This file is indexed.

/usr/share/gap/lib/rwssmg.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#############################################################################
##
#W  rwssmg.gi           GAP library                             Isabel Araújo
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for semigroups defined by rws.
## JDM

############################################################################
##
#F  ReducedConfluentSemigroupRwsNC( <kbrws>)
##
##  if we have a knuth bendix rws that we know is reduced and
##  confluent we can certainly transform it into a reduced
##  confluent rewriting system
##  This performs no checking!!!
##
BindGlobal("ReducedConfluentRwsFromKbrwsNC",
function(kbrws)
  local fam,rws;

  fam := NewFamily("Family of reduced confluent rewriting systems",
          IsReducedConfluentRewritingSystem);
  rws:= Objectify(NewType(fam,IsAttributeStoringRep and
          IsReducedConfluentRewritingSystem), rec());
  SetRules(rws,StructuralCopy(Rules(kbrws)));
  rws!.tzrules:=StructuralCopy(kbrws!.tzrules);
  rws!.tzordering:=StructuralCopy(kbrws!.tzordering);
  
  SetIsReduced(rws,true);
  SetIsConfluent(rws,true);
  SetFamilyForRewritingSystem(rws, FamilyForRewritingSystem(kbrws));
  SetOrderingOfRewritingSystem(rws,OrderingOfRewritingSystem(kbrws));
	if IsElementOfFpSemigroupFamily(FamilyForRewritingSystem(kbrws)) then
		SetIsBuiltFromSemigroup(rws,true);
	elif IsElementOfFpMonoidFamily(FamilyForRewritingSystem(kbrws)) then
		SetIsBuiltFromMonoid(rws,true);
	fi;

  return rws;

end);

############################################################################
##
#A  ReducedConfluentRewritingSystem( <S>)
##
##  returns a reduced confluent rewriting system of the fp semigroup
##  <S> with respect to the shortlex ordering on words.
##
InstallMethod(ReducedConfluentRewritingSystem,
"for an fp semigroup", true,
[IsFpSemigroup], 0,
function(S)
	local wordord;

	wordord := ShortLexOrdering(ElementsFamily(FamilyObj(
          FreeSemigroupOfFpSemigroup(S))));
  return ReducedConfluentRewritingSystem(S,wordord);
end);

InstallMethod(ReducedConfluentRewritingSystem,
"for an fp monoid", true,
[IsFpMonoid], 0,
function(M)
	local wordord;
	
	wordord := ShortLexOrdering(ElementsFamily(FamilyObj(
          FreeMonoidOfFpMonoid(M))));
  return ReducedConfluentRewritingSystem(M,wordord);
end);



############################################################################
##
#A  ReducedConfluentRewritingSystem( <S>,<ordering>)
##
##  returns a reduced confluent rewriting system of the fp semigroup/monoid
##  <S> with respect to a supplied reduction order.
##
InstallOtherMethod(ReducedConfluentRewritingSystem,
  "for an fp semigroup and an ordering on the underlying free semigroup", true,
  [IsFpSemigroup, IsOrdering], 0,
function(S,ordering)
  local kbrws,rws;

  if HasReducedConfluentRewritingSystem(S) and
    IsIdenticalObj(ordering,
      OrderingOfRewritingSystem(ReducedConfluentRewritingSystem(S))) then
    return ReducedConfluentRewritingSystem(S);
  fi;

  # we start by building a knuth bendix rws for the semigroup 
  kbrws := KnuthBendixRewritingSystem(S,ordering);
  # then we make it confluent (and reduced)
  MakeConfluent(kbrws);

  # we now check whether the attribute is already set
  # (for example, there is an implementation of MakeConfluent that
  # stores it immediately)
  # if the attribute is not set we set it here
  rws := ReducedConfluentRwsFromKbrwsNC(kbrws);
  if not(HasReducedConfluentRewritingSystem(S)) then
    SetReducedConfluentRewritingSystem(S, rws);
  fi;

  return rws;

end);

