/usr/share/gap/lib/ringpoly.gd is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | #############################################################################
##
#W ringpoly.gd GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the categories, attributes, properties and operations
## for polynomial rings and function fields.
##
#############################################################################
##
#C IsPolynomialRing( <pring> )
##
## <#GAPDoc Label="IsPolynomialRing">
## <ManSection>
## <Filt Name="IsPolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsPolynomialRing", IsRing );
#############################################################################
##
#C IsFunctionField( <ffield> )
##
## <#GAPDoc Label="IsFunctionField">
## <ManSection>
## <Filt Name="IsFunctionField" Arg='ffield' Type='Category'/>
##
## <Description>
## is the category of function fields
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsFunctionField",IsRing);
#############################################################################
##
#C IsUnivariatePolynomialRing( <pring> )
##
## <#GAPDoc Label="IsUnivariatePolynomialRing">
## <ManSection>
## <Filt Name="IsUnivariatePolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings with one indeterminate.
## <Example><![CDATA[
## gap> r:=UnivariatePolynomialRing(Rationals,"p");
## Rationals[p]
## gap> r2:=PolynomialRing(Rationals,["q"]);
## Rationals[q]
## gap> IsUnivariatePolynomialRing(r);
## true
## gap> IsUnivariatePolynomialRing(r2);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsUnivariatePolynomialRing", IsPolynomialRing );
#############################################################################
##
#C IsFiniteFieldPolynomialRing( <pring> )
##
## <#GAPDoc Label="IsFiniteFieldPolynomialRing">
## <ManSection>
## <Filt Name="IsFiniteFieldPolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings over a finite field
## (see Chapter <Ref Chap="Finite Fields"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsFiniteFieldPolynomialRing", IsPolynomialRing );
#############################################################################
##
#C IsAbelianNumberFieldPolynomialRing( <pring> )
##
## <#GAPDoc Label="IsAbelianNumberFieldPolynomialRing">
## <ManSection>
## <Filt Name="IsAbelianNumberFieldPolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings over a field of cyclotomics
## (see the chapters <Ref Chap="Cyclotomic Numbers"/> and <Ref Chap="Abelian Number Fields"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAbelianNumberFieldPolynomialRing", IsPolynomialRing );
#############################################################################
##
#C IsAlgebraicExtensionPolynomialRing( <pring> )
##
## <ManSection>
## <Filt Name="IsAlgebraicExtensionPolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings over a field that has been formed as
## an <C>AlgebraicExtension</C> of a base field.
## (see chapter <Ref Chap="Algebraic extensions of fields"/>).
## </Description>
## </ManSection>
##
DeclareCategory( "IsAlgebraicExtensionPolynomialRing", IsPolynomialRing );
#############################################################################
##
#C IsRationalsPolynomialRing( <pring> )
##
## <#GAPDoc Label="IsRationalsPolynomialRing">
## <ManSection>
## <Filt Name="IsRationalsPolynomialRing" Arg='pring' Type='Category'/>
##
## <Description>
## is the category of polynomial rings over the rationals
## (see Chapter <Ref Chap="Rational Numbers"/>).
## <Example><![CDATA[
## gap> r := PolynomialRing(Rationals, ["a", "b"] );;
## gap> IsPolynomialRing(r);
## true
## gap> IsFiniteFieldPolynomialRing(r);
## false
## gap> IsRationalsPolynomialRing(r);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsRationalsPolynomialRing",
IsAbelianNumberFieldPolynomialRing );
#############################################################################
##
#A CoefficientsRing( <pring> )
