This file is indexed.

/usr/share/gap/lib/rws.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
#############################################################################
##
#W  rws.gd                      GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file  contains    the   operations for   rewriting   systems.    Any
##  implementation of a rewriting system must at least implement methods for
##  <P/>
##    constructing such a rewriting system,
##    <C>CopyRws</C>,
##    <C>IsConfluent</C>,
##    <C>ReducedForm</C>, and
##    <C>Rules</C>.
##  <P/>
##  An  implementation might  also  want to  implement <C>MakeConfluent</C> and/or
##  <C>ConfluentRws</C>.
##  <P/>
##  The generic methods, which are defined in <F>rws.gi</F>, for
##  <P/>
##    <C>ReducedAdditiveInverse</C>,
##    <C>ReducedComm</C>,
##    <C>ReducedConjugate</C>,
##    <C>ReducedDifference</C>
##    <C>ReducedInverse</C>,
##    <C>ReducedLeftQuotient</C>,
##    <C>ReducedOne</C>,
##    <C>ReducedPower</C>,
##    <C>ReducedProduct</C>
##    <C>ReducedScalarProduct</C>,
##    <C>ReducedSum</C>, and
##    <C>ReducedZero</C>,
##  <P/>
##  use <C>ReducedForm</C>. Depending on the underlying  structure not all of them
##  will  work.  For example, for  a  monoid <C>ReducedInverse</C> will produce an
##  error because  the generic methods  tries to  reduced  the inverse of the
##  given element.
##  <P/>
##  As in  general  a rewriting system will    be first built   and then used
##  without   changing   it,  some   functions    (e.g.  <C>GroupByRws</C>)   call
##  <C>ReduceRules</C>  to give the rewriting  system a chance to optimise itself.
##  The default method for <C>ReduceRules</C> is <Q>do nothing</Q>.
##  <P/>
##  The underlying  structure is stored  in the  attribute <C>UnderlyingFamily</C>
##  and  the  generators  used for  the  rewriting  system   in the attribute
##  <C>GeneratorsOfRws</C>.   The number  of  rws  generators   is stored in   the
##  attribute <C>NumberGeneratorsOfRws</C>.
##  <P/>
##  The family of a rewriting system also contains the underlying family, the
##  default    method for <C>UnderlyingFamily</C>    uses  the family  to get  the
##  underlying family for a given rewriting system.
##
##  <#GAPDoc Label="[2]{rws}">
##  The key point to note about rewriting systems is that they have 
##  properties such as
##  <Ref Func="IsConfluent" Label="for a rewriting system"/>
##  and attributes such as <Ref Func="Rules"/>, however
##  they are rarely stored, but rather computed afresh each time they
##  are asked for, from data stored in the private members of the rewriting
##  system object.  This is because a rewriting system often evolves
##  through a session, starting with some rules which define the
##  algebra <A>A</A> as relations, and then adding more rules to make
##  the system confluent.
##  For example, in the case of Knuth-Bendix rewriting systems (see
##  Chapter&nbsp;<Ref Chap="Finitely Presented Semigroups and Monoids"/>),
##  the function <C>CreateKnuthBendixRewritingSystem</C> creating the
##  rewriting system (in the file <F>lib/kbsemi.gi</F>) uses
##  <P/>
##  <Log><![CDATA[
##  kbrws := Objectify(NewType(rwsfam, 
##    IsMutable and IsKnuthBendixRewritingSystem and 
##    IsKnuthBendixRewritingSystemRep), 
##    rec(family:= fam,
##    reduced:=false,
##    tzrules:=List(relwco,i->
##     [LetterRepAssocWord(i[1]),LetterRepAssocWord(i[2])]),
##    pairs2check:=CantorList(Length(r)),
##    ordering:=wordord,
##    freefam:=freefam));
##  ]]></Log>
##  <P/>
##  In particular, since we don't use the filter
##  <C>IsAttributeStoringRep</C>
##  in the <Ref Func="Objectify"/>,
##  whenever <Ref Func="IsConfluent" Label="for a rewriting system"/> is
##  called,
##  the appropriate method to determine confluence is called. 
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsRewritingSystem( <obj> )
##
##  <#GAPDoc Label="IsRewritingSystem">
##  <ManSection>
##  <Filt Name="IsRewritingSystem" Arg='obj' Type='Category'/>
##
##  <Description>
##  This is the category in which all rewriting systems lie.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory(
    "IsRewritingSystem",
    IsCopyable );

#############################################################################
##
#C  IsReducedConfluentRewritingSystem( <obj> )
##
##  <ManSection>
##  <Filt Name="IsReducedConfluentRewritingSystem" Arg='obj' Type='Category'/>
##
##  <Description>
##  This is a subcategory of <Ref Func="IsRewritingSystem"/> for (immutable)
##  rws which are reduced and confluent.
##  </Description>
##  </ManSection>
##
DeclareCategory(
    "IsReducedConfluentRewritingSystem",
    IsRewritingSystem);

