/usr/share/gap/lib/ring.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | #############################################################################
##
#W ring.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for rings.
##
#############################################################################
##
#P IsNearRing( <R> )
##
## <ManSection>
## <Prop Name="IsNearRing" Arg='R'/>
##
## <Description>
## A <E>near-ring</E> in &GAP; is a near-additive group
## (see <Ref Func="IsNearAdditiveGroup"/>) that is also a semigroup (see <Ref Func="IsSemigroup"/>),
## such that addition <C>+</C> and multiplication <C>*</C> are right distributive
## (see <Ref Func="IsRDistributive"/>).
## Any associative ring (see <Ref Func="IsRing"/>) is also a near-ring.
## </Description>
## </ManSection>
##
DeclareSynonymAttr( "IsNearRing",
IsNearAdditiveGroup and IsMagma and IsRDistributive and IsAssociative );
#############################################################################
##
#P IsNearRingWithOne( <R> )
##
## <ManSection>
## <Prop Name="IsNearRingWithOne" Arg='R'/>
##
## <Description>
## A <E>near-ring-with-one</E> in &GAP; is a near-ring (see <Ref Prop="IsNearRing"/>)
## that is also a magma-with-one (see <Ref Func="IsMagmaWithOne"/>).
## <P/>
## Note that the identity and the zero of a near-ring-with-one need <E>not</E> be
## distinct.
## This means that a near-ring that consists only of its zero element can be
## regarded as a near-ring-with-one.
## </Description>
## </ManSection>
##
DeclareSynonymAttr( "IsNearRingWithOne", IsNearRing and IsMagmaWithOne );
#############################################################################
##
#A AsNearRing( <C> )
##
## <ManSection>
## <Attr Name="AsNearRing" Arg='C'/>
##
## <Description>
## If the elements in the collection <A>C</A> form a near-ring then <C>AsNearRing</C>
## returns this near-ring, otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
##
DeclareAttribute( "AsNearRing", IsNearRingElementCollection );
#############################################################################
##
#P IsRing( <R> )
##
## <#GAPDoc Label="IsRing">
## <ManSection>
## <Prop Name="IsRing" Arg='R'/>
##
## <Description>
## A <E>ring</E> in &GAP; is an additive group
## (see <Ref Func="IsAdditiveGroup"/>)
## that is also a magma (see <Ref Func="IsMagma"/>),
## such that addition <C>+</C> and multiplication <C>*</C> are distributive,
## see <Ref Func="IsDistributive"/>.
## <P/>
## The multiplication need <E>not</E> be associative
## (see <Ref Func="IsAssociative"/>).
## For example, a Lie algebra (see <Ref Chap="Lie Algebras"/>)
## is regarded as a ring in &GAP;.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsRing",
IsAdditiveGroup and IsMagma and IsDistributive );
#############################################################################
##
#P IsRingWithOne( <R> )
##
## <#GAPDoc Label="IsRingWithOne">
## <ManSection>
## <Prop Name="IsRingWithOne" Arg='R'/>
##
## <Description>
## A <E>ring-with-one</E> in &GAP; is a ring (see <Ref Func="IsRing"/>)
## that is also a magma-with-one (see <Ref Func="IsMagmaWithOne"/>).
## <P/>
## Note that the identity and the zero of a ring-with-one need <E>not</E> be
## distinct.
## This means that a ring that consists only of its zero element can be
## regarded as a ring-with-one.
## <!-- shall we force <E>every</E> trivial ring to be a ring-with-one-->
## <!-- by installing an implication?-->
## <P/>
## This is especially useful in the case of finitely presented rings,
## in the sense that each factor of a ring-with-one is again a
## ring-with-one.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingWithOne", IsRing and IsMagmaWithOne );
#############################################################################
##
#A AsRing( <C> )
##
## <#GAPDoc Label="AsRing">
## <ManSection>
## <Attr Name="AsRing" Arg='C'/>
##
## <Description>
## If the elements in the collection <A>C</A> form a ring then
## <Ref Func="AsRing"/> returns this ring,
## otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsRing", IsRingElementCollection );
#############################################################################
##
#A GeneratorsOfRing( <R> )
##
## <#GAPDoc Label="GeneratorsOfRing">
## <ManSection>
## <Attr Name="GeneratorsOfRing" Arg='R'/>
##
## <Description>
## <Ref Func="GeneratorsOfRing"/> returns a list of elements such that the
## ring <A>R</A> is the closure of these elements under addition,
## multiplication, and taking additive inverses.
## <Example><![CDATA[
## gap> R:=Ring( 2, 1/2 );
## <ring with 2 generators>
## gap> GeneratorsOfRing( R );
## [ 2, 1/2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRing", IsRing );
#############################################################################
##
#A GeneratorsOfRingWithOne( <R> )
##
## <#GAPDoc Label="GeneratorsOfRingWithOne">
## <ManSection>
## <Attr Name="GeneratorsOfRingWithOne" Arg='R'/>
##
## <Description>
## <Ref Func="GeneratorsOfRingWithOne"/> returns a list of elements
## such that the ring <A>R</A> is the closure of these elements
## under addition, multiplication, taking additive inverses, and taking
## the identity element <C>One( <A>R</A> )</C>.
## <P/>
## <A>R</A> itself need <E>not</E> be known to be a ring-with-one.
## <P/>
## <Example><![CDATA[
## gap> R:= RingWithOne( [ 4, 6 ] );
## Integers
## gap> GeneratorsOfRingWithOne( R );
## [ 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRingWithOne", IsRingWithOne );
#############################################################################
##
#O RingByGenerators( <C> ) . . . . . . . ring gener. by elements in a coll.