##
## <#GAPDoc Label="CoefficientsRing">
## <ManSection>
## <Attr Name="CoefficientsRing" Arg='pring'/>
##
## <Description>
## returns the ring of coefficients of the polynomial ring <A>pring</A>,
## that is the ring over which <A>pring</A> was defined.
## <Example><![CDATA[
## gap> r:=PolynomialRing(GF(7));
## GF(7)[x_1]
## gap> r:=PolynomialRing(GF(7),3);
## GF(7)[x_1,x_2,x_3]
## gap> IndeterminatesOfPolynomialRing(r);
## [ x_1, x_2, x_3 ]
## gap> r2:=PolynomialRing(GF(7),[5,7,12]);
## GF(7)[x_5,x_7,x_12]
## gap> CoefficientsRing(r);
## GF(7)
## gap> r:=PolynomialRing(GF(7),3);
## GF(7)[x_1,x_2,x_3]
## gap> r2:=PolynomialRing(GF(7),3,IndeterminatesOfPolynomialRing(r));
## GF(7)[x_4,x_5,x_6]
## gap> r:=PolynomialRing(GF(7),["x","y","z","z2"]);
## GF(7)[x,y,z,z2]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CoefficientsRing", IsPolynomialRing );
## <#GAPDoc Label="[1]{ringpoly}">
## Internally, indeterminates are created for a <E>family</E> of objects
## (for example all elements of finite fields in characteristic <M>3</M> are in
## one family). Thus a variable <Q>x</Q> over the
## rationals is also an <Q>x</Q> over the integers,
## while an <Q>x</Q> over <C>GF(3)</C> is different.
## <P/>
## Within one family, every indeterminate has a number <A>nr</A> and as
## long as no other names have been assigned, this indeterminate will be
## displayed as
## <Q><C>x_<A>nr</A></C></Q>. Indeterminate numbers can be arbitrary
## nonnegative integers.
## <P/>
## It is possible to assign names to indeterminates; these names are
## strings and only provide a means for printing the indeterminates in a
## nice way. Indeterminates that have not been assigned a name will be
## printed as <Q><C>x_<A>nr</A></C></Q>.
## <P/>
## (Because of this printing convention, the name <C>x_<A>nr</A></C> is interpreted
## specially to always denote the variable with internal number <A>nr</A>.)
## <P/>
## The indeterminate names have not necessarily any relations to variable
## names: this means that an indeterminate whose name is, say, <Q><C>x</C></Q>
## cannot be accessed using the variable <C>x</C>, unless <C>x</C> was defined to
## be that indeterminate.
## <#/GAPDoc>
##
## <#GAPDoc Label="[2]{ringpoly}">
## When asking for indeterminates with certain
## names, &GAP; usually will take the first (with respect to the internal
## numbering) indeterminates that are not
## yet named, name these accordingly and return them. Thus when asking for
## named indeterminates, no relation between names and indeterminate
## numbers can be guaranteed. The attribute
## <C>IndeterminateNumberOfLaurentPolynomial(<A>indet</A>)</C> will return
## the number of the indeterminate <A>indet</A>.
## <P/>
## When asked to create an indeterminate with a name that exists already for
## the family, &GAP; will by default return this existing indeterminate. If
## you explicitly want a <E>new</E> indeterminate, distinct from the already
## existing one with the <E>same</E> name, you can add the <C>new</C> option
## to the function call. (This is in most cases not a good idea.)
## <P/>
## <Log><![CDATA[
## gap> R:=PolynomialRing(GF(3),["x","y","z"]);
## GF(3)[x,y,z]
## gap> List(IndeterminatesOfPolynomialRing(R),
## > IndeterminateNumberOfLaurentPolynomial);
## [ 1, 2, 3 ]
## gap> R:=PolynomialRing(GF(3),["z"]);
## GF(3)[z]
## gap> List(IndeterminatesOfPolynomialRing(R),
## > IndeterminateNumberOfLaurentPolynomial);
## [ 3 ]
## gap> R:=PolynomialRing(GF(3),["x","y","z"]:new);
## GF(3)[x,y,z]
## gap> List(IndeterminatesOfPolynomialRing(R),
## > IndeterminateNumberOfLaurentPolynomial);
## [ 4, 5, 6 ]
## gap> R:=PolynomialRing(GF(3),["z"]);
## GF(3)[z]
## gap> List(IndeterminatesOfPolynomialRing(R),
## > IndeterminateNumberOfLaurentPolynomial);
## [ 3 ]
## ]]></Log>
## <#/GAPDoc>
##
#############################################################################
##
#O Indeterminate( <R>[, <nr>] )
#O Indeterminate( <R>[, <name>][, <avoid>] )
#O Indeterminate( <fam>, <nr> )
#O X( <R>,[<nr>] )
#O X( <R>,[<avoid>] )
#O X( <R>,<name>[,<avoid>] )
#O X( <fam>,<nr> )
