This file is indexed.

/usr/share/gap/lib/rwspcgrp.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#############################################################################
##
#W  rwspcgrp.gd                 GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file   contains the operations  for groups   defined by a polycyclic
##  collector.
##


#############################################################################
##
#C  IsElementFinitePolycyclicGroup
#C  IsElementFinitePolycyclicGroupCollection
##
##  <ManSection>
##  <Filt Name="IsElementFinitePolycyclicGroup" Arg='obj' Type='Category'/>
##  <Filt Name="IsElementFinitePolycyclicGroupCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  This category is set if the group defining a family of polycyclic
##  elements is finite. It is used to impliy finiteness for groups generated
##  by elements in this family.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsElementFinitePolycyclicGroup",
    IsMultiplicativeElementWithInverse and IsAssociativeElement );
DeclareCategoryCollections( "IsElementFinitePolycyclicGroup");

InstallTrueMethod(IsSubsetLocallyFiniteGroup,
  IsElementFinitePolycyclicGroupCollection);


#############################################################################
##
#C  IsMultiplicativeElementWithInverseByPolycyclicCollector
##
##  <ManSection>
##  <Filt Name="IsMultiplicativeElementWithInverseByPolycyclicCollector" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory(
    "IsMultiplicativeElementWithInverseByPolycyclicCollector",
    IsMultiplicativeElementWithInverseByRws and IsAssociativeElement );

DeclareCategoryCollections(
    "IsMultiplicativeElementWithInverseByPolycyclicCollector" );


#############################################################################
##
#C  IsPcGroup( <G> )
##
##  <#GAPDoc Label="IsPcGroup">
##  <ManSection>
##  <Filt Name="IsPcGroup" Arg='G' Type='Category'/>
##
##  <Description>
##  tests whether <A>G</A> is a pc group.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 24, 12 );
##  <pc group of size 24 with 4 generators>
##  gap> IsPcGroup( G );
##  true
##  gap> IsFpGroup( G );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsPcGroup",
    IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection
    and IsGroup );


#############################################################################
##
#A  DefiningPcgs( <obj> )
##
##  <ManSection>
##  <Attr Name="DefiningPcgs" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute(
    "DefiningPcgs",
    IsObject );

#############################################################################
##
#F  IsKernelPcWord(obj)
##
##  <ManSection>
##  <Func Name="IsKernelPcWord" Arg='obj'/>
##
##  <Description>
##  This filter is implied by the kernel pc words. It is used solely to
##  increase the rank of the pc words representation (NewRepresenattion does
##  not admit a rank other than 1).
##  </Description>
##  </ManSection>
##
DeclareFilter("IsKernelPcWord",100);


#############################################################################
##
#C  IsElementsFamilyBy8BitsSingleCollector
##
##  <ManSection>
##  <Filt Name="IsElementsFamilyBy8BitsSingleCollector" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory(
    "IsElementsFamilyBy8BitsSingleCollector",
    IsElementsFamilyByRws );


#############################################################################
##
#C  IsElementsFamilyBy16BitsSingleCollector
##
##  <ManSection>
##  <Filt Name="IsElementsFamilyBy16BitsSingleCollector" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory(
    "IsElementsFamilyBy16BitsSingleCollector",
    IsElementsFamilyByRws );


#############################################################################
##
#C  IsElementsFamilyBy32BitsSingleCollector
##
##  <ManSection>
##  <Filt Name="IsElementsFamilyBy32BitsSingleCollector" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory(
    "IsElementsFamilyBy32BitsSingleCollector",
    IsElementsFamilyByRws );


#############################################################################
##
#O  PolycyclicFactorGroup( <fgrp>, <rels> )
#O  PolycyclicFactorGroupNC( <fgrp>, <rels> )
##
##  <ManSection>
##  <Oper Name="PolycyclicFactorGroup" Arg='fgrp, rels'/>
##  <Oper Name="PolycyclicFactorGroupNC" Arg='fgrp, rels'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "PolycyclicFactorGroup",
    [ IsObject, IsList ] );

DeclareOperation(
    "PolycyclicFactorGroupNC",
    [ IsObject, IsList ] );


#############################################################################
##
#O  PolycyclicFactorGroupByRelators( <fam>, <gens>, <rels> )
##
##  <ManSection>
##  <Oper Name="PolycyclicFactorGroupByRelators" Arg='fam, gens, rels'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SingleCollectorByRelators" );

DeclareOperation(
    "PolycyclicFactorGroupByRelatorsNC",
    [ IsFamily, IsList, IsList ] );

DeclareOperation(
    "PolycyclicFactorGroupByRelators",
    [ IsFamily, IsList, IsList ] );


#############################################################################
##
#E