##
## <#GAPDoc Label="RingByGenerators">
## <ManSection>
## <Oper Name="RingByGenerators" Arg='C'/>
##
## <Description>
## <Ref Func="RingByGenerators"/> returns the ring generated by the elements
## in the collection <A>C</A>,
## i. e., the closure of <A>C</A> under addition, multiplication,
## and taking additive inverses.
## <Example><![CDATA[
## gap> RingByGenerators([ 2, E(4) ]);
## <ring with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RingByGenerators", [ IsCollection ] );
#############################################################################
##
#O DefaultRingByGenerators( <coll> ) . . . . default ring containing a coll.
##
## <#GAPDoc Label="DefaultRingByGenerators">
## <ManSection>
## <Oper Name="DefaultRingByGenerators" Arg='coll'/>
##
## <Description>
## For a collection <A>coll</A>, returns a default ring in which
## <A>coll</A> is contained.
## <Example><![CDATA[
## gap> DefaultRingByGenerators([ 2, E(4) ]);
## GaussianIntegers
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DefaultRingByGenerators", [ IsCollection ] );
#############################################################################
##
#F Ring( <r>, <s>, ... ) . . . . . . . . . . ring generated by a collection
#F Ring( <coll> ) . . . . . . . . . . . . . . ring generated by a collection
##
## <#GAPDoc Label="Ring">
## <ManSection>
## <Heading>Ring</Heading>
## <Func Name="Ring" Arg='r, s, ...' Label="for ring elements"/>
## <Func Name="Ring" Arg='coll' Label="for a collection"/>
##
## <Description>
## In the first form <Ref Func="Ring" Label="for ring elements"/>
## returns the smallest ring that contains all the elements
## <A>r</A>, <A>s</A>, <M>\ldots</M>
## In the second form <Ref Func="Ring" Label="for a collection"/> returns
## the smallest ring that contains all the elements in the collection
## <A>coll</A>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
## <P/>
## <Ref Func="Ring" Label="for ring elements"/> differs from
## <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
## the smallest ring in which the elements lie,
## while <Ref Func="DefaultRing" Label="for ring elements"/>
## may return a larger ring if that makes sense.
## <Example><![CDATA[
## gap> Ring( 2, E(4) );
## <ring with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Ring" );
#############################################################################
##
#O RingWithOneByGenerators( <coll> )
##
## <#GAPDoc Label="RingWithOneByGenerators">
## <ManSection>
## <Oper Name="RingWithOneByGenerators" Arg='coll'/>
##
## <Description>
## <Ref Oper="RingWithOneByGenerators"/> returns the ring-with-one
## generated by the elements in the collection <A>coll</A>,
## i. e., the closure of <A>coll</A> under
## addition, multiplication, taking additive inverses,
## and taking the identity of an element.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RingWithOneByGenerators", [ IsCollection ] );
#############################################################################
##
#F RingWithOne( <r>, <s>, ... ) . . ring-with-one generated by a collection
#F RingWithOne( <C> ) . . . . . . . ring-with-one generated by a collection
##
## <#GAPDoc Label="RingWithOne">
## <ManSection>
## <Heading>RingWithOne</Heading>
## <Func Name="RingWithOne" Arg='r, s, ...' Label="for ring elements"/>
## <Func Name="RingWithOne" Arg='coll' Label="for a collection"/>
##
## <Description>
## In the first form <Ref Func="RingWithOne" Label="for ring elements"/>
## returns the smallest ring with one that contains all the elements
## <A>r</A>, <A>s</A>, <M>\ldots</M>
## In the second form <Ref Func="RingWithOne" Label="for a collection"/>
## returns the smallest ring with one that contains all the elements
## in the collection <A>C</A>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
## <Example><![CDATA[
## gap> RingWithOne( [ 4, 6 ] );
## Integers
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RingWithOne" );