##
## <#GAPDoc Label="Indeterminate">
## <ManSection>
## <Heading>Indeterminate</Heading>
## <Oper Name="Indeterminate" Arg='R[, nr]'
## Label="for a ring (and a number)"/>
## <Oper Name="Indeterminate" Arg='R[, name][, avoid]'
## Label="for a ring (and a name, and an exclusion list)"/>
## <Oper Name="Indeterminate" Arg='fam, nr'
## Label="for a family and a number"/>
## <Oper Name="X" Arg='R[, nr]'
## Label="for a ring (and a number)"/>
## <Oper Name="X" Arg='R[, name][, avoid]'
## Label="for a ring (and a name, and an exclusion list)"/>
## <Oper Name="X" Arg='fam, nr'
## Label="for a family and a number"/>
##
## <Description>
## returns the indeterminate number <A>nr</A> over the ring <A>R</A>.
## If <A>nr</A> is not given it defaults to 1.
## If the number is not specified a list <A>avoid</A> of indeterminates
## may be given.
## The function will return an indeterminate that is guaranteed to be
## different from all the indeterminates in the list <A>avoid</A>.
## The third usage returns an indeterminate called <A>name</A>
## (also avoiding the indeterminates in <A>avoid</A> if given).
## <P/>
## <Ref Oper="X" Label="for a ring (and a number)"/> is simply a synonym for
## <Ref Oper="Indeterminate" Label="for a ring (and a number)"/>. However,
## we do not recommend to use this synonym which is supported only for the
## backwards compatibility.
## <P/>
## <Example><![CDATA[
## gap> x:=Indeterminate(GF(3),"x");
## x
## gap> y:=X(GF(3),"y");z:=X(GF(3),"X");
## y
## X
## gap> X(GF(3),2);
## y
## gap> X(GF(3),"x_3");
## X
## gap> X(GF(3),[y,z]);
## x
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Indeterminate", [IsRing,IsPosInt] );
DeclareSynonym( "X", Indeterminate );
#############################################################################
##
##
#############################################################################
##
#O UnivariatePolynomialRing( <R>[, <nr>] )
#O UnivariatePolynomialRing( <R>[, <name>][, <avoid>] )
##
## <#GAPDoc Label="UnivariatePolynomialRing">
## <ManSection>
## <Heading>UnivariatePolynomialRing</Heading>
## <Oper Name="UnivariatePolynomialRing" Arg='R[, nr]'
## Label="for a ring (and an indeterminate number)"/>
## <Oper Name="UnivariatePolynomialRing" Arg='R[, name][, avoid]'
## Label="for a ring (and a name and an exclusion list)"/>
##
## <Description>
## returns a univariate polynomial ring in the indeterminate <A>nr</A> over
## the base ring <A>R</A>.
## If <A>nr</A> is not given it defaults to 1.
## <P/>
## If the number is not specified a list <A>avoid</A> of indeterminates may
## be given.
## Then the function will return a ring in an indeterminate that is
## guaranteed to be different from all the indeterminates in <A>avoid</A>.
## <P/>
## Also a string <A>name</A> can be prescribed as the name of the
## indeterminate chosen
## (also avoiding the indeterminates in the list <A>avoid</A> if given).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "UnivariatePolynomialRing", [IsRing] );
#############################################################################
##
#A IndeterminatesOfPolynomialRing( <pring> )
#A IndeterminatesOfFunctionField( <ffield> )
##
## <#GAPDoc Label="IndeterminatesOfPolynomialRing">
## <ManSection>
## <Attr Name="IndeterminatesOfPolynomialRing" Arg='pring'/>
## <Attr Name="IndeterminatesOfFunctionField" Arg='ffield'/>
##
## <Description>
## returns a list of the indeterminates of the polynomial ring <A>pring</A>,
## respectively the function field <A>ffield</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IndeterminatesOfPolynomialRing", IsPolynomialRing );
DeclareSynonymAttr("IndeterminatesOfFunctionField",
IndeterminatesOfPolynomialRing);
#############################################################################
##
#O PolynomialRing( <R>, <rank>[, <avoid>] )
#O PolynomialRing( <R>, <names>[, <avoid>] )
#O PolynomialRing( <R>, <indets> )
#O PolynomialRing( <R>, <indetnums> )
