##  (finitely presented) group <A>F</A> onto a given (finite) group <A>G</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> GQuotients(fp,Group((1,2,3),(1,2)));
##  [ [ f1, f2 ] -> [ (1,2), (2,3) ], [ f1, f2 ] -> [ (2,3), (1,2,3) ], 
##    [ f1, f2 ] -> [ (1,2,3), (2,3) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("EpimorphismNilpotentQuotientOp",[IsGroup,IsObject]);
DeclareGlobalFunction("EpimorphismNilpotentQuotient");


#############################################################################
##
#O  Nucleus . . . . . . . . . . . . . . . . . . . .  the nucleus of a p-cover
##
##  <ManSection>
##  <Func Name="Nucleus" Arg='pq, G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation("Nucleus",[IsPQuotientSystem,IsGroup]);


#############################################################################
##
#E