InstallOtherMethod(ReducedConfluentRewritingSystem,
  "for an fp monoid and an ordering on the underlying free monoid", true,
  [IsFpMonoid, IsOrdering], 0,
function(M,ordering)
  local kbrws, rws;

  if HasReducedConfluentRewritingSystem(M) and
    IsIdenticalObj(ordering,
      OrderingOfRewritingSystem(ReducedConfluentRewritingSystem(M))) then
    return ReducedConfluentRewritingSystem(M);
  fi;

  # we start by building a knuth bendix rws for the monoid
  kbrws := KnuthBendixRewritingSystem(M,ordering);
  # then we make it confluent (and reduced)
  MakeConfluent(kbrws);

  # we now check whether the attribute is already set
  # (for example, there is an implementation of MakeConfluent that
  # stores it immediately)
  # if the attribute is not set we set it here
  rws := ReducedConfluentRwsFromKbrwsNC(kbrws);
  if not(HasReducedConfluentRewritingSystem(M)) then
    SetReducedConfluentRewritingSystem(M, rws);
  fi;

  return rws;

end);


############################################################################
##
#A  ReducedConfluentRewritingSystem( <S>,<lteq>)
##
##  returns a reduced confluent rewriting system of the fp semigroup
##  <S> with respect to a supplied reduction order.
##  lteq(<a>,<b>) returns true iff <a> <= <b> in the order corresponding
##  to lteq.
##
InstallOtherMethod(ReducedConfluentRewritingSystem,
"for an fp semigroup and an order on the underlying free semigroup", true,
[IsFpSemigroup, IsFunction], 0,
function(S,lteq)
  return ReducedConfluentRewritingSystem(S,
					OrderingByLessThanOrEqualFunctionNC(ElementsFamily(FamilyObj(
					FreeSemigroupOfFpSemigroup(S))),lteq,[IsReductionOrdering]));
end);

#############################################################################
##
#M  IsConfluent(<RWS>)
##
##  checks confluence of a rewriting system built from a monoid
##
InstallMethod(IsConfluent,
"for a monoid or a semigroup rewriting system", true,
[IsRewritingSystem], 0,
function(rws)
    local p,r,i,b,l,u,v,w,rules;

  # this method only works for rws which are built from
  # monoid or semigroups
 # if not (IsBuiltFromMonoid(rws) or IsBuiltFromSemigroup(rws)) then
 #  TryNextMethod();
 #fi;

  rules:=Rules(rws);
  for p in rules do
    for r in rules do

      for i in [1..Length(p[1])] do
        # b is a sufix of p[1]
        b := Subword(p[1],Length(p[1])-i+1,Length(p[1]));

        l := LengthOfLongestCommonPrefixOfTwoAssocWords(b,r[1]);

        # b and r overlap iff |b|=l or |r|=l
        # if |b|=l it means that p[1] and r[1] overlap
        # if |r|=l it means that r[1] is a subword of p[1]
        # if one of these cases occur then confluence might fail

        if Length(b)=l or Length(r[1])=l then

          # let u be the longest common prefix of b and r[1]
          u := Subword(b,1,l);

          # Now, if we have b=ud and r=ue
          # either d or e is empty
          # and if p[1]=ab then to check confluence we have to
          # check the equality of the reduced forms of
          # the words v=ar[2]d and w=p[2]e

          # so in p[1] we substitute the first occurrence of u in b by r[2]
          v := SubstitutedWord(p[1],u,Length(p[1])-i+1,r[2]);
          # and in r[1] we substitute the first occurrence of u by p[2]
          w := SubstitutedWord(r[1],u,1,p[2]);
          # the reduced form of v and w must be equal if the rws is confluent
          if ReducedForm(rws,v)<>ReducedForm(rws,w) then
            return false;
          fi;
        fi;
      od;
    od;
  od;

  # at this stage we know that the rws is confluent
  return true;

end);


############################################################################
##
#A  PrintObj(<rws>)
##
##
InstallMethod(ViewObj, "for a semigroup rewriting system", true,
[IsRewritingSystem and IsBuiltFromSemigroup], 0,
function(rws)
  Print("Rewriting System for ");
  Print(SemigroupOfRewritingSystem(rws));
  Print(" with rules \n");
  Print(Rules(rws));
end);