#############################################################################
##
#P  IsBuiltFromAdditiveMagmaWithInverses( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromAdditiveMagmaWithInverses" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty( 
    "IsBuiltFromAdditiveMagmaWithInverses",
    IsObject );


#############################################################################
##
#P  IsBuiltFromMagma( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromMagma" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty(
    "IsBuiltFromMagma",
    IsObject );


#############################################################################
##
#P  IsBuiltFromMagmaWithOne( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromMagmaWithOne" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty(
    "IsBuiltFromMagmaWithOne",
    IsObject );


#############################################################################
##
#P  IsBuiltFromMagmaWithInverses( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromMagmaWithInverses" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty( 
    "IsBuiltFromMagmaWithInverses",
    IsObject );


#############################################################################
##
#P  IsBuiltFromGroup( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty(
    "IsBuiltFromGroup",
    IsObject );


#############################################################################
##
#M  IsBuiltFromMagma( <obj> )
##
InstallTrueMethod( IsBuiltFromMagma, IsBuiltFromMagmaWithOne );


#############################################################################
##
#M  IsBuiltFromMagmaWithOne( <obj> )
##
InstallTrueMethod( IsBuiltFromMagmaWithOne, IsBuiltFromMagmaWithInverses );

#############################################################################
##
#P  IsBuiltFromSemigroup( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromSemigroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsBuiltFromSemigroup", IsObject );

#############################################################################
##
#P  IsBuiltFromMonoid( <obj> )
##
##  <ManSection>
##  <Prop Name="IsBuiltFromMonoid" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsBuiltFromMonoid", IsObject );


#############################################################################
##
#M  IsBuiltFromGroup( <obj> )
##
InstallTrueMethod( IsBuiltFromMagmaWithInverses, IsBuiltFromGroup );

#############################################################################
##
#A  SemigroupOfRewritingSystem( <rws> )
##
##  <#GAPDoc Label="SemigroupOfRewritingSystem">
##  <ManSection>
##  <Attr Name="SemigroupOfRewritingSystem" Arg='rws'/>
##
##  <Description>
##  returns the semigroup over which <A>rws</A> is
##  a rewriting system
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("SemigroupOfRewritingSystem",IsRewritingSystem);

#############################################################################
##
#A  MonoidOfRewritingSystem( <rws> )
##
##  <#GAPDoc Label="MonoidOfRewritingSystem">
##  <ManSection>
##  <Attr Name="MonoidOfRewritingSystem" Arg='rws'/>
##
##  <Description>
##  returns the monoid over which <A>rws</A> is a rewriting system
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MonoidOfRewritingSystem",IsRewritingSystem);


#############################################################################
##
#O  FreeStructureOfRewritingSystem( <obj> )
##
##  <ManSection>
##  <Oper Name="FreeStructureOfRewritingSystem" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "FreeStructureOfRewritingSystem", [IsRewritingSystem]);

#############################################################################
##
#A  ConfluentRws( <rws> )
##
##  <#GAPDoc Label="ConfluentRws">
##  <ManSection>
##  <Attr Name="ConfluentRws" Arg='rws'/>
##
##  <Description>
##  Return a new rewriting system defining the same algebra as <A>rws</A> 
##  which is confluent.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

#  NOTE: this is an  attribute  *but* rewriting system   do not  store  this
#  attribute because they are mutable.
##
DeclareAttribute(
    "ConfluentRws",
    IsRewritingSystem );



#############################################################################
##
#A  GeneratorsOfRws( <rws> )
##
##  <#GAPDoc Label="GeneratorsOfRws">
##  <ManSection>
##  <Attr Name="GeneratorsOfRws" Arg='rws'/>
##
##  <Description>
##  Returns the list of generators of the rewriting system <A>rws</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute(
    "GeneratorsOfRws",
    IsRewritingSystem );



#############################################################################
##
#A  NumberGeneratorsOfRws( <rws> )
##
##  <ManSection>
##  <Attr Name="NumberGeneratorsOfRws" Arg='rws'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute(
    "NumberGeneratorsOfRws",
    IsRewritingSystem );



#############################################################################
##
#A  Rules( <rws> )
##
##  <#GAPDoc Label="Rules">
##  <ManSection>
##  <Attr Name="Rules" Arg='rws'/>
##
##  <Description>
##  The rules comprising the rewriting system. Note that these may 
##  change through the life of the rewriting system, however they
##  will always be a set of defining relations of the algebra
##  described by the rewriting system.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