#############################################################################
##
#F DefaultRing( <r>, <s>, ... ) . . . default ring containing a collection
#F DefaultRing( <coll> ) . . . . . . . default ring containing a collection
##
## <#GAPDoc Label="DefaultRing">
## <ManSection>
## <Heading>DefaultRing</Heading>
## <Func Name="DefaultRing" Arg='r, s, ...' Label="for ring elements"/>
## <Func Name="DefaultRing" Arg='coll' Label="for a collection"/>
##
## <Description>
## In the first form <Ref Func="DefaultRing" Label="for ring elements"/>
## returns a ring that contains all the elements <A>r</A>, <A>s</A>,
## <M>\ldots</M> etc.
## In the second form <Ref Func="DefaultRing" Label="for a collection"/>
## returns a ring that contains all the elements in the collection
## <A>coll</A>.
## If any element is not an element of a ring or if the elements lie in no
## common ring an error is raised.
## <P/>
## The ring returned by <Ref Func="DefaultRing" Label="for ring elements"/>
## need not be the smallest ring in which the elements lie.
## For example for elements from cyclotomic fields,
## <Ref Func="DefaultRing" Label="for ring elements"/> may return the ring
## of integers of the smallest cyclotomic field in which the elements lie,
## which need not be the smallest ring overall,
## because the elements may in fact lie in a smaller number field
## which is itself not a cyclotomic field.
## <P/>
## (For the exact definition of the default ring of a certain type of
## elements, look at the corresponding method installation.)
## <P/>
## <Ref Func="DefaultRing" Label="for ring elements"/> is used
## by ring functions such as <Ref Func="Quotient"/>, <Ref Func="IsPrime"/>,
## <Ref Func="Factors"/>,
## or <Ref Func="Gcd" Label="for (a ring and) several elements"/>
## if no explicit ring is given.
## <P/>
## <Ref Func="Ring" Label="for ring elements"/> differs from
## <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
## the smallest ring in which the elements lie,
## while <Ref Func="DefaultRing" Label="for ring elements"/> may return
## a larger ring if that makes sense.
## <P/>
## <Example><![CDATA[
## gap> DefaultRing( 2, E(4) );
## GaussianIntegers
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultRing" );
#############################################################################
##
#F Subring( <R>, <gens> ) . . . . . . . . subring of <R> generated by <gens>
#F SubringNC( <R>, <gens> ) . . . . . . . subring of <R> generated by <gens>
##
## <#GAPDoc Label="Subring">
## <ManSection>
## <Func Name="Subring" Arg='R, gens'/>
## <Func Name="SubringNC" Arg='R, gens'/>
##
## <Description>
## returns the ring with parent <A>R</A> generated by the elements in
## <A>gens</A>.
## When the second form, <Ref Func="SubringNC"/> is used,
## it is <E>not</E> checked whether all elements in <A>gens</A> lie in
## <A>R</A>.
## <P/>
## <Example><![CDATA[
## gap> R:= Integers;
## Integers
## gap> S:= Subring( R, [ 4, 6 ] );
## <ring with 1 generators>
## gap> Parent( S );
## Integers
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Subring" );
DeclareGlobalFunction( "SubringNC" );
#############################################################################
##
#F SubringWithOne( <R>, <gens> ) . subring-with-one of <R> gen. by <gens>
#F SubringWithOneNC( <R>, <gens> ) . subring-with-one of <R> gen. by <gens>
##
## <#GAPDoc Label="SubringWithOne">
## <ManSection>
## <Func Name="SubringWithOne" Arg='R, gens'/>
## <Func Name="SubringWithOneNC" Arg='R, gens'/>
##
## <Description>
## returns the ring with one with parent <A>R</A> generated by the elements
## in <A>gens</A>.
## When the second form, <Ref Func="SubringWithOneNC"/> is used,
## it is <E>not</E> checked whether all elements in <A>gens</A> lie in
## <A>R</A>.
## <P/>
## <Example><![CDATA[
## gap> R:= SubringWithOne( Integers, [ 4, 6 ] );
## Integers
## gap> Parent( R );
## Integers
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubringWithOne" );
DeclareGlobalFunction( "SubringWithOneNC" );
#############################################################################
##
#O ClosureRing( <R>, <r> )
#O ClosureRing( <R>, <S> )
##
## <#GAPDoc Label="ClosureRing">
## <ManSection>
## <Heading>ClosureRing</Heading>
## <Oper Name="ClosureRing" Arg='R, r'
## Label="for a ring and a ring element"/>
## <Oper Name="ClosureRing" Arg='R, S' Label="for two rings"/>
##
## <Description>
## For a ring <A>R</A> and either an element <A>r</A> of its elements family
## or a ring <A>S</A>,
## <Ref Func="ClosureRing" Label="for a ring and a ring element"/>
## returns the ring generated by both arguments.
## <P/>
## <Example><![CDATA[
## gap> ClosureRing( Integers, E(4) );
## <ring-with-one, with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ClosureRing", [ IsRing, IsObject ] );
#############################################################################
##
#C IsUniqueFactorizationRing( <R> )
##
## <#GAPDoc Label="IsUniqueFactorizationRing">
## <ManSection>
## <Filt Name="IsUniqueFactorizationRing" Arg='R' Type='Category'/>
##
## <Description>
## A ring <A>R</A> is called a <E>unique factorization ring</E> if it is an
## integral ring (see <Ref Func="IsIntegralRing"/>),
## and every nonzero element has a unique factorization into
## irreducible elements,
## i.e., a unique representation as product of irreducibles
## (see <Ref Func="IsIrreducibleRingElement"/>).
## Unique in this context means unique up to permutations of the factors and
## up to multiplication of the factors by units
## (see <Ref Func="Units"/>).
## <P/>
## Mathematically, a field should therefore also be a unique factorization
## ring, since every nonzero element is a unit.
## In &GAP;, however,
## at least at present fields do not lie in the filter
## <Ref Func="IsUniqueFactorizationRing"/>,
## since operations such as <Ref Func="Factors"/>,
## <Ref Func="Gcd" Label="for (a ring and) several elements"/>,
## <Ref Func="StandardAssociate"/> and so on do
## not apply to fields (the results would be trivial, and not
## especially useful) and methods which require their arguments to
## lie in <Ref Func="IsUniqueFactorizationRing"/> expect these operations
## to work.
## <P/>
## (Note that we cannot install a subset maintained method for this filter
## since the factorization of an element needs not exist in a subring.
## As an example, consider the subring <M>4 &NN; + 1</M> of the ring
## <M>4 &ZZ; + 1</M>;
## in the subring, the element <M>3 \cdot 3 \cdot 11 \cdot 7</M> has the two
## factorizations <M>33 \cdot 21 = 9 \cdot 77</M>,
## but in the large ring there is the unique factorization
## <M>(-3) \cdot (-3) \cdot (-11) \cdot (-7)</M>,
## and it is easy to see that every element in <M>4 &ZZ; + 1</M> has a
## unique factorization.)
## <P/>
## <Example><![CDATA[
## gap> IsUniqueFactorizationRing( PolynomialRing( Rationals, 1 ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsUniqueFactorizationRing", IsRing );
#############################################################################
##
#C IsEuclideanRing( <R> )