InstallMethod(ViewObj, "for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromMonoid], 0,
function(rws)
  Print("Rewriting System for ");
  Print(MonoidOfRewritingSystem(rws));
  Print(" with rules \n");
  Print(Rules(rws));
end);

#############################################################################
##
#F  ReduceWordUsingRewritingSystem (<RWS>,<w>)
##
##  w is a word of a free monoid or a free semigroup, RWS is a Rewriting System
##  Given a rewriting system and a word in the free structure underlying it,
##  uses the rewriting system to reduce the word and return
##  a 'minimal' one.
##
InstallGlobalFunction(ReduceLetterRepWordsRewSys,REDUCE_LETREP_WORDS_REW_SYS);

InstallGlobalFunction(ReduceWordUsingRewritingSystem,
function(rws,w)
local v;

  #check that rws is Rewriting System
  if not IsRewritingSystem(rws) then
    Error("Can only reduce word given Rewriting System");
  elif not IsAssocWord(w) then
    Error("Can only reduce word from free monoid");
  fi;

  v:=AssocWordByLetterRep(FamilyObj(w),
       ReduceLetterRepWordsRewSys(rws!.tzrules,LetterRepAssocWord(w)));

  return v;

end);





#############################################################################
##
#M  ReducedForm(<RWS>, <e>)
##
InstallMethod(ReducedForm,
"for a semigroup rewriting system and a word on the underlying free semigroup", true,
[IsRewritingSystem and IsBuiltFromSemigroup, IsAssocWord], 0,
function(rws,w)

  if not (w in FreeSemigroupOfRewritingSystem(rws)) then
      Error( Concatenation(
              "Usage: ReducedForm(<rws>, <w>)", "- <w> in FreeSemigroupRewritingSystem(<rws>)") );;
  fi;
  return ReduceWordUsingRewritingSystem(rws,w);

end);

InstallMethod(ReducedForm,
"for a monoid rewriting system and a word on the underlying free monoid",
true,
[IsRewritingSystem and IsBuiltFromMonoid, IsAssocWord], 0,
function(rws,w)

  if not (w in FreeMonoidOfRewritingSystem(rws)) then
      Error( Concatenation( "Usage: ReducedForm(<rws>, <w>)", "- <w> in FreeMonoidOfRewritingSystem(<rws>)") );;
  fi;
  return ReduceWordUsingRewritingSystem(rws,w);

end);



#############################################################################
##
#M  FreeSemigroupOfRewritingSystem(<RWS>)
##
##
InstallMethod(FreeSemigroupOfRewritingSystem,
"for a semigroup rewriting system", true,
[IsRewritingSystem and IsBuiltFromSemigroup], 0,
function(rws)
  return FreeSemigroupOfFpSemigroup(
    SemigroupOfRewritingSystem(rws));
end);

#############################################################################
##
#M  FreeMonoidOfRewritingSystem(<RWS>)
##
InstallMethod(FreeMonoidOfRewritingSystem,
"for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromMonoid], 0,
function(rws)
  return FreeMonoidOfFpMonoid(
    MonoidOfRewritingSystem(rws));
end);

#############################################################################
##
#M  GeneratorsOfRws(<RWS>)
##

InstallOtherMethod(GeneratorsOfRws, 
"for a monoid rewriting system", true, 
[IsRewritingSystem and IsBuiltFromSemigroup], 0, 
function(rws) 
return GeneratorsOfSemigroup(FreeSemigroupOfRewritingSystem(rws));

end);

#############################################################################
##
#M  GeneratorsOfRws(<RWS>)
##

InstallOtherMethod(GeneratorsOfRws, 
"for a monoid rewriting system", true, 
[IsRewritingSystem and IsBuiltFromMonoid], 0, 
function(rws) 
return GeneratorsOfMonoid(FreeMonoidOfRewritingSystem(rws));

end);

#############################################################################
##
#E