##  NOTE: this is an   attribute *but*, normally, rewriting  system  
##  do not store this attribute.
##
DeclareAttribute(
    "Rules",
    IsRewritingSystem );



#############################################################################
##
#a  UnderlyingFamily( <rws> )
##
#T DeclareAttribute(
#T     "UnderlyingFamily",
#T     IsObject );
#T already in `liefam.gd'

#############################################################################
##
#A  OrderOfRewritingSystem(<rws>)
#A  OrderingOfRewritingSystem(<rws>)
##
##  <#GAPDoc Label="OrderOfRewritingSystem">
##  <ManSection>
##  <Attr Name="OrderOfRewritingSystem" Arg='rws'/>
##  <Attr Name="OrderingOfRewritingSystem" Arg='rws'/>
##
##  <Description>
##  return the ordering of the rewriting system <A>rws</A>.
##  <!-- %the synonym here guarantees compatibility with &GAP;&nbsp;4.1 and &GAP;&nbsp;4.2. -->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("OrderingOfRewritingSystem", IsRewritingSystem);
DeclareSynonym("OrderOfRewritingSystem", OrderingOfRewritingSystem);

#############################################################################
##
#P  IsConfluent( <rws> )
#P  IsConfluent( <A> )
##
##  <#GAPDoc Label="IsConfluent">
##  <ManSection>
##  <Heading>IsConfluent</Heading>
##  <Prop Name="IsConfluent" Arg='rws' Label="for a rewriting system"/>
##  <Prop Name="IsConfluent" Arg='A'
##   Label="for an algebra with canonical rewriting system"/>
##
##  <Description>
##  For a rewriting system <A>rws</A>,
##  <Ref Func="IsConfluent" Label="for a rewriting system"/> returns
##  <K>true</K> if and only if <A>rws</A> is confluent. 
##  A rewriting system is <E>confluent</E> if, for every two words 
##  <M>u</M> and <M>v</M> in the free algebra <M>T</M> which represent the
##  same element  of the algebra <M>A</M> defined by <A>rws</A>,
##  <C>ReducedForm( <A>rws</A>, </C><M>u</M> <C>) =
##  ReducedForm( <A>rws</A>, </C><M>v</M><C>)</C> as words in the
##  free algebra <M>T</M>.
##  This element is the <E>unique normal form</E>
##  of the element represented by <M>u</M>.
##  <P/>
##  For an algebra <A>A</A> with a canonical rewriting system associated
##  with it,
##  <Ref Prop="IsConfluent" Label="for an algebra with canonical rewriting system"/>
##  checks whether that rewriting system is confluent.
##  <P/>
##  Also see&nbsp;<Ref Prop="IsConfluent" Label="for pc groups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

#  NOTE: this is a property *but* the rewriting system does not store  this
#  attribute.
##
DeclareProperty(
    "IsConfluent",
    IsRewritingSystem );



#############################################################################
##
#P  IsReduced( <rws> )
##
##  <#GAPDoc Label="IsReduced">
##  <ManSection>
##  <Prop Name="IsReduced" Arg='rws'/>
##
##  <Description>
##  A rewriting system is reduced if for each rule <M>(l, r)</M>,
##  <M>l</M> and <M>r</M> are both reduced.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsReduced", IsRewritingSystem and IsMutable );




#############################################################################
##
#O  AddRule(<rws>, <rule>)
##
##  <#GAPDoc Label="AddRule">
##  <ManSection>
##  <Oper Name="AddRule" Arg='rws, rule'/>
##
##  <Description>
##  Add  <A>rule</A> to a rewriting system <A>rws</A>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "AddRule",
    [ IsRewritingSystem and IsMutable , IsHomogeneousList ] );

#############################################################################
##
#O  AddRuleReduced(<rws>, <rule>)
##
##  <#GAPDoc Label="AddRuleReduced">
##  <ManSection>
##  <Oper Name="AddRuleReduced" Arg='rws, rule'/>
##
##  <Description>
##  Add <A>rule</A> to rewriting system <A>rws</A>.
##  Performs a reduction operation on the resulting system,
##  so that if <A>rws</A> is reduced it will remain reduced.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "AddRuleReduced",
    [ IsRewritingSystem and IsMutable , IsHomogeneousList ] );



#############################################################################
##
#O  AddGenerators( <rws>, <gens> )
##
##  <ManSection>
##  <Oper Name="AddGenerators" Arg='rws, gens'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "AddGenerators",
    [ IsRewritingSystem and IsMutable, IsHomogeneousList ] );


#############################################################################
##
#O  MakeConfluent( <rws> )
##
##  <#GAPDoc Label="MakeConfluent">
##  <ManSection>
##  <Oper Name="MakeConfluent" Arg='rws'/>
##
##  <Description>
##  Add rules (and perhaps reduce) in order to make <A>rws</A> confluent
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "MakeConfluent",
    [ IsRewritingSystem and IsMutable ] );