##
## <#GAPDoc Label="IsEuclideanRing">
## <ManSection>
## <Filt Name="IsEuclideanRing" Arg='R' Type='Category'/>
##
## <Description>
## A ring <M>R</M> is called a Euclidean ring if it is an integral ring and
## there exists a function <M>\delta</M>, called the Euclidean degree, from
## <M>R-\{0_R\}</M> to the nonnegative integers,
## such that for every pair <M>r \in R</M> and <M>s \in R-\{0_R\}</M> there
## exists an element <M>q</M> such that either
## <M>r - q s = 0_R</M> or <M>\delta(r - q s) < \delta( s )</M>.
## In &GAP; the Euclidean degree <M>\delta</M> is implicitly built into a
## ring and cannot be changed.
## The existence of this division with remainder implies that the
## Euclidean algorithm can be applied to compute a greatest common divisor
## of two elements,
## which in turn implies that <M>R</M> is a unique factorization ring.
## <P/>
## <!-- more general: new category <Q>valuated domain</Q>?-->
## <Example><![CDATA[
## gap> IsEuclideanRing( GaussianIntegers );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsEuclideanRing",
IsRingWithOne and IsUniqueFactorizationRing );
#############################################################################
##
#P IsAnticommutative( <R> )
##
## <#GAPDoc Label="IsAnticommutative">
## <ManSection>
## <Prop Name="IsAnticommutative" Arg='R'/>
##
## <Description>
## is <K>true</K> if the relation <M>a * b = - b * a</M>
## holds for all elements <M>a</M>, <M>b</M> in the ring <A>R</A>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsAnticommutative", IsRing );
InstallSubsetMaintenance( IsAnticommutative,
IsRing and IsAnticommutative, IsRing );
InstallFactorMaintenance( IsAnticommutative,
IsRing and IsAnticommutative, IsObject, IsRing );
#############################################################################
##
#P IsIntegralRing( <R> )
##
## <#GAPDoc Label="IsIntegralRing">
## <ManSection>
## <Prop Name="IsIntegralRing" Arg='R'/>
##
## <Description>
## A ring-with-one <A>R</A> is integral if it is commutative,
## contains no nontrivial zero divisors,
## and if its identity is distinct from its zero.
## <Example><![CDATA[
## gap> IsIntegralRing( Integers );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsIntegralRing", IsRing );
InstallSubsetMaintenance( IsIntegralRing,
IsRing and IsIntegralRing, IsRing and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
IsRing and IsMagmaWithInversesIfNonzero and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
IsUniqueFactorizationRing and IsNonTrivial );
#############################################################################
##
#P IsJacobianRing( <R> )
##
## <#GAPDoc Label="IsJacobianRing">
## <ManSection>
## <Prop Name="IsJacobianRing" Arg='R'/>
##
## <Description>
## is <K>true</K> if the Jacobi identity holds in the ring <A>R</A>,
## and <K>false</K> otherwise.
## The Jacobi identity means that
## <M>x * (y * z) + z * (x * y) + y * (z * x)</M>
## is the zero element of <A>R</A>,
## for all elements <M>x</M>, <M>y</M>, <M>z</M> in <A>R</A>.
## <Example><![CDATA[
## gap> L:= FullMatrixLieAlgebra( GF( 5 ), 7 );
## <Lie algebra over GF(5), with 13 generators>
## gap> IsJacobianRing( L );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsJacobianRing", IsRing );
InstallTrueMethod( IsJacobianRing,
IsJacobianElementCollection and IsRing );
InstallSubsetMaintenance( IsJacobianRing,
IsRing and IsJacobianRing, IsRing );
InstallFactorMaintenance( IsJacobianRing,
IsRing and IsJacobianRing, IsObject, IsRing );
#############################################################################
##
#P IsZeroSquaredRing( <R> )
##
## <#GAPDoc Label="IsZeroSquaredRing">
## <ManSection>
## <Prop Name="IsZeroSquaredRing" Arg='R'/>
##
## <Description>
## is <K>true</K> if <M>a * a</M> is the zero element of the ring <A>R</A>
## for all <M>a</M> in <A>R</A>, and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsZeroSquaredRing", IsRing );
InstallTrueMethod( IsAnticommutative, IsRing and IsZeroSquaredRing );
InstallTrueMethod( IsZeroSquaredRing,
IsZeroSquaredElementCollection and IsRing );
InstallSubsetMaintenance( IsZeroSquaredRing,
IsRing and IsZeroSquaredRing, IsRing );
InstallFactorMaintenance( IsZeroSquaredRing,
IsRing and IsZeroSquaredRing, IsObject, IsRing );
#############################################################################
##
#P IsZeroMultiplicationRing( <R> )
##
## <ManSection>
## <Prop Name="IsZeroMultiplicationRing" Arg='R'/>
##
## <Description>
## is <K>true</K> if <M>a * b</M> is the zero element of the ring <A>R</A>
## for all <M>a, b</M> in <A>R</A>, and <K>false</K> otherwise.
## </Description>
## </ManSection>
##
DeclareProperty( "IsZeroMultiplicationRing", IsRing );
InstallTrueMethod( IsZeroSquaredRing, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsAssociative, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsCommutative, IsRing and IsZeroMultiplicationRing );
# The implication to `IsAnticommutative' follows from `IsZeroSquaredRing'.
InstallSubsetMaintenance( IsZeroMultiplicationRing,
IsRing and IsZeroMultiplicationRing, IsRing );
InstallFactorMaintenance( IsZeroMultiplicationRing,
IsRing and IsZeroMultiplicationRing, IsObject, IsRing );
#############################################################################
##
#A Units( <R> )