##
## <#GAPDoc Label="PolynomialRing">
## <ManSection>
## <Heading>PolynomialRing</Heading>
## <Oper Name="PolynomialRing" Arg='R, rank[, avoid]'
## Label="for a ring and a rank (and an exclusion list)"/>
## <Oper Name="PolynomialRing" Arg='R, names[, avoid]'
## Label="for a ring and a list of names (and an exclusion list)"/>
## <Oper Name="PolynomialRing" Arg='R, indets'
## Label="for a ring and a list of indeterminates"/>
## <Oper Name="PolynomialRing" Arg='R, indetnums'
## Label="for a ring and a list of indeterminate numbers"/>
##
## <Description>
## creates a polynomial ring over the ring <A>R</A>.
## If a positive integer <A>rank</A> is given,
## this creates the polynomial ring in <A>rank</A> indeterminates.
## These indeterminates will have the internal index numbers 1 to
## <A>rank</A>.
## The second usage takes a list <A>names</A> of strings and returns a
## polynomial ring in indeterminates labelled by <A>names</A>.
## These indeterminates have <Q>new</Q> internal index numbers as if they
## had been created by calls to
## <Ref Func="Indeterminate" Label="for a ring (and a number)"/>.
## (If the argument <A>avoid</A> is given it contains indeterminates that
## should be avoided, in this case internal index numbers are incremented
## to skip these variables.)
## In the third version, a list of indeterminates <A>indets</A> is given.
## This creates the polynomial ring in the indeterminates <A>indets</A>.
## Finally, the fourth version specifies indeterminates by their index
## numbers.
## <P/>
## To get the indeterminates of a polynomial ring use
## <Ref Func="IndeterminatesOfPolynomialRing"/>.
## (Indeterminates created independently with
## <Ref Func="Indeterminate" Label="for a ring (and a number)"/>
## will usually differ, though they might be given the same name and display
## identically, see Section <Ref Sect="Indeterminates"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PolynomialRing",
[ IsRing, IsObject ] );
#############################################################################
##
#O MinimalPolynomial( <R>, <elm>[, <ind>] )
##
## <#GAPDoc Label="MinimalPolynomial">
## <ManSection>
## <Oper Name="MinimalPolynomial" Arg='R, elm[, ind]'/>
##
## <Description>
## returns the <E>minimal polynomial</E> of <A>elm</A> over the ring <A>R</A>,
## expressed in the indeterminate number <A>ind</A>.
## If <A>ind</A> is not given, it defaults to 1.
## <P/>
## The minimal polynomial is the monic polynomial of smallest degree with
## coefficients in <A>R</A> that has value zero at <A>elm</A>.
## <Example><![CDATA[
## gap> MinimalPolynomial(Rationals,[[2,0],[0,2]]);
## x-2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MinimalPolynomial",
[ IsRing, IsMultiplicativeElement and IsAdditiveElement, IsPosInt] );
#############################################################################
##
#O FunctionField( <R>, <rank>[, <avoid>] )
#O FunctionField( <R>, <names>[, <avoid>] )
#O FunctionField( <R>, <indets> )
#O FunctionField( <R>, <indetnums> )
##
## <#GAPDoc Label="FunctionField">
## <ManSection>
## <Heading>FunctionField</Heading>
## <Oper Name="FunctionField" Arg='R, rank[, avoid]'
## Label="for an integral ring and a rank (and an exclusion list)"/>
## <Oper Name="FunctionField" Arg='R, names[, avoid]'
## Label="for an integral ring and a list of names (and an exclusion list)"/>
## <Oper Name="FunctionField" Arg='R, indets'
## Label="for an integral ring and a list of indeterminates"/>
## <Oper Name="FunctionField" Arg='R, indetnums'
## Label="for an integral ring and a list of indeterminate numbers"/>
##
## <Description>
## creates a function field over the integral ring <A>R</A>.
## If a positive integer <A>rank</A> is given,
## this creates the function field in <A>rank</A> indeterminates.
## These indeterminates will have the internal index numbers 1 to
## <A>rank</A>.
## The second usage takes a list <A>names</A> of strings and returns a
## function field in indeterminates labelled by <A>names</A>.
## These indeterminates have <Q>new</Q> internal index numbers as if they
## had been created by calls to
## <Ref Func="Indeterminate" Label="for a ring (and a number)"/>.
## (If the argument <A>avoid</A> is given it contains indeterminates that
## should be avoided, in this case internal index numbers are incremented
## to skip these variables.)
## In the third version, a list of indeterminates <A>indets</A> is given.
## This creates the function field in the indeterminates <A>indets</A>.
## Finally, the fourth version specifies indeterminates by their index
## number.
## <P/>
## To get the indeterminates of a function field use
## <Ref Func="IndeterminatesOfFunctionField"/>.
## (Indeterminates created independently with
## <Ref Func="Indeterminate" Label="for a ring (and a number)"/>
## will usually differ, though they might be given the same name and display
## identically, see Section <Ref Sect="Indeterminates"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("FunctionField",[IsRing,IsObject]);
#############################################################################
##
#E
|