#############################################################################
##
#O  ReduceRules( <rws> )
##
##  <#GAPDoc Label="ReduceRules">
##  <ManSection>
##  <Oper Name="ReduceRules" Arg='rws'/>
##
##  <Description>
##  Reduce rules and remove redundant rules to make <A>rws</A> reduced.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "ReduceRules",
    [ IsRewritingSystem and IsMutable ] );


#############################################################################
##
#O  ReducedAdditiveInverse( <rws>, <obj> )
##
##  <ManSection>
##  <Oper Name="ReducedAdditiveInverse" Arg='rws, obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedAdditiveInverse",
    [ IsRewritingSystem,
      IsAdditiveElement ] );


#############################################################################
##
#O  ReducedComm( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedComm" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedComm",
    [ IsRewritingSystem,
      IsMultiplicativeElement,
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedConjugate( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedConjugate" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedConjugate", 
    [ IsRewritingSystem,
      IsMultiplicativeElement,
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedDifference( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedDifference" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedDifference", 
    [ IsRewritingSystem,
      IsAdditiveElement,
      IsAdditiveElement ] );


#############################################################################
##
#O  ReducedForm( <rws>, <u> )
##
##  <#GAPDoc Label="ReducedForm">
##  <ManSection>
##  <Oper Name="ReducedForm" Arg='rws, u'/>
##
##  <Description>
##  Given an element <A>u</A> in the free (or term) algebra <M>T</M> over
##  which <A>rws</A> is defined,
##  rewrite <A>u</A> by successive applications of the
##  rules of <A>rws</A> until no further rewriting is possible, and return
##  the resulting element of <M>T</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "ReducedForm", 
    [ IsRewritingSystem,
      IsObject ] );

#############################################################################
##
#O  IsReducedForm( <rws>, <u> )
##
##  <ManSection>
##  <Oper Name="IsReducedForm" Arg='rws, u'/>
##
##  <Description>
##  Given an element <A>u</A> in the free (or term) algebra over which
##  <A>rws</A> is defined,
##  returns <C><A>u</A> = ReducedForm(<A>rws</A>, <A>u</A>)</C>. 
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "IsReducedForm",
    [ IsRewritingSystem,
      IsObject ] );



#############################################################################
##
#O  ReducedInverse( <rws>, <obj> )
##
##  <ManSection>
##  <Oper Name="ReducedInverse" Arg='rws, obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedInverse", 
    [ IsRewritingSystem,
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedLeftQuotient( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedLeftQuotient" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedLeftQuotient",
    [ IsRewritingSystem, 
      IsMultiplicativeElement,
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedOne( <rws> )
##
##  <ManSection>
##  <Oper Name="ReducedOne" Arg='rws'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedOne", 
    [ IsRewritingSystem ] );


#############################################################################
##
#O  ReducedPower( <rws>, <obj>, <pow> )
##
##  <ManSection>
##  <Oper Name="ReducedPower" Arg='rws, obj, pow'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedPower",
    [ IsRewritingSystem, 
      IsMultiplicativeElement,
      IsInt ] );


#############################################################################
##
#O  ReducedProduct( <rws>, <u>, <v> )
##
##  <ManSection>
##  <Oper Name="ReducedProduct" Arg='rws, u, v'/>
##
##  <Description>
##  The result is <M>w</M> where <M>[w]</M> equals [<A>u</A>][<A>v</A>] in
##  <M>A</M> and <M>w</M> is in reduced form.
##  <P/>
##  The remaining operations are defined similarly when they
##  are defined (as determined by the signature of the term algebra).
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedProduct", 
    [ IsRewritingSystem,
      IsMultiplicativeElement, 
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedQuotient( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedQuotient" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedQuotient", 
    [ IsRewritingSystem,
      IsMultiplicativeElement,
      IsMultiplicativeElement ] );


#############################################################################
##
#O  ReducedScalarProduct( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedScalarProduct" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedScalarProduct", 
    [ IsRewritingSystem,
      IsScalar,
      IsAdditiveElement ] );


#############################################################################
##
#O  ReducedSum( <rws>, <left>, <right> )
##
##  <ManSection>
##  <Oper Name="ReducedSum" Arg='rws, left, right'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedSum",
    [ IsRewritingSystem,
      IsAdditiveElement,
      IsAdditiveElement ] );


#############################################################################
##
#O  ReducedZero( <rws> )
##
##  <ManSection>
##  <Oper Name="ReducedZero" Arg='rws'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ReducedZero", 
    [ IsRewritingSystem ] );


#############################################################################
##
#V  InfoConfluence
##
DeclareInfoClass("InfoConfluence");


#############################################################################
##
#E