##
## <#GAPDoc Label="Units">
## <ManSection>
## <Attr Name="Units" Arg='R'/>
##
## <Description>
## <Ref Attr="Units"/> returns the group of units of the ring <A>R</A>.
## This may either be returned as a list or as a group.
## <P/>
## An element <M>r</M> is called a <E>unit</E> of a ring <M>R</M>
## if <M>r</M> has an inverse in <M>R</M>.
## It is easy to see that the set of units forms a multiplicative group.
## <P/>
## <Example><![CDATA[
## gap> Units( GaussianIntegers );
## [ -1, 1, -E(4), E(4) ]
## gap> Units( GF( 16 ) );
## <group with 1 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Units", IsRing );
#############################################################################
##
#O Factors( [<R>, ]<r> )
##
## <#GAPDoc Label="Factors">
## <ManSection>
## <Oper Name="Factors" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="Factors"/> returns the factorization of the ring element
## <A>r</A> in the ring <A>R</A>, if given,
## and otherwise in in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## The factorization is returned as a list of primes
## (see <Ref Func="IsPrime"/>).
## Each element in the list is a standard associate
## (see <Ref Func="StandardAssociate"/>) except the first one,
## which is multiplied by a unit as necessary to have
## <C>Product( Factors( <A>R</A>, <A>r</A> ) ) = <A>r</A></C>.
## This list is usually also sorted, thus smallest prime factors come first.
## If <A>r</A> is a unit or zero,
## <C>Factors( <A>R</A>, <A>r</A> ) = [ <A>r</A> ]</C>.
## <P/>
## <!-- Who does really need the additive structure?
## We could define <C>Factors</C> for arbitrary commutative monoids.-->
## <Example><![CDATA[
## gap> x:= Indeterminate( GF(2), "x" );;
## gap> pol:= x^2+x+1;
## x^2+x+Z(2)^0
## gap> Factors( pol );
## [ x^2+x+Z(2)^0 ]
## gap> Factors( PolynomialRing( GF(4) ), pol );
## [ x+Z(2^2), x+Z(2^2)^2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Factors", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsAssociated( [<R>, ]<r>, <s> )
##
## <#GAPDoc Label="IsAssociated">
## <ManSection>
## <Oper Name="IsAssociated" Arg='[R, ]r, s'/>
##
## <Description>
## <Ref Oper="IsAssociated"/> returns <K>true</K> if the two ring elements
## <A>r</A> and <A>s</A> are associated in the ring <A>R</A>, if given,
## and otherwise in their default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## If the two elements are not associated then <K>false</K> is returned.
## <P/>
## Two elements <A>r</A> and <A>s</A> of a ring <A>R</A> are called
## <E>associated</E> if there is a unit <M>u</M> of <A>R</A> such that
## <A>r</A> <M>u = </M><A>s</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsAssociated", [ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O Associates( [<R>, ]<r> )
##
## <#GAPDoc Label="Associates">
## <ManSection>
## <Oper Name="Associates" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="Associates"/> returns the set of associates of <A>r</A> in
## the ring <A>R</A>, if given,
## and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## Two elements <A>r</A> and <M>s</M> of a ring <M>R</M> are called
## <E>associated</E> if there is a unit <M>u</M> of <M>R</M> such that
## <M><A>r</A> u = s</M>.
## <P/>
## <Example><![CDATA[
## gap> Associates( Integers, 2 );
## [ -2, 2 ]
## gap> Associates( GaussianIntegers, 2 );
## [ -2, 2, -2*E(4), 2*E(4) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Associates", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsUnit( [<R>, ]<r> ). . . . . . . . . check whether <r> is a unit in <R>
##
## <#GAPDoc Label="IsUnit">
## <ManSection>
## <Oper Name="IsUnit" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="IsUnit"/> returns <K>true</K> if <A>r</A> is a unit in the
## ring <A>R</A>, if given, and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## If <A>r</A> is not a unit then <K>false</K> is returned.
## <P/>
## An element <A>r</A> is called a <E>unit</E> in a ring <A>R</A>,
## if <A>r</A> has an inverse in <A>R</A>.
## <P/>
## <Ref Oper="IsUnit"/> may call <Ref Oper="Quotient"/>.
## <!-- really?-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsUnit", [ IsRing, IsRingElement ] );
#############################################################################
##
#O InterpolatedPolynomial( <R>, <x>, <y> ) . . . . . . . . . . interpolation
##
## <#GAPDoc Label="InterpolatedPolynomial">
## <ManSection>
## <Oper Name="InterpolatedPolynomial" Arg='R, x, y'/>
##
## <Description>
## <Ref Oper="InterpolatedPolynomial"/> returns, for given lists <A>x</A>,
## <A>y</A> of elements in a ring <A>R</A> of the same length <M>n</M>, say,
## the unique polynomial of degree less than <M>n</M> which has value
## <A>y</A>[<M>i</M>] at <A>x</A><M>[i]</M>,
## for all <M>i \in \{ 1, \ldots, n \}</M>.
## Note that the elements in <A>x</A> must be distinct.
## <Example><![CDATA[
## gap> InterpolatedPolynomial( Integers, [ 1, 2, 3 ], [ 5, 7, 0 ] );
## -9/2*x^2+31/2*x-6
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InterpolatedPolynomial",
[ IsRing, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#O Quotient( [<R>, ]<r>, <s> )
##
## <#GAPDoc Label="Quotient">
## <ManSection>
## <Oper Name="Quotient" Arg='[R, ]r, s'/>
##
## <Description>
## <Ref Oper="Quotient"/> returns the quotient of the two ring elements
## <A>r</A> and <A>s</A> in the ring <A>R</A>, if given,
## and otherwise in their default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## It returns <K>fail</K> if the quotient does not exist in the respective
## ring.
## <P/>
## (To perform the division in the quotient field of a ring, use the
## quotient operator <C>/</C>.)
## <Example><![CDATA[
## gap> Quotient( 2, 3 );
## fail
## gap> Quotient( 6, 3 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Quotient", [ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O StandardAssociate( [<R>, ]<r> )
##
## <#GAPDoc Label="StandardAssociate">
## <ManSection>
## <Oper Name="StandardAssociate" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="StandardAssociate"/> returns the standard associate of the
## ring element <A>r</A> in the ring <A>R</A>, if given,
## and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## The <E>standard associate</E> of a ring element <A>r</A> of <A>R</A> is
## an associated element of <A>r</A> which is, in a ring dependent way,
## distinguished among the set of associates of <A>r</A>.
## For example, in the ring of integers the standard associate is the
## absolute value.
## <P/>
## <Example><![CDATA[
## gap> x:= Indeterminate( Rationals, "x" );;
## gap> StandardAssociate( -x^2-x+1 );
## x^2+x-1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "StandardAssociate", [ IsRing, IsRingElement ] );
#############################################################################
##
#O StandardAssociateUnit( [<R>, ]<r> )
##
## <#GAPDoc Label="StandardAssociateUnit">
## <ManSection>
## <Oper Name="StandardAssociateUnit" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="StandardAssociateUnit"/> returns a unit in the ring <A>R</A>
## such that the ring element <A>r</A> times this unit equals the
## standard associate of <A>r</A> in <A>R</A>.
## <P/>
## If <A>R</A> is not given, the default ring of <A>r</A> is used instead.
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## <P/>
## <Example><![CDATA[
## gap> y:= Indeterminate( Rationals, "y" );;
## gap> r:= -y^2-y+1;
## -y^2-y+1
## gap> StandardAssociateUnit( r );
## -1
## gap> StandardAssociateUnit( r ) * r = StandardAssociate( r );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "StandardAssociateUnit", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsPrime( [<R>, ]<r> )
##
## <#GAPDoc Label="IsPrime">
## <ManSection>
## <Oper Name="IsPrime" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="IsPrime"/> returns <K>true</K> if the ring element <A>r</A> is
## a prime in the ring <A>R</A>, if given,
## and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## If <A>r</A> is not a prime then <K>false</K> is returned.
## <P/>
## An element <A>r</A> of a ring <A>R</A> is called <E>prime</E> if for each
## pair <M>s</M> and <M>t</M> such that <A>r</A> divides <M>s t</M>
## the element <A>r</A> divides either <M>s</M> or <M>t</M>.
## Note that there are rings where not every irreducible element
## (see <Ref Oper="IsIrreducibleRingElement"/>) is a prime.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsPrime", [ IsRing, IsRingElement ] );
#############################################################################
##
#O IsIrreducibleRingElement( [<R>, ]<r> )
##
## <#GAPDoc Label="IsIrreducibleRingElement">
## <ManSection>
## <Oper Name="IsIrreducibleRingElement" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="IsIrreducibleRingElement"/> returns <K>true</K> if the ring
## element <A>r</A> is irreducible in the ring <A>R</A>, if given,
## and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## If <A>r</A> is not irreducible then <K>false</K> is returned.
## <P/>
## An element <A>r</A> of a ring <A>R</A> is called <E>irreducible</E>
## if <A>r</A> is not a unit in <A>R</A> and if there is no nontrivial
## factorization of <A>r</A> in <A>R</A>,
## i.e., if there is no representation of <A>r</A> as product <M>s t</M>
## such that neither <M>s</M> nor <M>t</M> is a unit
## (see <Ref Oper="IsUnit"/>).
## Each prime element (see <Ref Oper="IsPrime"/>) is irreducible.
## <Example><![CDATA[
## gap> IsIrreducibleRingElement( Integers, 2 );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsIrreducibleRingElement", [ IsRing, IsRingElement ] );
#############################################################################
##
#O EuclideanDegree( [<R>, ]<r> )
##
## <#GAPDoc Label="EuclideanDegree">
## <ManSection>
## <Oper Name="EuclideanDegree" Arg='[R, ]r'/>
##
## <Description>
## <Ref Oper="EuclideanDegree"/> returns the Euclidean degree of the
## ring element <A>r</A> in the ring <A>R</A>, if given,
## and otherwise in its default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## The ring <A>R</A> must be a Euclidean ring
## (see <Ref Func="IsEuclideanRing"/>).
## <Example><![CDATA[
## gap> EuclideanDegree( GaussianIntegers, 3 );
## 9
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EuclideanDegree", [ IsEuclideanRing, IsRingElement ] );
#############################################################################
##
#O EuclideanRemainder( [<R>, ]<r>, <m> )
##
## <#GAPDoc Label="EuclideanRemainder">
## <ManSection>
## <Oper Name="EuclideanRemainder" Arg='[R, ]r, m'/>
##
## <Description>
## <Ref Oper="EuclideanRemainder"/> returns the Euclidean remainder of the
## ring element <A>r</A> modulo the ring element <A>m</A>
## in the ring <A>R</A>, if given,
## and otherwise in their default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## The ring <A>R</A> must be a Euclidean ring
## (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
## <Example><![CDATA[
## gap> EuclideanRemainder( 8, 3 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EuclideanRemainder",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O EuclideanQuotient( [<R>, ]<r>, <m> )
##
## <#GAPDoc Label="EuclideanQuotient">
## <ManSection>
## <Oper Name="EuclideanQuotient" Arg='[R, ]r, m'/>
##
## <Description>
## <Ref Oper="EuclideanQuotient"/> returns the Euclidean quotient of the
## ring elements <A>r</A> and <A>m</A> in the ring <A>R</A>, if given,
## and otherwise in their default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## <P/>
## The ring <A>R</A> must be a Euclidean ring
## (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
## <Example><![CDATA[
## gap> EuclideanQuotient( 8, 3 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EuclideanQuotient",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O QuotientRemainder( [<R>, ]<r>, <m> )
##
## <#GAPDoc Label="QuotientRemainder">
## <ManSection>
## <Oper Name="QuotientRemainder" Arg='[R, ]r, m'/>
##
## <Description>
## <Ref Oper="QuotientRemainder"/> returns the Euclidean quotient
## and the Euclidean remainder of the ring elements <A>r</A> and <A>m</A>
## in the ring <A>R</A>, if given,
## and otherwise in their default ring
## (see <Ref Func="DefaultRing" Label="for ring elements"/>).
## The result is a pair of ring elements.
## <P/>
## The ring <A>R</A> must be a Euclidean ring
## (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
## <Example><![CDATA[
## gap> QuotientRemainder( GaussianIntegers, 8, 3 );
## [ 3, -1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "QuotientRemainder",
[ IsRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O QuotientMod( [<R>, ]<r>, <s>, <m> )
##
## <#GAPDoc Label="QuotientMod">
## <ManSection>
## <Oper Name="QuotientMod" Arg='[R, ]r, s, m'/>
##
## <Description>
## <Ref Oper="QuotientMod"/> returns the quotient of the ring
## elements <A>r</A> and <A>s</A> modulo the ring element <A>m</A>
## in the ring <A>R</A>, if given,
## and otherwise in their default ring, see
## <Ref Func="DefaultRing" Label="for ring elements"/>.
## <P/>
## <A>R</A> must be a Euclidean ring (see <Ref Func="IsEuclideanRing"/>)
## so that <Ref Func="EuclideanRemainder"/> can be applied.
## If the modular quotient does not exist (i.e. when <A>s</A> and <A>m</A>
## are not coprime), <K>fail</K> is returned.
## <P/>
## The quotient <M>q</M> of <A>r</A> and <A>s</A> modulo <A>m</A> is
## an element of <A>R</A>
## such that <M>q <A>s</A> = <A>r</A></M> modulo <M>m</M>, i.e.,
## such that <M>q <A>s</A> - <A>r</A></M> is divisible by <A>m</A> in
## <A>R</A> and that <M>q</M> is either zero (if <A>r</A> is divisible by
## <A>m</A>) or the Euclidean degree of <M>q</M> is strictly smaller than
## the Euclidean degree of <A>m</A>.
## <Example><![CDATA[
## gap> QuotientMod( 7, 2, 3 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "QuotientMod",
[ IsRing, IsRingElement, IsRingElement, IsRingElement ] );
#############################################################################
##
#O PowerMod( [<R>, ]<r>, <e>, <m> )
##
## <#GAPDoc Label="PowerMod">
## <ManSection>
## <Oper Name="PowerMod" Arg='[R, ]r, e, m'/>
##
## <Description>
## <Ref Oper="PowerMod"/> returns the <A>e</A>-th power of the ring
## element <A>r</A> modulo the ring element <A>m</A>
## in the ring <A>R</A>, if given,
## and otherwise in their default ring, see
## <Ref Func="DefaultRing" Label="for ring elements"/>.
## <A>e</A> must be an integer.
## <P/>
## <A>R</A> must be a Euclidean ring (see <Ref Func="IsEuclideanRing"/>)
## so that <Ref Func="EuclideanRemainder"/> can be applied to its elements.
## <P/>
## If <A>e</A> is positive the result is <A>r</A><C>^</C><A>e</A> modulo
## <A>m</A>.
## If <A>e</A> is negative then <Ref Oper="PowerMod"/> first tries to find
## the inverse of <A>r</A> modulo <A>m</A>, i.e.,
## <M>i</M> such that <M>i <A>r</A> = 1</M> modulo <A>m</A>.
## If the inverse does not exist an error is signalled.
## If the inverse does exist <Ref Oper="PowerMod"/> returns
## <C>PowerMod( <A>R</A>, <A>i</A>, -<A>e</A>, <A>m</A> )</C>.
## <P/>
## <Ref Oper="PowerMod"/> reduces the intermediate values modulo <A>m</A>,
## improving performance drastically when <A>e</A> is large and <A>m</A>
## small.
## <Example><![CDATA[
## gap> PowerMod( 12, 100000, 7 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PowerMod",
[ IsRing, IsRingElement, IsInt, IsRingElement ] );
#############################################################################
##
#F Gcd( [<R>, ]<r1>, <r2>, ... )
#F Gcd( [<R>, ]<list> )
##
## <#GAPDoc Label="Gcd">
## <ManSection>
## <Heading>Gcd</Heading>
## <Func Name="Gcd" Arg='[R, ]r1, r2, ...'
## Label="for (a ring and) several elements"/>
## <Func Name="Gcd" Arg='[R, ]list'
## Label="for (a ring and) a list of elements"/>
##
## <Description>
## <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
## the greatest common divisor of the ring elements <A>r1</A>, <A>r2</A>,
## <M>\ldots</M> resp. of the ring elements in the list <A>list</A>
## in the ring <A>R</A>, if given, and otherwise in their default ring,
## see <Ref Func="DefaultRing" Label="for ring elements"/>.
## <P/>
## <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
## the standard associate (see <Ref Oper="StandardAssociate"/>) of the
## greatest common divisors.
## <P/>
## A divisor of an element <M>r</M> in the ring <M>R</M> is an element
## <M>d\in R</M> such that <M>r</M> is a multiple of <M>d</M>.
## A common divisor of the elements <M>r_1, r_2, \ldots</M> in the
## ring <M>R</M> is an element <M>d\in R</M> which is a divisor of
## each <M>r_1, r_2, \ldots</M>.
## A greatest common divisor <M>d</M> in addition has the property that every
## other common divisor of <M>r_1, r_2, \ldots</M> is a divisor of <M>d</M>.
## <P/>
## Note that this in particular implies the following:
## For the zero element <M>z</M> of <A>R</A>, we have
## <C>Gcd( <A>r</A>, </C><M>z</M><C> ) = Gcd( </C><M>z</M><C>, <A>r</A> )
## = StandardAssociate( <A>r</A> )</C>
## and <C>Gcd( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
## <Example><![CDATA[
## gap> Gcd( Integers, [ 10, 15 ] );
## 5
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Gcd" );
#############################################################################
##
#O GcdOp( [<R>, ]<r>, <s> )
##
## <#GAPDoc Label="GcdOp">
## <ManSection>
## <Oper Name="GcdOp" Arg='[R, ]r, s'/>
##
## <Description>
## <Ref Oper="GcdOp"/> is the operation to compute
## the greatest common divisor of two ring elements <A>r</A>, <A>s</A>
## in the ring <A>R</A> or in their default ring.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GcdOp",
[ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#F GcdRepresentation( [<R>, ]<r1>, <r2>, ... )
#F GcdRepresentation( [<R>, ]<list> )
##
## <#GAPDoc Label="GcdRepresentation">
## <ManSection>
## <Heading>GcdRepresentation</Heading>
## <Func Name="GcdRepresentation" Arg='[R, ]r1, r2, ...'
## Label="for (a ring and) several elements"/>
## <Func Name="GcdRepresentation" Arg='[R, ]list'
## Label="for (a ring and) a list of elements"/>
##
## <Description>
## <Ref Func="GcdRepresentation" Label="for (a ring and) several elements"/>
## returns a representation of
## the greatest common divisor of the ring elements
## <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
## in the list <A>list</A> in the Euclidean ring <A>R</A>, if given,
## and otherwise in their default ring,
## see <Ref Func="DefaultRing" Label="for ring elements"/>.
## <P/>
## A representation of the gcd <M>g</M> of the elements
## <M>r_1, r_2, \ldots</M> of a ring <M>R</M> is a list of ring elements
## <M>s_1, s_2, \ldots</M> of <M>R</M>,
## such that <M>g = s_1 r_1 + s_2 r_2 + \cdots</M>.
## Such representations do not exist in all rings, but they
## do exist in Euclidean rings (see <Ref Func="IsEuclideanRing"/>),
## which can be shown using the Euclidean algorithm, which in fact can
## compute those coefficients.
## <Example><![CDATA[
## gap> a:= Indeterminate( Rationals, "a" );;
## gap> GcdRepresentation( a^2+1, a^3+1 );
## [ -1/2*a^2-1/2*a+1/2, 1/2*a+1/2 ]
## ]]></Example>
## <P/>
## <Ref Func="Gcdex"/> provides similar functionality over the integers.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GcdRepresentation" );
#############################################################################
##
#O GcdRepresentationOp( [<R>, ]<r>, <s> )
##
## <#GAPDoc Label="GcdRepresentationOp">
## <ManSection>
## <Oper Name="GcdRepresentationOp" Arg='[R, ]r, s'/>
##
## <Description>
## <Ref Oper="GcdRepresentationOp"/> is the operation to compute
## the representation of the greatest common divisor of two ring elements
## <A>r</A>, <A>s</A> in the Euclidean ring <A>R</A> or in their default ring,
## respectively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GcdRepresentationOp",
[ IsEuclideanRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#F Lcm( [<R>, ]<r1>, <r2>, ... )
#F Lcm( [<R>, ]<list> )
##
## <#GAPDoc Label="Lcm">
## <ManSection>
## <Heading>Lcm</Heading>
## <Func Name="Lcm" Arg='[R, ]r1, r2, ...'
## Label="for (a ring and) several elements"/>
## <Func Name="Lcm" Arg='[R, ]list'
## Label="for (a ring and) a list of elements"/>
##
## <Description>
## <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
## the least common multiple of the ring elements
## <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
## in the list <A>list</A> in the ring <A>R</A>, if given,
## and otherwise in their default ring,
## see <Ref Func="DefaultRing" Label="for ring elements"/>.
## <P/>
## <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
## the standard associate (see <Ref Func="StandardAssociate"/>)
## of the least common multiples.
## <P/>
## A least common multiple of the elements <M>r_1, r_2, \ldots</M> of the
## ring <M>R</M> is an element <M>m</M> that is a multiple of <M>r_1, r_2, \ldots</M>,
## and every other multiple of these elements is a multiple of <M>m</M>.
## <P/>
## Note that this in particular implies the following:
## For the zero element <M>z</M> of <A>R</A>, we have
## <C>Lcm( <A>r</A>, </C><M>z</M><C> ) = Lcm( </C><M>z</M><C>, <A>r</A> )
## = StandardAssociate( <A>r</A> )</C>
## and <C>Lcm( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Lcm" );
#############################################################################
##
#O LcmOp( [<R>, ]<r>, <s> )
##
## <#GAPDoc Label="LcmOp">
## <ManSection>
## <Oper Name="LcmOp" Arg='[R, ]r, s'/>
##
## <Description>
## <Ref Oper="LcmOp"/> is the operation to compute the least common multiple
## of two ring elements <A>r</A>, <A>s</A> in the ring <A>R</A>
## or in their default ring, respectively.
## <P/>
## The default methods for this uses the equality
## <M>lcm( m, n ) = m*n / gcd( m, n )</M> (see <Ref Func="GcdOp"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LcmOp",
[ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );
#############################################################################
##
#O PadicValuation( <r>, <p> )
##
## <#GAPDoc Label="PadicValuation">
## <ManSection>
## <Oper Name="PadicValuation" Arg='r, p'/>
##
## <Description>
## <Ref Oper="PadicValuation"/> is the operation to compute
## the <A>p</A>-adic valuation of a ring element <A>r</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PadicValuation", [ IsRingElement, IsPosInt ] );
#############################################################################
##
#E
|